DISJOINT CONJUGATES OF CYCLIC SUBGROUPS OF FINITE GROUPS

by THOMAS J. LAFFEY

(Received 18th June 1975)

In an earlier paper (2) we considered the following question "If S is a cyclic subgroup of a finite group G and $S \cap F(G)=1$, where $F(G)$ is the Fitting subgroup of G, does there necessarily exist a conjugate S^{x} of S in G with $S \cap S^{x}=1$?" and we gave an affirmative answer for G simple or soluble. In this paper we answer the question affirmatively in general (in fact we prove a somewhat stronger result (Theorem 3)). We give an example of a group G with a cyclic subgroup S such that (i) no nontrivial subgroup of S is normal in G and (ii) no x exists for which $S \cap S^{x}=1$.

The notation is standard with the following additions: if X is a finite set, $|X|$ denotes the cardinality of X, and if n is a natural number and p a prime, n_{p} denotes the p-share of n.

We begin with
Lemma 1. Let G be a finite nilpotent group, and let S_{1}, \ldots, S_{n} be proper subgroups of G for which there exist distinct primes p_{1}, \ldots, p_{n} such that, for each i, there exists a prime q_{i} dividing $|G|$ such that $\left[G: S_{i}\right]_{q_{i}} \equiv 0$ or 1 $\bmod p_{i}$.

Then $G \neq \cup_{i=1}^{n} S_{i}$
Proof. We prove the result by induction on $|G|$. Suppose first that q is a prime divisor of $|G|$ and that G is not a q-group. Let $G=A \times B$, where A, B are q-, q^{\prime}-groups respectively, and, for each i, let $S_{i}=S_{i}(A) \times S_{i}(B)$ as a subgroup of $A \times B$.

Let

$$
X=\left\{i \mid S_{i}(A) \neq A \quad \text { and } \quad\left[A: S_{i}(A)\right] \equiv 0 \text { or } 1 \bmod p_{i}\right\}
$$

and

$$
\begin{aligned}
& Y=\left\{i \mid S_{i}(B) \neq B\right. \text { and there exists a prime divisor } \\
& \\
& \left.q_{i} \text { of }|B| \text { such that }\left[B: S_{i}(B)\right]_{q_{i}} \equiv 0 \text { or } 1 \bmod p_{i}\right\}
\end{aligned}
$$

Note that $X \cup Y=\{1,2, \ldots, n\}$.
By induction, $A \neq \cup_{i \in X} S_{i}(A)$ and $B \neq \cup_{i \in Y} S_{i}(B)$. Let

$$
a \in A-\cup_{i \in X} S_{i}(A), b \in B-\cup_{i \in Y} S_{i}(B)
$$

Then $(a, b) \notin S_{j}$ for any $j(1 \leqslant j \leqslant n)$, and the result follows.
Hence we may assume that G is a q-group for some prime q, and thus for $p_{i} \neq q,\left[G: S_{i}\right]=q^{k_{i}}>1$ and $q^{k_{i}} \equiv 1 \bmod p_{i}$. For p a prime different from
q let $m(p)$ be the order of $q \bmod p$. By Lemma 2 of (2),

$$
1 / q+\sum_{\substack{p \neq q \\ p \neq r i m e}}\left(1 / q^{m(p)}\right)<1
$$

This implies that $\Sigma_{i=1}^{n}\left|S_{i}\right|<|G|$ and the result is proved.
Note that Theorem 1 of (2) is a consequence of this lemma.
The next result is due to Oscar E. Barriga (1).
Lemma 2. Let G be a finite group, N a normal subgroup of G with $F(N)=1$, and S a cyclic subgroup of G with $C_{S}(N)=1$. Then there exists $x \in N$ with $S \cap S^{x}=1$.

We now prove our main result:-
Theorem 3. Let G be a finite group and S a cyclic subgroup of G. Suppose that no nontrivial subgroup of S is a normal subgroup of $F(G)$. Then there exists $g \in G$ with $S \cap S^{g}=1$.

