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Abstract
Female athletes follow a strict diet and perform rigorous exercise to boost their performance, which induces health issues called the female
athlete triad (FAT), defined as the combination of disordered eating, amenorrhoea and lowbonemineral density. It is known to have a significant
effect on bones. However, its effects on the small intestine, which is responsible for nutrient uptake into the body, remain unclear. In this study,
we created an animal model of FAT to examine its effects on digestive and absorptive molecules in the small intestine. Thirty 5-week-old female
Sprague-Dawley (SD) rats with an initial body weight of about 147 g were divided into control (Con, n= 7), exercise (Ex, n= 7), food restriction
(FR, n= 8) and exercise plus food restriction (FAT, n= 8) groups. The rats were subjected to 4 weeks of wheel running (Ex, FAT) and 50–40 %
food restriction (FR, FAT) to examine the effects on bone and typical digestive enzymes and transporters in the jejunum. Two-way ANOVA and
the Kruskal–Wallis test were used for statistical analysis of normal and non-normal data, respectively. Four weeks of exercise and food restriction
decreased bone weight (vs. other group P< 0·01) and bone breaking power (vs. other group P< 0·01). Villus height decreased in the jejunum
(vs. other group P< 0·01), but the expression of typical macronutrients digestive enzyme and absorptive molecules remained unchanged. In
contrast, sucrase-isomaltase gene (v. Ex P= 0·02) and protein expressionwere increased (vs. other group P< 0·05). The study findings show that
FAT affects sucrase-isomaltase without histone methylation changes.
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Athletes are central to various sports, and in recent years, the
number of female athletes has increased, and their performance
has improved remarkably. Alongside this, health issues in female
athletes have become apparent(1).

In case of weight-sensitive sports, such as those involving
endurance, aesthetics and different weight categories, body weight
and composition affect athletic performance(2,3). Therefore, athletes
often undertake extrememethods ofweight loss, such as restricting
food intake and excessive training(2), which causes serious health
issues such as the female athlete triad (FAT), defined as the combi-
nation of disordered eating, amenorrhoea and low bone mineral
density (BMD)(4). Moreover, inadequate energy and nutrient
uptake during the growth period induces delayed growth and
development during puberty(5). Although exercise confers vari-
ous benefits to the body, a prolonged period of low availability of

energy due to restrictions on food intake and excessive exercise
is known to reduce bone strength both directly and indirectly.
Indirectly, this happens because of oestrogen deficiency owing
to menstrual abnormalities. Whereas, the abnormal secretion of
metabolic hormones is a direct cause for the reduction in bone
strength(6).

Several effects of FAT on bone have been reported, as well as
on hormone secretion in adipocytes(7), thyroid, pancreas and
ovaries(8–10). Therefore, FAT is expected to have some detrimen-
tal effects on various organs of the body. FAT is often attributed
to excessive exercise and strict dietary restrictions, which are
known to have adverse effects on the intestinal tract. Excessive
exercise is known to damage the intestinal tract and cause leaky
gut(11), and gene expression of enzymes and transporters
involved in digestion and absorption is markedly reduced when
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dietary nutrients no longer stimulate the intestinal epithelial cells,
such as in fasting(12). Although the small intestine is known for its
nutrient uptake, barrier function and secretion of various hor-
mones(13–15), FAT may have a severe negative impact on the
intestinal tract, which performs important functions. Notably,
nutrient uptake is important for the smooth progression of bio-
logical activities in the body and athletes must therefore consider
the effects of excessive exercise and severe dietary restrictions
on the small intestine. Therefore, in this study, we aimed to
develop an animal model of FAT to characterise the morphology
of the small intestine, particularly the jejunum, and changes in
molecules related to nutrient uptake.

Materials and methods

Animal treatments

This study was conducted in accordance with the principles and
guidelines for international animal care and approved by the
Animal Experimental Committee of the University of Tsukuba
(approval number 21-1007).

