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ON THE SOLVABILITY AND CONTINUATION TYPE
RESULTS FOR NONLINEAR EQUATIONS
WITH APPLICATIONS, II

BY
P. S. MILOJEVIC,*

ABSTRACT. In this paper we continue our study of the solvability
of nonlinear equations involving uniform limits of A-proper and
pseudo A-proper maps under a new growth condition (1) that we
began in [14, 15]. Applications of our results to quasimonotone,
ball-condensing pertubations of c-accretive maps and maps of
semibounded variation and of type (M) are also given.

Introduction. Let X and Y be normed spaces with an admissible scheme
I'={E,V,;F,, W,} and T:X — Y a nonlinear map such that

(D ITx]|+ (Tx, Kx)/ [|[Kx[| = o as [x]|— e,

where K:K — Y* is a suitable map with ||[Kx||— as ||x|| —>c. Consider the
equation

(2) T(x)=f (xeX, feY)

and a sequence of finite dimensional equations associated with (2)
(3) W, TV, (u) =W, (f), (ueE,).

Unlike the existing (approximation) solvability results for A-proper like maps
in the literature (see, e.g. [23, 16, 19 and 20, except Theorem 2.6, cf. Remark
2.7(b)]) we have begun recently the study of Eq. (2) under the new growth
condition (1). The first results in that direction were announced in our January
1977 note [14] and later in [15] where we have dealt in detail with the
approximation—solvability results for Eq. (2) involving A-proper maps and
their applications to elliptic differential equations. Solvability of equations
involving monotone and (generalized) pseudo-monotone maps that satisfy
condition (1) has been earlier studied by Wille [28], Browder [3], Hess [12],
Milojevic-Petryshyn [19] etc.
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The purpose of this paper is to establish some solvability type results for Eq.
(2) involving a much wider class of the so-called uniform limits of A-proper
and pseudo A-proper maps satisfying condition (1). In Section 2 we apply our
abstract results in establishing some new solvability results for equations
involving quasimonotone maps, ball-condensing perturbations of a-stable maps
(and, in particular, of strongly accretive type) and maps of semibounded
variation and of type (M). At the end we briefly discuss a continuation theorem
for uniform limits of A-proper maps, whose detailed discussion will be given
later in [18]. The results of Section 1 are existential extensions of our
approximation-solvability results for Eq. (2) involving A-proper maps. The
results of this paper are also valid for multivalued maps as stated in [14].

SectioN 1. Let {E,} and {F,} be two sequences of oriented finite dimensional
spaces and V,, and W, continuous linear maps of E, into X and Y onto F,,
respectively.

DeriniTION 1. A quadruple of sequences I'={E,, V,,; F,, W, } is said to be an
admissible scheme for (X, Y) if dim E, =dim F, for each n, V, is injective,
dist(x, V, (E,)) — 0 as n — « for each x in X, and {W, } is uniformly bounded.

For various examples of admissible schemes we refer to [19, 20, 23]

DEerINITION 2 ([23]). A map T:X — Y is said to be approximation proper
(A-proper) with respect to I' if T,W, TV, :E, — F, is continuous for each n
and if {V, (w,)|u, €E,} is any bounded sequence such that ||T,, (u,)—
W, ()l — 0 as k — « for some f in Y, then there exists an x in X such that (i)
Tx=f and (ii) x belongs to the closure of {V, (u,)}. T is said to be pseudo
A-proper w.r.t. I' if we do not require (ii) in Definition 2.

Many examples of A-proper and pseudo A-proper maps and their uniform
limits can be found in [23, 16, 19, 20] (see also Section 2). We just state here
some needed ones. The first example is due to Browder [4] when Y = X* and
T is bounded, and in this generality it is a special case of maps of type (KS_) in
[24].

ExamrLE 1. Let X and Y be reflexive Banach spaces, K: X — Y* a linear
homeomorphism and ¥: X — R weakly upper simicontinuous at 0 with ¥(0) =
0. If T:X — Y is quasibounded, demicontinous and such that

(Tx =Ty, K(x—y)=c(x—yl)-¥(x—-y) (x,yeX)

for some function ¢:R*— R* with ¢(0)=0 and c(r)>0 if r>0, then T is
A-proper w.r.t. '={X,, V.. Y,, Q.} with X, < X.