Proof. We use induction on $|G|+|S|$. Clearly, we may assume that $|S|$ is square-free and that $S=S_{1} \times \cdots \times S_{t}$, where S_{i} has a prime order p_{i}.

We observe first that if S_{i} does not centralise $F(G)$, then $N_{F(G)}$ $\left(S_{i}\right) \neq F(G)$-this is true by hypothesis if $S_{i} \leqslant F(G)$, while if $S_{i} \neq F(G)$, then $C_{F(G)}\left(S_{i}\right)=N_{F(G)}\left(S_{i}\right)$. Let L be a Sylow q-subgroup of $F(G)$ for some prime q. Then $\left|L-N_{L}\left(S_{i}\right)\right|$ is divisible by p_{i}, and thus $\left[L: N_{L}\left(S_{i}\right)\right] \equiv 0$ or $1 \bmod p_{i}$.

Next, we note that if no S_{i} centralises $F(G)$, then the theorem follows from Lemma 1-the hypotheses of Lemma 1 are satisfied by the subgroups $N_{F(G)}\left(S_{i}\right)$, using the argument of the last paragraph. Hence we may assume that there exists $s \geqslant 1$ such that

$$
C_{S}(F(G))=S_{1} S_{2} \ldots S_{s} .
$$

In particular, we can see that $C_{G}(F(G))$ is non abelian, since otherwise $C_{G}(F(G))=Z(F(G))$ and $S_{i} \triangleleft F(G)(1 \leqslant i \leqslant s)$. Let T_{1} be a minimal nonabelian normal subgroup of G contained in $C_{G}(F(G))$ and, if $C_{G}\left(T_{1} F(G)\right)$ is nonabelian, let T_{2} be a minimal normal nonabelian subgroup of G contained in $C_{G}\left(T_{1} F(G)\right)$.

Proceeding by induction, having found T_{1}, \ldots, T_{c} with $T_{i+1} \leqslant$ $C_{G}\left(T_{1} \ldots T_{i} F(G)\right)(1 \leqslant i \leqslant c-1)$ we consider $C_{G}\left(T_{1} \ldots T_{c} F(G)\right)$, and if this is nonabelian, we let T_{c+1} be a minimal nonabelian normal subgroup of G contained in $C_{G}\left(T_{1} \ldots T_{c} F(G)\right)$. We note that $T_{i+1} \not \approx T_{1} \ldots T_{i}$ and hence there exists an integer $d \geqslant 1$ such that if $T=T_{1} \ldots T_{d}, C_{G}(F(G) T)$ is abelian and thus $C_{G}(F(G) T)=Z(F(G))$. Also $F(T)=Z(T)$. Now $T_{i}^{\prime}=T_{i}$ for all i, since otherwise T_{i}^{\prime} is abelian and thus $T_{i}^{\prime} \leqslant F(T)=Z(T)$ and $T_{i} \leqslant F(T)=Z(T)$, a contradiction. Thus $T^{\prime}=T$.

We now observe that if $\left[S_{j}, T\right] \leqslant Z(T)$, then $\left[S_{j}, T, T\right]=\left[T, S_{j}, T\right]=1$ so by the Three Subgroups Lemma, $\left[T, T, S_{j}\right]=1$, and thus $\left[T, S_{j}\right]=1$ (since $T^{\prime}=T$).

If $C_{S}(T)=1$, then, since $F(T / Z(T))=1$, the theorem follows from Lemma 2 applied to the group $S T / Z(T)$. Hence we may assume that $C_{S}(T) \neq 1$. Note that since $C_{G}(F(G) T)=Z(F(G))$, no S_{i} centralises both $F(G)$ and T. Thus we may assume that $C_{S}(T)=S_{s+1} \ldots S_{u}$ for some $u \geqslant s+1$.