Thirty 5-week-old female Sprague-Dawley (SD) rats (Japan
CLEA Co., Ltd.) were used in this experiment. After acclimatisa-
tion to the environment for 1 week, the animals were divided
into four groups: no exercise and ad libitum food intake (Con,
n 7), exercise and ad libitum food intake (Ex, n 7), no exercise
and 50–60 % food restriction (FR, n 8) and exercise and 50–60 %
food restriction group (FAT, n 8). The minimum sample size was
estimated and determined from our unpublished data. The
experimental period was 4 weeks. During the study period,
the FR and FAT groups were fed 50 % of the food intake of
the Ex group for the first week. However, because of the rapid
weight loss observed during the first week (approximately 20 %
weight loss in the FAT group), the FR and FAT groups were fed
60 % of the food intake of the Ex group from the second week.
Since FAT is primarily attributed to reduced available energy, this
study limited only energy sources, not vitamins and minerals.
The composition of the diet is listed in Table 1. During the
experiment, the rats had free access to the rotating wheel and
exercised spontaneously. The rats were kept in a stainless-steel
wire case (13 × 13 × 22 cm) for the Con and FR groups and in a
cage with a rotary wheel (1 m per lap, cage size: 35 cm high–27
cm wide–35 cm deep) for the Ex and FAT groups to perform the
exercise. The room temperature and humidity were maintained
at 25 ± 1°C and 80 ± 10 % under a constant 12:12 h light–dark
cycle (light 6:00–18:00).

Daily data and sample collection

The body weight, food intake and running distance were
recorded daily. The rats weremade to fast for 2 h prior to autopsy
and isoflurane (Mylan Inc.) was inhaled. After confirming the dis-
appearance of the rise reflex, whole blood was quickly drawn
from the abdominal aorta and the rats were killed. The blood
was kept on ice for 30 min and then centrifuged (2500 rpm,
4°C, 15 min) to obtain serum. After killing, the femur and lumbar
spine were collected, and the lumbar spines were preserved in
70 % ethanol. The femurs were collected, and the wet weight

was measured. The jejunum was collected as previously
described(12). Briefly, the small intestine was cut in half and
the duodenum side was used as the jejunum. The central parts
of the jejunum (approximately 1 cm) were used for haematox-
ylin and eosin staining. The remaining sample was cut open
longitudinally, the muscle layer was removed and the mucosa
was collected. Femurs were stored at 4°C until biomechanical
testing.

Measurement of bone strength

The fracture force and fracture energy were measured using a
bone fracture characteristic-measuring device (DYN-1255, Iio
Electric Co.) using the femurs. The conditions were as follows:
distance between fulcrums, 1 cm; plunger speed, 100m/min; full
scale, 50 kg and chart speed, 120 cm/min.

Measurement of bone mineral content and bone mineral
density

Bone mineral content and BMD of the L3–L6 lumbar spine were
measured using dual-energy X-ray absorptiometry (DXA; QDR-
4500A, Hologic Inc.). All scans were performed using small ani-
mal mode and high regional resolution.

Haematoxylin and eosin staining and measurements

Jejunum samples were stained with haematoxylin and eosin
according to protocols from previous studies(12,16). Mucosal
thickness, villus height, crypt depth and villus width were mea-
sured in at least five villi/rat as previously described(17). Briefly,
crypt depth was measured from the lowest layer of the mucosa
excluding the muscular layer to the sub-basal portion of the vil-
lus, and villus height was measured from the sub-basal to apical
portion of the villus, and the sum of these two was used as the
mucosa thickness. Villus width was measured at the thickest part
of the villus.

All images were captured using a microscope (BZ-X710;
Keyence).

Immunoblotting

All immunoblotting procedures were performed according to a
previous study(12). Briefly, total protein was extracted from jeju-
nal mucosa samples using a lysis buffer (1 % NP-40, 50 mM Tris,
150 mM NaCl, 1 mM EDTA including proteinase inhibitor tablets
(cOmpleteTM mini, Roche)). Protein concentration was mea-
sured using a Takara BCA Assay kit (T9300A, Takara Bio) and
microplate reader (Varioskan LUX, Thermo Fisher Scientific).
Finally, the protein samples were adjusted to a concentration
of 1 μg/μl. The total protein (15 μg/lane) was used for gel electro-
phoresis. For western blotting, primary antibodies against liver-
type fatty acid-binding protein (1:1000, sc-374537, Santa Cruz
Biotechnology), intestinal-type fatty acid-binding protein
(1:1000, sc-374482, Santa Cruz Biotechnology), APOA1 (1:500,
sc-58230, Santa Cruz Biotechnology), alanyl aminopeptidase
(1:1000, sc-13536, Santa Cruz Biotechnology), SLC15A1 (1:1000,
sc-373742, Santa Cruz Biotechnology), SGLT1 (1:1000, A11976,
ABclonal Technology), GLUT2 (1:1000, 20436-1-AP, Proteintech
Group Inc.) and sucrase-isomaltase (1:1000, sc-393470, Santa
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Cruz Biotechnology) were used. Horseradish peroxidase-conju-
gated anti-rabbit IgG (Cell Signaling Technology, #7074) and
anti-mouse IgG (Cell Signaling Technology, #7076) were used
as secondary antibodies. Signalswere detected using chemilumi-
nescence reagent (EzWestLumi One or EzWestLumi plus,
ATTO). Blots were scanned using a chemiluminescence imaging
system (FUSION FX7.EDGE; Vilber Lourmat).