If X is compactly embedded in a Banach space Z, then as ¥ we can take
W¥(x) =|lx|lz, x € X. Hence, all (linear and nonlinear) maps arising, say, in the
theory of partial differential equations that satisfy Garding like inequality in
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Example 1 in a space compactly embedded in a bigger space (say L,) are of
A-proper type. As a second example of ¥ we can take ¥(x) = (Cx, Kx), where
C:X —Y is completely continuous.

Recall that if X is a Banach space and D < X bounded, then the ball-
measure of non-compactness of D is defined by x(D)=inf{r>0|Dc
Ut B(x;, r), x; € X and n >0 integer}. Amap T:D < X — Y is said to be k-ball-
contractive if x(T(Q))=kx(Q) for each Q< D; it is ball-condensing if
x(T(Q)) < x(Q) for each Q = D with x(Q) # 0. For the theory of these maps,
see [22,26].

ExamrLe 2 ([16]). Let E, < X and F, < Y with P, and W, continuous linear
projections of X onto E, and Y onto F,, respectively such that P,(x) — x and
W, (y)—y foreach x in X and y in Y. If T: X — Y is continuous, surjective
and a-stable, i.e. for some ¢ >0.

|T.x~T.yll=cl|x—y|forall x, ye E,, n=1,

and F:X — Y is k-ball contractive with k <c, or ball condensing if ¢ =1, then
T+F is A-proper w.r.t. T'y={E,, P,; F,, W,}. In particular, as T one can take a
strongly monotone or strongly accretive or strongly K-monotone map.

The importance of this example is that it provides maps that can be treated
by the theory of A-proper maps, but not by the other existing ones. The
A-properness of I+A—T with A c-monotone and T k-ball contractive,
k—c <1, was proven in [27].

DerNTioN 3. A map H:[0,1]xX — Y is said to be an A-proper homo-
topy on [0,1]xX w.rt. T if W .H:[0,1]X V,(E,)— F, is continuous and if
for all bounded sequences {V, (u,)|u, €E,} and {t,}<[0,1] such that
W, H(t,, V., (4,))— W, ()l = 0 as k — « for some f, there are subsequences
tn., = to and V. (u,, )—> x, with H(t,, x,) =f.

Mic(iy

If f in Definition 3 is given in advance, we say that H(t, x) is A-proper at f,
while if ¢, is given in advance, H(, x) is said to be A-proper on X at t,.
We say that T:X — Y satisfies condition:
(=) if {x,}<= X is bounded whenever Tx, — f in Y;
(#*) if Tx, — f in Y with {x,} bounded, then Tx ={ for some x in X.

THEOREM 1 ([14]). Let T: X — Y satisfy condition (1), G : X — Y be bounded
and such that (Gx, Kx) =||Gx|| - |Kx|| for all xe X, Gx# 0 for all large ||x|| and
H, (t, x)=tT(x)+unG(x) an A-proper homotopy on [0,1]xX w.r.t. T for each
>0 small. Suppose that either one of the following two conditions holds for all
large n:

(i) deg(uW,GV,, V,.' (B(0,r)),0)#0 for all large r>0 and small u>0;

(ii) there is K, : V,(E,)— F¥ and a linear isomorphism M, :E, — F, such
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that
(4) (W,g, K.x)=(g Kx) forall xeV,(E,), geY;
%) Mu, K,V,u)>0 forall 0#ucE,.

Then, if in addition, T either satisfies condition (* *) or is pseudo A-proper, T is
surjective, i.e. T(X)=Y.