Applying Lemma 2 to the group $S_{0} T / Z(T)$ where $S_{0}=\prod_{i=1}^{s} S_{i} \Pi_{j=u+1}^{t} S_{j}$ and noting that $C_{S_{0} Z(T) / Z(T)}[T / Z(T)]=1$, we find that there exists $y \in T$ such that $\left[S_{0} Z(T)\right]^{y} \cap S_{0} Z(T)=Z(T)$. Let $S_{00}=\Pi_{j=s+1}^{i} S_{j}$. Then $C_{S_{00}}(F(G))=1$ and $\left\{N_{F(G)}\left(S_{j}\right) \mid j>s\right\}$ satisfies the hypotheses of Lemma 1. Hence there exists $x \in F(G)$ such that $S_{00}^{x} \cap S_{00}=1$.

We now prove that $S \cap S^{x y}=1$. For suppose $S_{\mathrm{j}}^{x y}=S_{j}$. If $1 \leqslant j \leqslant s$, this gives $S_{j}^{y}=S_{j}$ and thus $\left[S_{j} Z(T)\right]^{y}=S_{j} Z(T)$ and since $S_{j} \notin Z(T)$, this contradicts our choice of y. If $s+1 \leqslant j \leqslant u$, then $S_{j}^{x}=S_{j}$ contradicting our choice of x. Suppose then that $j>u$. Let $S_{j}=\langle w\rangle$. Then $w^{x y}=w^{m}$ for some integer m and thus $[w, x y]=w^{m-1} \in S_{\mathrm{j}} \cap F(G) T$. If $S_{\mathrm{j}} \neq F(G) T$ this implies that $w^{m-1}=1$, and thus $[w, y] \in F(G) \cap T=Z(T)$ and $\left[S_{j} Z(T)\right]^{y}=S_{j} Z(T)$, contrary to our choice of y. Suppose finally that $S_{j} \leqslant F(G) T$. Let $S_{j}=\left\langle a_{j} b_{j}\right\rangle$ where $a_{j} \in F(G), b_{j} \in T$ are p_{j}-elements. Then $\left(a_{j} b_{j}\right)^{x y}=\left(a_{j} b_{j}\right)^{r}$ for some integer r, and thus $a_{j}^{-r} a_{j}^{x}=b_{j}^{r} b_{j}^{-y} \in F(G) \cap T=Z(T)$. In particular

$$
a_{j}^{-r} a_{j}^{x} \in Z(F(G)) \text { and } a_{j}^{-(r-1)} \in\left[a_{j}, x\right]^{-1} Z(F(G))
$$

Let $F_{0}=F(G), F_{1}=\left[F_{0}, F_{0}\right], F_{2}=\left[F_{0}, F_{1}\right], \ldots$ be the lower central series for $F(G)$. If $a_{j} \in Z(F(G))$, then $a_{j} b_{j} \in Z(F(G))$ and S_{j} centralises $F(G)$, contradicting $j>u$. Hence there exists a maximum integer n for which $a_{j} \in F_{n} Z\left(F_{0}\right)$. Then $a_{j}^{r-1} \in F_{n+1} Z\left(F_{0}\right)$, so $\left\langle a_{j}^{r-1}\right\rangle \neq\left\langle a_{j}\right\rangle$ and thus p_{j} divides $r-1$ and since $a_{j}^{p_{i}}=b_{j}^{-p_{i}}, a_{j}^{r-1} \in Z(T)$. Also

$$
b_{j}^{-(r-1)} \in Z(T) \text { and }\left(a_{j} b_{j}\right)^{-1}\left(a_{j} b_{j}\right)^{y} \in Z(T)
$$

Thus $\left[S_{j} Z(T)\right]^{y}=S_{j} Z(T)$ and this contradicts our choice of y. The proof of the theorem is now complete.

Corollary 1. Let G be a finite group and S a cyclic subgroup of G with $S \cap F(G)=1$. Then there exists $x \in G$ with $S \cap S^{x}=1$.