Quantitative PCR

All quantitative PCR (qPCR) procedures were performed as pre-
viously described(12). Briefly, total RNA was extracted from the
jejunal mucosa using Sepasol ®-RNA I Super G (Nacalai
Tesque). Concentration and quality of RNA were measured
using a spectrophotometer (NanoDrop OneC, Thermo Fisher
Scientific). RNA quality was assessed with the 260/280 nm and
260/230 nm absorbance ratios (>1·8). Total RNA samples were
adjusted to 400 ng/tube, and reverse transcription was per-
formed using 5 × PrimeScript RT Master Mix (RR 036 A, Takara
Bio) in a thermal cycler (TP 350, Takara Bio). After reverse tran-
scription, TB Green ® Premix Ex Taq™ II (Takara Bio) was used
to perform qPCR using QuantStudio® 5 (Thermo Fisher
Scientific). qPCR was performed with the following conditions:
Hold stage: 95°C for 20 s, PCR stage: 95°C for 1 s, 60°C for 20
s, 40 cycles and Melt curve stage: 95°C for 1 s, 60°C for 20 s,
95°C for 1 s. The 28S ribosomal RNAwas used as the housekeep-
ing gene. The primer sequences were adopted from a previous
study(16). The primer sequences for the 28S ribosomal RNA
were as follows: forward 5 0-CCCAGAAAAGGTGTTGGTTGA-3 0

and reverse 5 0-TGATTCGGCAGGTGAGTTGTT-3 0. The primer
sequences for sucrase-isomaltase (Si) were as follows:
Forward 5 0-GCAGAAGGCTACATGGA-3 0 and Reverse 5 0–3 0

and Reverse 5 0-CCTTGCGACTGTCTCA-3 0. The quantification
cycle (Cq) value of the target gene was normalised to that
of the housekeeping gene. The results were analysed using

the 2−ΔΔCt method adapted from Livak and Schmittgen(18) and
expressed relative to the levels in the Con group.

Sucrase activity assay

Sucrase activity assay was conducted as previously
described(19,20). Each jejunal mucosa sample was homoge-
nised in buffer containing 10 mM KH2PO4 and 10 mM
K2HPO4 (pH 7·0). Mixtures of the homogenate and sucrose
were incubated at 37°C for 20 min. After incubation, the reac-
tion temperature was increased to 100°C for 2 min to inactivate
the sucrase. To detect the hydrolysed glucose from sucrose,
Tris-HCl-glucose oxidase reagent (3:7 ratio of 0·5 M Tris-
HCl, pH 7·0 to Glu CII test Wako was added to each well
and subsequently incubated at 37°C for 30 min. Then, 200
μl of the reaction solution was transferred to a new plate,
and the absorbance was measured at 505 nm. The total protein
concentration of each homogenate was determined using a
bicinchoninic acid (BCA) protein assay kit (Takara Bio).
One unit of sucrase activity corresponds to 1 mmol of glucose
produced/min. It was also standardised by protein concentra-
tion of the homogenate.