Proof. We shall show that all the hypotheses of Theorem 2.1 in [20] hold
with T, =T for all t€[0, 1]. Let fe Y be fixed. Then by (1) there exists an r, >0
and vy >0 such that
(©) ITx—dfl=y forall ll=r, te[0,1]

@) || Tx||+ (Tx, Kx)/|Kx||>0 forall |x||=r, Gx #0.
Hence, (6) is equivalent to conditions (H1) (and (H2) in Theorem 2.1 of [20],

while our assumption on H implies (H3) in this theorem. It remains to show
condition (H4) of Theorem 2.1 in [20], that is that for all large n and u >0,

deg(W, TV, +uW,GV,, B,(0, 1), 0) # 0.

Consider the mapping H, (t, x) = tT(x) + pG(x) for (1, x) [0, 1]X B(0, r;) for p
fixed. If for some t€[0, 1] and x €dB, H, (1, x) =0, then t# 0 and consequently,
T(x)= —(u/t)G(x). Hence,
x|+ (Tx, Kx)/|[Kx|| = (/1) | Gx|| - (/t)(Gx, Kx)/| Kx]|
= (/1) | Gx||— (/1) |Gx]| =0,
in contradiction to (7). Thus, 0¢ H, ([0, 1]xoB).
Next, we shall prove that for all large n,
tW, TV, (x)+uW, GV, (x)#0 for xe€dB,, tel0, 1].
If this'were not the case, then for all k=1 there are t, €[0, 1] and x, €0B,,
such that
t, W TV, (x,) + uW, GV, (x, ) =0.

Since the homotopy H,, is A-proper, it follows that t,,  — t,, V,, (%) —> Xo€
4B and H,(t, x,) =0, in contradiction to the above property of H,. Now the
homotopy theorem for the Brouwer degree implies that for all large n

deg(W, TV, +uW,GV,, B,, 0) = deg(uW, GV, B,, 0).

Thus, if condition (i) of the theorem holds, hypothesis (H4) of Theorem 2.1 in
[20] is satisfied.

Let us now show that (H4) holds when (ii) is satisfied. To that end it is
sufficient to show that (i) holds. So, define the new homotopy U, :[0, 1]x B, —
F, by U,(t, x)=(1—-t)M,(x)+tuW,GV,(x). If for some n and t€[0,1], xe
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oB,, U,(t,x)=0, we have t#0 and for a =1/t,
a(Mx, K, V,x)=Mx, K,V,x)— w(W,GV,x, K,V,x)
=(M,x, K,V,x)— u(GV,x, K, V,x) <(M,x, K,V,x),

which is a contradiction. Hence, U, (t, x) # 0 for all t€[0, 1] and x € 3(B,,), and
the Brouwer homotopy theorem implies that for all n

deg(uW, GV, B,, 0)=deg(M,, B,, 0) # 0.

Hence, in either case, (H4) holds and, if T satisfies condition (**), T(X)=Y
by Theorem 2.1 in [20].

Condition (**) in Theorem 2.1 [20] was used at the final stage of proof. Let
us now show that the theorem remains valid if it is replaced by the pseudo
A-properness of T (in our case T, =T for all t). Condition (6), the bounded-
ness of G and (H4) imply that for all large n and u >0 fixed independent of n,

deg(W, TV, +uW,GV,, B,, W,f) #0

Hence, in particular, choosing w, — 0 as n —, we can find x, € B, for all
large n such that

WHTVV! (xl’l) + "L"WNGVH (xn) = an’

and consequently, |W, TV, (x,)— W.f||= w. |W.GV, . (x,)| = 0 as n — . The
solvability of Tx = f now follows from the pseudo A-properness of T. [
The following elementary proposition imposes some conditions on T and G
that guarantee the A-properness of the homotopy H,, (t, x).

ProposITION 1 [14]. If G and T+ uG are A-proper maps for each u >0 with
T and G bounded, then H,(t, x)=tT(x)+ uG(x) is an A-proper homotopy on
[0, 1]x X.

Actually, in the above proofs we used the homotopy H,(t, x) only in the
sense that H, (1, x) is an A-proper map and that H, (¢, x) is A-proper at 0e Y
when restricted to [0, 1]x (X \\B(0, r)) for some large r >0. Thus, only these two
properties of H, (t, x) suffice. In view of this and the next proposition we obtain
another particular set of condition on T and G for which Theorem 1 holds (cf.