Corollary 2. Let G be a finite group and w an automorphism of G such that no nontrivial subgroup of $\langle w\rangle$ fixes $F(G)\left[C_{G}(F(G))\right]^{\prime}$ pointwise. Then $\langle w\rangle$ has a regular orbit on G (i.e. there exists $g \in G$ such that

$$
\left.\left|\left\{g w^{i} \mid i \in Z\right\}\right|=|\langle w\rangle|\right) .
$$

Proof. Let H be the natural semidirect product $G\langle w\rangle$. The result
follows from the theorem if we can show that no nontrivial subgroup of $\langle w\rangle$ is normal in $F(H)$.

Suppose then that $\left\langle w_{1}\right\rangle$ is a nontrivial subgroup of $\langle w\rangle$ with $\left\langle w_{1}\right\rangle \Delta F(H)$. Then $\left[F(G), w_{1}\right] \leqslant F(G) \cap\left\langle w_{1}\right\rangle=1$, and

$$
\left[C_{G}(F(G)),\left\langle w_{1}\right\rangle\right] \leqslant F(H) \cap C_{G}(F(G))=Z(F(G))
$$

Thus $\left[C_{G}(F(G)),\left\langle w_{1}\right\rangle, C_{G}(F(G))\right]=1$. So, by the Three Subgroups Lemma, $\left[\left[C_{G}(F(G))\right]^{\prime}, w_{1}\right]=1$. This completes the proof.

Note. This result is of interest since $F(G)\left[C_{G}(F(G))\right]$ is a characteristic subgroup of G containing its centraliser.

The proof of the next result is easy, using Corollary 1 of Theorem 3, and is omitted.

Theorem 4. Let G be a group with $|G|<3600$ and let S be a cyclic subgroup of G. Suppose that no nontrivial subgroup of S is normal in G. Then there exists $x \in G$ with $S \cap S^{x}=1$.

We now give the example referred to in the introduction. Let $M=$ $A \times B \times C$ be the direct product of the elementary abelian groups A, B, C of orders 4,9 , and 25 respectively. Let $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ be generating sets for A, B, C respectively.

Let v, w be the automorphisms of H defined by

$$
\begin{array}{rrr}
x_{1} v=x_{2} ; & x_{2} v=x_{1} ; & y_{1} v=y_{1} ; \\
y_{2} v=y_{2} ; & z_{1} v=z_{2} ; & z_{2} v=z_{1} ; \\
x_{1} w=x_{1} ; & x_{2} w=x_{2} ; & y_{1} w=y_{2} \\
y_{2} w=y_{1} ; & z_{1} w=z_{2} ; & z_{2} w=z_{1} ;
\end{array}
$$

Note that $\langle v, w\rangle$ is the four group. Let G be the semidirect product $H\langle v, w\rangle$ and let $S=\left\langle x_{1}\right\rangle\left\langle y_{1}\right\rangle\left\langle z_{1}\right\rangle, S_{1}=\left\langle x_{1}\right\rangle, S_{2}=\left\langle y_{1}\right\rangle$ and $S_{3}=\left\langle z_{1}\right\rangle$. Then $|G|=$ 3600 and $G=U_{i=1}^{3} N_{G}\left(S_{i}\right)$ and $\left[G: N_{G}\left(S_{i}\right)\right]=2, i=1,2,3$. The automorphism of G induced by conjugation by $x_{1} y_{1} z_{1}$ has no regular orbit on G.

REFERENCES

(1) O. E. Barriga, On a problem about cyclic subgroups of finite groups, Proc. Edinburgh Math. Soc. 20 (1977), 225-228.
(2) T. J. Laffey, A problem on cyclic subgroups of finite groups, Proc. Edinburgh Math. Soc. 18 (1973), 247-249.

Mathematics Department
University College
Dublin 4