Chromatin immunoprecipitation quantitative PCR

Chromatin immunoprecipitation (ChIP) qPCR was performed as
previously described with minor modifications(21,22). The
mucosa removed from the jejunum was fixed in formaldehyde
solution (1 % formaldehyde, 4·5 mM HEPES (pH 8·0), 9 mM
NaCl, 0·09 mM EDTA, 0·04 mM ethylene glycol tetraacetic acid)
in PBS for 30 min at 37°C. The reaction was terminated with
2 M glycine (final concentration, 150 mM). After washing in fluo-
rescence-activated cell sorter solution (1 × PBS(-), 2 % bovine
serum, 0·05 % NaN3), the samples were sonicated in sodium
dodecyl sulfate lysis buffer (50 mM Tris-hydrochloride (pH
8·0), 10 mM EDTA (pH 8·0), 1 % sodium dodecyl sulfate) and

Table 1. Composition of daily diet of rats used in the study

Materials
Normal diet %

(0·6% Ca, 0·6% P)
Food restriction (50% FR) %

(1·2% Ca, 1·2% P)
Food restriction (60% FR) %

(1·0% Ca, 1·0% P)

Glucose monohydrate 62·15 55·15 57·56
Casein* 18 18 18
Cystine 0·2 0·2 0·2

Cottonseed oil 10 10 10
CaCO3 1·48 3·01 2·51
KH2PO4 1·27 2·76 2·21
K2HPO4 1·62 3·53 2·83
Roughage 3 3 3
Choline chloride 0·2 0·2 0·2

Water-soluble vitamin mixture† 0·1 0·2 0·17
Oil-soluble vitamin mixture‡
Ca·P-free salt mixture§ 2 4 3·33
Energy (kj/100 g) 1610·8 1460·2 357

* Casein contained 45 mg Ca/100 g and 127 mg P/100 g.
† Components of the water-soluble vitamin mixture (%): thiamine, 0·5; riboflavin, 0·5; pyridoxine, 0·5; calcium pantothenate, 2·8; nicotinamide, 2·0; inositol, 20·0; folic acid, 0·02;
vitamin B12, 0·002; biotin, 0·01 and glucose monohydrate, 73·7.

‡ The rats received a supplement of the following oil-soluble vitamins in cottonseed oil/week: β-carotene, 70 μg; 2-methyl-1·4-naphthoquinone, 105 μg; α-tocopherol, 875 μg and
vitamin D3, 525 mg.

§ Ca- and P-free salt mixture (%): KCl, 57·7; NaCl, 20·9; MgSO4, 17·9; FeSO4 · 7H2O, 3·22; CuSO4 · 5H2O, 0·078; NaF, 0·133; CoCl2 · 6H2O, 0·004; KI, 0·01; MnSO4 · 5H2O, 0·06;
ZnSO4 · 7H2O, 0·44; and (NH4)6Mo7O24 · 4H2O, 0·005.
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ChIP dilution buffer (50 mM Tris–HCl (pH 8·0), 167 mM NaCl,
1·1 % Triton X-100, 0·11 % sodium deoxycholate) (ratio 1:4) with
a protease inhibitor cocktail (Wako) to obtain 200- to 500-bp
DNA fragments. The ChIP assay was performed using the
following antibodies: anti-trimethyl-histone H3K4 (1:160,
A2357, ABclonal) or 1 mg of control rabbit (Ig)G. The precipi-
tated DNA was analysed by real-time PCR. ChIP results were
expressed as a percentage of the PCR signal for input DNA using
the delta–delta method(18), The Cq valuewas calculated by raising
2 to the power of Cqimmunoprecipitated (IP) DNA-Cqinput DNA (100 ×
[2(Cq of Input-Cq of IP sample)]). PCR equipment and conditions used
were the same as in the qPCR section. Optimised PCR primer
sequences and gene regions were obtained as previously
described(22).

Statistical analysis

Data are shown as mean ± SEM. Two-way ANOVA was con-
ducted. If interaction was observed, followed by Tukey’s post
hoc test was used to compare each group (independent varia-
bles: exercise (Ex) and food restriction (FR)). In qPCR, data were
not normally distributed; therefore, the Kruskal–Wallis H test,
followed by a two-stage Benjamini, Krieger and Yekutieli false
discovery rate procedure as a post hoc test, was used. An
unpaired t-test was used for comparison between the two
groups. Statistical significance was set at P< 0·05 and signifi-
cance tendency was set at P< 0·1. Statistical analyses were per-
formed using the GraphPad Prism 8.4.3 software for Mac.