[15D.

ProrposiTioN 2. Suppose that G and T are as in Proposition 1 with the
boundedness of T replaced by the condition
(8) there exist an R>0 and ¢ >0 such that (Tx, Kx)=—c ||Kx| for all ||x||=R.

Suppose also that K is bounded with ||[Kx||— » as ||x|| — « and that K, satisfies
condition (4) of Theorem 1 with {K,(x,)} bounded whenever {x, <V, (E,)}
is bounded. Then, if G:X — Y is bounded and (Gx, Kx)=|Gx| - |Kx||, x € X,
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the homotopy H,(t,x)=tT(x)+unG(x) is A-proper at 0eY on [0,1]X
(X\B(0, Ry)) for R,=R.

Proof. Let {V, (u,)e X\ B(0, Ry} be bounded, t, = t, t, €[0,1] and a, =
W, H,V, (u,)]|—0 as k = (u>0 fixed). If 0<t=1, then

k — o

W, TV, (unk)+ Ew, GV, (unk)l|< +
k
and by the A-properness of T+uG, a subsequence V, (u,  )—> X, with
tTxo+ uGx,=0.
If t=0, then using the properties of G and K and condition (4),

GV, (w, )l =(W, GV, (u,), K, V., V,, () [KV,, (w,)II"*
=[(W, H,(t, V,, (w,)), K, V,, ()~ t(TV,, (w,), KV, (u, )(w |[KV,, u, [)7*

= Ay ”Knk Vnk(unk)n (“‘ “KVnk(unk )H)vl + tkC“'Al -0 as k —>®.

Hence, by the A-properness of G, V,, (u, ) —> X, with Gx,=H(0, x,) =0.

ReMARKs. (1) When T is also A-proper, Theorem 1 was first announced in
[14], while details can be found in [15].

(2) Analysing the proof of Theorem 1, we see that condition (1) can be
replaced by condition (*) for T (which implies (6)) and (7). It is clear that
condition (7) is implied by: ||Tx||— % as ||x||— «. As remarked in [20], the last
condition is equivalent to (1) provided condition (8) of Proposition 2 holds.
This fact has been used by many authors in the study of monotone like and
A-proper maps (cf. [3, 19] and the references there in). In view of this fact, we
see that a special case of Theorem 1 (ii), which corresponds to the hypotheses
on T and G in Proposition 2, extends Theorem 4 in [24] and is also related to
Theorem 2.6 in [20] whose hypotheses imply a stronger K-coercivity condition
on T+ uG. Let us also add that Proposition 2 was motivated by Theorem 8 of
F. Browder [3] and that conditions (4) and (5) have been used earlier, in a
different context, in, for example, [23, 24].

(3) Unlike the results in [20, 24], Theorem 1 (i) gives a new surjectivity result
for uniform limits of A-proper with respect to a general admissible scheme T’
maps T; in particular, we do no require that I' satisfies condition (4). When
Y=X or Y=X%*, there are natural choices for K, K, and M, for which
condition (4) holds (cf., e.g., [23]). However, in general, the choice of K, K,
and M, will depend on a given problem and their existence may impose
considerable restriction on T. Illustration of this fact is given in Corollaries 3
and 4 in Section 2.

(4) If Y=X, K=1J the normalized duality map, G =1 and if T =1-F, with
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F: X — X 1-set contractive, satisfies conditions (1) and (* *), then Theorem 1
(i) (.e., T(X)=X) is still valid (see [15] and [17] for details).
For uniform limits of pseudo A-proper maps we have

TueoreM 2 ([14]). Let K, M, and K,, be as in Theorem 1, Kx =0 only if x=0
and G : X — Y bounded and such that (Gx, Kx)= —c |Kx|| for all x and some
¢ >0. Suppose that T: X — Y satisfies condition (1) and that for each continu-
ous increasing function ¢ : R* — R™ with

©) w<u1<xu>+(—T“%ﬁ’9w as [ —0

there exists a map F: X — Y such that (Fx, Kx) =||Fx|| |Kx|, |[Fx||= ¢(|Kx||) for
xe X and T+ F+ uG is pseudo A-proper for each u>0. Then, if T+ F satisfies
condition (**) or is pseudo A-proper, T(X)=Y.