Results

Combination of continuous food restriction and exercise
inhibited rat growth

There was a significant interaction between exercise and food
restriction on final body weight, body weight gain, food intake
and food efficiency. Final body weight in FAT was lower com-
pared with those in Con, Ex and FR groups (vs. Con
P< 0·0001; vs. Ex P< 0·0001; vs. FR P= 0·0002). Body weight
gain in FAT was lower compared with those in Con, Ex and
FR groups (vs. Con P< 0·0001; vs. Ex P< 0·0001; vs. FR
P= 0·0003). Food intake in FAT was lower compared with those
in Con and Ex groups (vs. Con P< 0·0001; vs. Ex P< 0·0001).
Food intake in FAT was lower compared with those in Con,
Ex and FR groups (vs. Con P= 0·0001; vs. Ex P< 0·0001; vs.
FR P= 0·0007). The FAT group had a significantly higher average
running distance than the Ex group. In addition, although the dif-
ference was not significant, the blood glucose levels in the FAT
group were lower than those in the Con and Ex
groups (P< 0·104).

Combination of continuous food restriction and exercise
negatively affected bone parameters

There was a significant interaction between exercise and food
restriction on bone weight, breaking power andmineral density.
Bone weight in FAT was lower compared with those in Con,
Ex and FR groups (vs. Con P= 0·0008; vs. Ex P< 0·0001; vs.
FR P= 0·0129). Bone breaking power in FAT was lower

compared with those in Con, Ex and FR groups (vs. Con
P= 0·0046; vs. Ex P= 0·0015; vs. FR P= 0·0358). Food intake
in FAT was lower compared with those in Con and Ex groups
(vs. Con P= 0·0057; vs. Ex P= 0·0019). The main effect of food
restriction was observed in bone breaking and mineral content,
but the interaction was not observed.

Combination of continuous food restriction and exercise
atrophied the jejunal villus

There was a significant interaction between exercise and food
restriction on mucosal thickness, villus height and crypt depth.
Mucosal thickness in FAT was lower compared with those in
Con, Ex and FR groups (vs. Con P= 0·0023; vs. Ex P< 0·0001;
vs. FR P< 0·0001). Villus height in FATwas lower comparedwith
Ex group (P< 0·0001). The main effect of Ex was observed in
villus width, but the interaction was not observed.

Digestive enzymes and transporters of lipid, protein and
glucose were unchanged

There were no significant differences in the protein expression
of liver-type fatty acid-binding protein, intestinal-type fatty acid-
binding protein and apolipoprotein A1 (APOA1), which are typ-
ical lipid transporters.

The main effect of food restriction was observed in protein
expression of alanyl aminopeptidase (P= 0·0180) and solute
carrier family 15 member 1 (SLC15A1) (P= 0·0171), which are
typical digestive enzymes and protein transporters, but the inter-
action was not observed.

There were no significant differences in the protein expres-
sion of sodium-glucose transporter 1 (SGLT1). The main effect
of exercise and food restriction was observed in glucose trans-
porter 2 (GLUT2) (Ex P= 0·0208; FR P= 0·0049), which are typ-
ical glucose transporters, but the interaction was not observed.

Combination of continuous food restriction and exercise
increased sucrase-isomaltase expression and sucrase
enzyme activity

Gene expression of Si was significantly increased in the FAT
group compared with that in the Ex group (P< 0·05 vs. Ex).
There was a significant interaction between exercise and food
restriction on the protein expression of SI. SI in FAT was higher
compared with those in Con, Ex and FR groups (vs. Con
P= 0·0066; vs. Ex P< 0·0048; vs. FR P< 0·0245). Themain effects
of food restriction were observed in sucrase enzyme activity, but
the interaction was not observed.

Combination of continuous food restriction and exercise
did not affect the epigenome of Si

There was no increase in histone H3K4 trimethylation in any
region of the Si gene in any group.

Discussion

In this study, we developed an animal model of FAT and exam-
ined the histological andmolecular characteristics of the jejunum
in this rat model. As a result, we revealed the following
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characteristics of the jejunum: (1) atrophy of the jejunal villus; (2)
no change in typical digestive enzyme and transporters of lipid,
protein and (3) increased SI gene and protein expressionwith no
histone H3K4 methylation changes.