Proof. For feY, define Tx=Tx—f, xeX. Since T; satisfies the same
conditions as T, it is sufficient to show that Tx =0 is solvable. Let r >0 be fixed
and observe that if | Tx||+ (Tx, Kx)/|Kx||<r, then |x| <R for some R>0. Let
¢ :R*— R™ be continuous and such that (||Kx||) = 0 for | x| <R and condition
(9) holds. For F that corresponds to this ¢ we get that T+F+uG is
K-coercive, i.e. (Tx+Fx+uGx, Kx)/|Kx||— « as ||x|| — . Consequently, for
each pw— 0 there exists [23] x, € X such that Tx, +Fx, +uGx, =0. Since
T+F is also K-coercive and (Tx, + Fx,, Kx,)/|Kx, || < uc, we get that {x,} is
bounded with Tx, + Fx, — 0 as u — 0. Thus, Tx,+ Fx, =0 for some x, in X if
T+ F satisfies (= *). If xo=0, then || Txo|| = ||Fxoll = ¢(|Kx,||) =0 and so Tx,=0.
If xo#0, (Txo+ Fxo, Kxo)/[|Kxol = Txol| + (Txo, Kxo)/||[Kxo|=0 and so | Tx,|=
Fxoll = w([Kxol) = 0, i.e. Txo=0.

Next, let T+ F be pseudo A-proper. Since it is K-coercive, Tx,+ Fx,= 0 for
some X, in X and, as before, we get that Tx,=0. [

RemMark. Condition (9) holds if, e.g. T is bounded or (Tx, Kx)= —c, |Kx]||
for some x € X and some c; >0.

SecTION 2. We now state briefly some special cases of the abstract results in
Section 1.

If K: X — Y*, according to Brezis [1], T: X — Y is a map of type (KM) if
X, —x in X, Tx, —f in Y and lim sup(Tx,, K(x, —x))=<0 imply that Tx =f.

A map T:X—Y is K-quasimonotone if x,—x in X, then
lim sup(Tx,, K(x, —x))=0. This class was introduced independently by Calvert-
Webb [6] and Hess [11] for K=1, Y = X* and later studied by many authors
(see, e.g. [10], [24], [20]). It is known that under suitable conditions pseudo-
monotone maps [13] are of type (M) and/or are generalized pseudo-monotone
[1, 5]. Under suitable conditions on K and T, it has been shown in [24, 20] that
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K-quasimonotone, pseudo K-monotone and generalized pseudo K-monotone
maps are uniform limits of A-proper maps. In addition to many examples of
pseudo A -proper maps (see, e.g. [23]) we have the following new useful result.

ProrositioN 3. Let X and Y be reflexive and T'={E,, V,; F,, W,} with
E,c X, F, <Y and V,, the inclusion map. Let K:X — Y* be bounded, weakly
continuous at 0, uniformly continuous on closed balls in X, a-positively
homogeneous, Kx#0 for x#0, R(K)=Y* and K,, as in Proposition 2. Let
T:X—Y be K-quasibounded (i.e., {Tx,} is bounded whenever {x,} and
{(Tx,, Kx,,)} are bounded), demicontinuous and of type (KM) and G: X —>Y
bounded, weakly continuous and of type (KS) (ie., if x,—x and
lim(Tx,, K(x, —x))=0, then x, —x). Then T, =T+uG is pseudo A-proper
w.r.t. T for each u=0.