Previous studies have adopted either food restriction at 70 %
of normal feeding for 13 weeks(23) or wheel running for 12 or 14
weeks, in addition to food restriction(24,25), to develop the FAT
model. These models showed significantly reduced weight gain
and caused a significant decrease in BMD. In accordance with
the results of previous studies, in our model, BMD in the FAT
group was significantly lower than that in the Con group, and
body weight, bone weight and bone breaking power were also
significantly lower than in the other groups (Table 2, Fig. 1). In
addition, there was a significant increase in running distance
(Table 2), suggesting a loss in the running cycle and a disruption
in the sexual cycle as in previous studies(24,26). Therefore, we
obtained a FAT-like phenotype in growing rats with growth
inhibition and reduced bone strength.

Jejunal morphological features were confirmed by HE stain-
ing. The results showed that all parameters, except villus thick-
ness, were significantly increased in the Ex group relative to the
Con group, whereas the effect was counteracted in the FAT
group. In particular, the mucosal thickness and villus height
were significantly lower than those in the other three groups
(Fig. 2). Some studies have focussed on the effects of exercise
on the alteration of villus morphology in the small intestine.

Shin et al.(27) reported that 4 weeks of treadmill running
increased the expression of tight junction proteins in old mice.
In addition, Carbajo-Pescador et al. reported that combined
aerobic and resistance training corrects the decrease in intestinal
tight junction mRNA and villus overgrowth in rats fed a high-fat
diet(28). On the other hand, Costa et al. reported that increased
exercise duration and intensity causes endotoxemia, with intes-
tinal damage and intestinal permeability and malabsorption(29).
Thus, exercise is expected to have a positive effect on the mor-
phology and function of the intestine, but excessive intensity and
duration are suggested to have a negative effect. Similarly, food
restriction has also been reported to have a positive effect on the
intestine as an acute response(30), but prolonged restriction (e.g.,
total parenteral nutrition, fasting, malnutrition) has an adverse
effect(19). In the FAT group, the imbalance between energy
demand and supply in the body may have had a negative effect
on intestinal morphology. Indeed, jejunal biopsies of malnour-
ished children showed significant jejunal villus atrophy and
increased intestinal permeability compared to those with normal
energy sufficiency(31). Thus, villus atrophy may have occurred in
a state of imbalance between energy demand and supply.

The expression levels of typical digestion and absorp-
tion molecules of the three major nutrients were measured.
Unexpectedly, there was no change in the expression of diges-
tive enzymes or transporters of lipid, protein and glucose (Figs. 3
and 4). Previous studies have reported that digestion and

Table 2. The effect of continuous food restriction and exercise on basic parameters

Control (Con) Exercise (Ex)
Food restriction

(FR) ExþFR (FAT)
Ex

P-value
FR

P-value
Interaction
P-valueMean SEM Mean SEM Mean SEM Mean SEM

Initial body weight (g) 147·4 2·68 147·43 2·71 147·38 3·02 147·25 3·52 0·9801 0·8333 0·9804
Final body weight (g) 244·14 3·32a 262·71 6·09b 172·13 1·72c 119·88 3·65d 0·0032 <0·0001 <0·0001
Body weight gain (g/d) 3·2 0·06a 3·8 0·12b 0·8 0·11c -0·9 0·17d 0·0042 <0·0001 <0·0001
Food intake (g/d) 16·12 0·19a 20·59 0·62b 8·83 0·00c 8·79 0·01c <0·0001 <0·0001 <0·0001
Food efficiency (g/d) 0·20 0·00a 0·18 0·00a 0·09 0·01b -0·09 0·02c 0·0003 <0·0001 0·0009
Running distance (km/d) – 8·78 1·57 – 16·92 2·57** – – –
Blood glucose level (mg/dl)† 143·6 10·9 151·4 12·3 152·4 14·5 102·2 9·4‡,§ 0·0292 0·0689 0·0550

† n= 7 in the FAT group because blood could not be collected in one individual. In the FAT group, the final body weight, body weight gain and food efficiency were significantly lower than
those in the other three groups. In addition, although the difference was not significant, the blood glucose levels in the FAT group tended to be lower than those in the Con and Ex groups.