Proof. Let p =0 be fixed and {x,_€ X, } bounded and such that [|W,, (Tx,, +
uwGx, )~ W, ()]l =0 as k — . Since

(Tx,, +uGx,, K(x,)) =(W, (Tx, +uGx,)— W, (2), K, (x,)
+(W, (g), K, (x,)),

by condition (4), the sequence {(Tx, +uGx,,, Kx, )} is bounded and conse-
quently, {Tx, + uGx, } is bounded by the K-quasiboundedness of T. By the
reflexivity of X, we may assume that x, — x,. Then, as in [19]

(Tx,, +wnGx,, K(x, —%x))—=>0 as k—>ox

Next, by the boundedness of G, we may assume that Tx, — y, and Gx,, —
G(x,) and either lim sup(Gx,,, K(x,, —x,)) =<0 or lim sup(Gx,,, K(x,, —x,))>0.

Suppose first that lim sup(Gx,, , K(x, —x,))=<0 and passing to a subsequ-
ence, we may assume that a =1im(Gx, , K(x, —x,)) =0 with a# — by the
boundedness of G and K. Hence, by property (KS) of G, x, — x, and

lim sup(Tx,,, K(x,, —xo)) =1lim(Tx,, +pnGx,,, K(x, —xo))
- lim(Gx,,,, K(x,, —x0))=0
by the boundedness of {Gx, } and continuity of K. By property (KM) of T,
Tx,=y,o. To show that Tx,+ uGx,=g, let ve X be arbitrary and v, € X,, such
that v, — v. Then
(Txo+ uGxo — g, Kv) =1lim(Tx,, +uGx,, —g, K(v,,))
=1lim(W,, (Tx,, +nGx,, ) — W, (g), K,, (v,,)) =0.
Thus, since R(K) is dense in Y* and (Tx,+ wGxo— g, @) = 0 for each w € R(K),
it follows that Tx,+ uGx, = g.
Next, suppose that lim sup(Gx,,, K(x,, —x,)) >0. Passing to a subsequence,
we may assume that lim(Gx,, , K(x, —x,))>0 and consequently,
lim sup(Tx,,, K(x,, —Xo)) =lim sup(Tx,, + uGx,,, K(x, —x))
— p lim(Gx,,, K(x,, —x0)) <0.
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Again, by property (KM), Tx,=y, and Tx,+uGx,=g as before. Hence,
T+ G is pseudo A-proper. [

In view of the results of Kadec and Asplund, in the rest of the paper (except
Theorem 4) we may assume without loss of generality that X and X™ are
locally uniformly convex. Let T:X — X* be such that for some R >0,

(Tx, x)
[l
Let ¢:R*— R" be a continuous increasing function such that ¢(t)=0 for

t<R and
(11) L

(10) I Txl| +

>0 forall ||x|=R.

Let J, : X — 2% be the duality mapping corresponding to this ¢, i.e., J,(0) =0
for t=R and

Jo () ={w e X*| (w, x) =Iwl - [lx]l, Iwll = w(lx[D}.

PropoOSITION 4. Let X be reflexive and separable and T:X— X*
quasibounded, demicontinuous, of type (M) and satisfy condition (10). Then, if
J, is weakly continuous, T +1J, is peudo A-proper w.r.t. Iy={X,, V,; X¥, Vi}.

Proof. Let {x, € X, } be bounded and such that for some ge X*
[VE(T(x,) + T (6, )= Vi ()| =0 as k—o.

Going to a subsequence if necessary, we may assume that either [|x, | <R for
all k or |x,[|>R for all k. If the first case happens, then T(x, )+J,(x, )=
T(x, ) and by Proposition 3 (u=0), we get x, — x,€ B(0, R) with Tx,=g,
ie., Txo+Jyxo=g

Next, suppose that [|x, ||>R for all k. Then, since J, restricted to
X\ B(0, R) is weakly continuous and of type (S), we have X, —~xo€X and
T, +Jyxo =g as in Proposition 3 (u =1). Hence, T +J, is pseudo A-proper on
X U

From our abstract results we can obtain surjectivity results for various special
classes of mappings. We illustrate this by the following few new surjectivity
results.

CoroLLARY 1. Let X be separable and reflexive and let T:X — X* be
quasibounded, demicontinuous and quasimonotone. Suppose that T satisfies con-
dition (**) and either condition (1) or conditions (*) and (7) for some r>0.
Then, if H,(t,x)=tT(x)+pnJ(x) is an A-proper homotopy at 0€Y on
[0, 11X (X\B(0, r)) for some large r>0 (which is so if, e.g. T is bounded or
(Tx, x)=—c ||x|| for all |x||=r), T is surjective.

CoroLLARY 2. Let X be separable and reflexive and T:X— X*
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quasibounded, demicontinuous and quasimonotone and satisfy conditions (1),
(11) and (*=*). Then T is surjective.

Proof. Since J is maximal montone, T+Jy is demiclosed quasibounded,
quasimonotone and satisfies condition (* *). Moreover, if J is the normalized
duality mapping, then T+Jy+uJ is A-proper w.r.t. Iy (cf. [20, 16]). The
conclusion now follows from Theorem 3. [

For our next corollary we need

DEerINITION 4. Let || - ||; be a norm on X compact relative to the norm || - || on
X and K: X — Y*. Then T: X — Y is said to be of semi-bounded variation, if
for each R>0 and ||x||=R, |y|=R

(Tx— Ty, K(x—y)) =—c(R, ||x =y,

where ¢(R, ¢) =0 is a continuous function in R and ¢ such that ¢(R, t¢)/t = 0
as t — 0 for fixed R and ¢.

Such maps have been studied by Browder [2], Dubinsky [8], Milojevi¢-
Petryshyn [20].

Assume that X and Y are separable Hilbert spaces and K: X — Y a linear
bijection. Let {X,, } = X be a sequence of finite dimensional subspaces such that
dist(x, X,,) — 0 for each x in X. Set Y,, = K(X,,). Then dist(y, Y,,) — 0 for each
yin Y and, if P, : X — X,, and Q, : Y — Y, are the orthogonal projections, the
scheme I'y={X,, P,; Y,, Q,} is projectionally complete. We have

CoroLLARY 3. If A: X — Y is of semibounded variation, T:X —Y con-
tinuous and compact and A + T satisfies condition (1) and either condition (8) or
A is bounded, then (A+T)(X)=Y.

Proof. For each R>0 and p >0, the map A +uK is A-proper w.r.t. I’y on
B(0, R) by Example 1 and clearly so is K. Since T is compact, A + T+ pK is
also A-proper. Since T is completely continuous and A is strongly demiclosed
([20]), A+T satisfies condition (*%*). Taking G=K and K,=M, =
K|X:X, —Y,, we see that the conclusion follows from Theorem 1. []

Using similar arguments one can establish the following continuation
theorem, valid also in the multivalued case, whose detailed discussion will be
given in [18] (compare also with Theorem 2.1 in [20]).

THEOREM 3. Let H:[0, 11X X — Y and G : X — Y be bounded and such that
for each uw>0 the homotopy H,(t, x)=H(t, x)+ uG(x) is A-proper at 0e'Y
when restricted to [0, 11X (X\\.B(0, R,)) for some large R,>0. Suppose that
H,(1,-) is A-proper w.r.t. I for each u>0, H(1, -) satisfies condition (*) and
that K : X — Y* is such that Kx# 0 for ||x||=R with H, (1, x) # 0 for all |[x||=R,
t€[0, 1] and small w>0. Then, if either (H(0, x), Kx)=0 and (Gx, Kx)=0 for
Ix|= R and there are M,, and K,, satisfying conditions (4) and (5) of Theorem 1,
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or there exists an ny=1 such that for each n=n, w>0,
deg(W,H(0, )V, + uW,GV,, V.Y (B(0,r)),0)#0 for all large r>0, the equa-
tion H(1,x)={f is solvable for each f in Y provided also H(1,*) satisfies
condition (# %),

Note added in proof. The boundedness condition in Proposition 1 and the
corresponding result in [15] can be weakened as shown in the author’s Theory
of A-proper and pseudo A-closed mappings, Habilitation Memoir, UFMG,
Belo Horizonte, Brazil, 1980, 1-195.
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