‡ P= 0·104 vs. Con.
§ P= 0·083 vs. Ex.Con (n= 7), Ex (n= 7), FR (n= 8), FAT (n= 8). FAT, female athlete triad.
All data are presented mean ± SEM.
Different letters indicate significant differences.
Asterisks indicate significant differences.
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Fig. 1. The effect of continuous food restriction and exercise on parameters of bone. All data are presented as mean ± SEM. Different letters indicate significant
differences. Con: control (n= 7), Ex: exercise (n= 7), FR: food restriction (n= 8), FAT; ExþFR (n= 8). Lumbar spine bone mineral content and density in the FAT group
used n= 7 because they could not be measured in one individual. Bone weight and breaking power were significantly lower in the FAT group than in the other three
groups. FAT, female athlete triad.
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absorption molecules are markedly reduced when the intestinal
villus is atrophied(12,19). However, in the present model, there
was no fasting or interruption of stimulation of the intestine,
but rather a restriction on the amount of food consumed;
therefore, the decrease in these molecules did not occur. On
the contrary, interestingly, gene and protein expression of

sucrase-isomaltase, a typical carbohydrate-digestive enzyme,
were significantly increased only in the FAT group (Fig. 5).
Sucrase activity also tends to increase, although not significantly
(Fig. 5). Although the results may seem contradictory, as
Hampson reported that sucrase activity correlates with villus
height in the small intestine(32), several studies have reported that
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dietary restriction increases disaccharidase activity. Dietary
restriction in growing broilers has been reported to result in
increased sucrase activity, which also affects subsequent growth
rates(33). In addition, dietary restriction in late gestation sheep has
been reported to increase disaccharidase activity(34). The authors
stated that a decrease in small intestinal mass increases disaccha-
ride enzyme activity, suggesting a decrease in energy utilisation
by portal-discharging viscera(35), which may result in increased
digestive efficiency(33,36). Together, the results of the previous
studies and the present study suggest that dietary restriction
and increased energy demand are conserved phenomena that
increase sucrase and other disaccharidase enzyme activities in
various species, and it is highly likely that a similar phenomenon
occurs in FAT in humans. In addition, blood glucose levels
tended to be lower in the FAT group than in the other three
groups, although the difference was not significant (Table 2).
Among the three macronutrients, the body uses carbohydrates
and lipids as primary energy substrates. Carbohydrates, which
are easily converted into energy, are in particularly high
demand as energy substrates in the body during exercise.
Therefore, the effect on SI may be a biological response to effi-
ciently digest carbohydrates in order to obtain more glucose.
Finally, we focussed on the regulation of SI and analysed the

methylation of the Si gene. Although the normal expression of
SI is important for disaccharide digestion, its overexpression is
a risk factor for diabetes and obesity. In fact, SI expression and
activity are increased in the small intestine of diabetic patients
and animals(37–40). On the other hand, athletes are concerned
about excessive weight gain after retirement(41,42). We hypoth-
esised that dietary restriction and excessive exercise during
playing days may cause methylation in the Si gene, which
may persist post-retirement, harming the health of the athlete.
However, contrary to this hypothesis, there were no signifi-
cant changes found in the Si gene regions in any of the groups
(Fig. 6). The only methylation measured in this study was tri-
methylation of histone H3K4. Other histone modifications
such as mono- and demethylation were not identified in this
study. Furthermore, methylation and acetylation of the his-
tone region may also be involved in the epigenetic regulation
of Si gene expression. Indeed, it has been reported that inhib-
ition of histone deacetylases increases Si gene and protein
expression(43). In addition to histone modifications, there
are other factors that may regulate Si gene expression, such as
microRNAs (miRNA). Mehraban et al. reported that miRNA-26a
and miRNA-26b decrease Si gene expression and enzyme
activity(44). Therefore, it is possible that the Si gene is also
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regulated in FAT by histone modifications in other regions and by
miRNA regulation, which was not examined in this study.
Therefore, future studies targeting such mechanisms would pro-
vide more information on the effects of excessive exercise and
strict dietary restrictions on the intestinal tract.

This study has several limitations. First, themodel in this study
was a short-term, 4-weekmodel withmore severe dietary restric-
tions. Sincemost previous studies have involved interventions of
approximately 14 weeks with 70 % dietary restriction, it is neces-
sary to examine whether similar results can be obtained with
such a model. Second, only typical digestive enzymes and trans-
porters were examined. In addition to digestion and absorption,
the intestine has many other functions (such as immunity and
intestinal barrier functions).

Conclusions

To the best of our knowledge, this is the first study to show how
FAT affects the small intestine. In this study, the FAT model
induced villus atrophy in the small intestine but inversely
increased the expression of SI gene and protein. These results
may provide insights into the future conditioning of weight-sen-
sitive athletes and the maintenance of health post-retirement.
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