DISJOINT CONJUGATES OF CYCLIC SUBGROUPS OF FINITE GROUPS

by THOMAS J. LAFFEY (Received 18th June 1975)

In an earlier paper (2) we considered the following question "If S is a cyclic subgroup of a finite group G and $S \cap F(G) = 1$, where F(G) is the Fitting subgroup of G, does there necessarily exist a conjugate S^x of S in G with $S \cap S^x = 1$?" and we gave an affirmative answer for G simple or soluble. In this paper we answer the question affirmatively in general (in fact we prove a somewhat stronger result (Theorem 3)). We give an example of a group G with a cyclic subgroup S such that (i) no nontrivial subgroup of S is normal in G and (ii) no x exists for which $S \cap S^x = 1$.

The notation is standard with the following additions: if X is a finite set, |X| denotes the cardinality of X, and if n is a natural number and p a prime, n_p denotes the p-share of n.

We begin with

Lemma 1. Let G be a finite nilpotent group, and let S_1, \ldots, S_n be proper subgroups of G for which there exist distinct primes p_1, \ldots, p_n such that, for each i, there exists a prime q_i dividing |G| such that $[G:S_i]_{q_i} \equiv 0$ or 1 mod p_i .

Then $G \neq \bigcup_{i=1}^{n} S_i$

Proof. We prove the result by induction on |G|. Suppose first that q is a prime divisor of |G| and that G is not a q-group. Let $G = A \times B$, where A, B are q-, q'-groups respectively, and, for each i, let $S_i = S_i(A) \times S_i(B)$ as a subgroup of $A \times B$.

Let

 $X = \{i | S_i(A) \neq A \text{ and } [A: S_i(A)] \equiv 0 \text{ or } 1 \mod p_i\}$

and

 $Y = \{i | S_i(B) \neq B \text{ and there exists a prime divisor} \\ q_i \text{ of } |B| \text{ such that } [B:S_i(B)]_{a_i} \equiv 0 \text{ or } 1 \text{ mod } p_i\}$

Note that $X \cup Y = \{1, 2, ..., n\}$.

By induction,
$$A \neq \bigcup_{i \in X} S_i(A)$$
 and $B \neq \bigcup_{i \in Y} S_i(B)$. Let

$$a \in A - \bigcup_{i \in X} S_i(A), b \in B - \bigcup_{i \in Y} S_i(B)$$

Then $(a, b) \notin S_j$ for any $j \ (1 \le j \le n)$, and the result follows.

Hence we may assume that G is a q-group for some prime q, and thus for $p_i \neq q$, $[G: S_i] = q^{k_i} > 1$ and $q^{k_i} \equiv 1 \mod p_i$. For p a prime different from q let m(p) be the order of $q \mod p$. By Lemma 2 of (2),

$$1/q + \sum_{\substack{p \neq q \\ p \text{ prime}}} (1/q^{m(p)}) < 1.$$

This implies that $\sum_{i=1}^{n} |S_i| < |G|$ and the result is proved.

Note that Theorem 1 of (2) is a consequence of this lemma. The next result is due to Oscar E. Barriga (1).

Lemma 2. Let G be a finite group, N a normal subgroup of G with F(N) = 1, and S a cyclic subgroup of G with $C_S(N) = 1$. Then there exists $x \in N$ with $S \cap S^x = 1$.

We now prove our main result:-

Theorem 3. Let G be a finite group and S a cyclic subgroup of G. Suppose that no nontrivial subgroup of S is a normal subgroup of F(G). Then there exists $g \in G$ with $S \cap S^g = 1$.

Proof. We use induction on |G| + |S|. Clearly, we may assume that |S| is square-free and that $S = S_1 \times \cdots \times S_t$, where S_i has a prime order p_i .

We observe first that if S_i does not centralise F(G), then $N_{F(G)}(S_i) \neq F(G)$ —this is true by hypothesis if $S_i \leq F(G)$, while if $S_i \leq F(G)$, then $C_{F(G)}(S_i) = N_{F(G)}(S_i)$. Let L be a Sylow q-subgroup of F(G) for some prime q. Then $|L - N_L(S_i)|$ is divisible by p_i , and thus $[L:N_L(S_i)] \equiv 0$ or 1 mod p_i .

Next, we note that if no S_i centralises F(G), then the theorem follows from Lemma 1—the hypotheses of Lemma 1 are satisfied by the subgroups $N_{F(G)}(S_i)$, using the argument of the last paragraph. Hence we may assume that there exists $s \ge 1$ such that

$$C_{\mathcal{S}}(F(G)) = S_1 S_2 \dots S_s.$$

In particular, we can see that $C_G(F(G))$ is non abelian, since otherwise $C_G(F(G)) = Z(F(G))$ and $S_i \triangleleft F(G)$ $(1 \le i \le s)$. Let T_1 be a minimal nonabelian normal subgroup of G contained in $C_G(F(G))$ and, if $C_G(T_1F(G))$ is nonabelian, let T_2 be a minimal normal nonabelian subgroup of G contained in $C_G(T_1F(G))$.

Proceeding by induction, having found T_1, \ldots, T_c with $T_{i+1} \leq C_G(T_1 \ldots T_iF(G))$ $(1 \leq i \leq c-1)$ we consider $C_G(T_1 \ldots T_cF(G))$, and if this is nonabelian, we let T_{c+1} be a minimal nonabelian normal subgroup of G contained in $C_G(T_1 \ldots T_cF(G))$. We note that $T_{i+1} \leq T_1 \ldots T_i$ and hence there exists an integer $d \geq 1$ such that if $T = T_1 \ldots T_d$, $C_G(F(G)T)$ is abelian and thus $C_G(F(G)T) = Z(F(G))$. Also F(T) = Z(T). Now $T'_i = T_i$ for all i, since otherwise T'_i is abelian and thus $T'_i \leq F(T) = Z(T)$ and $T_i \leq F(T) = Z(T)$, a contradiction. Thus T' = T.

230

We now observe that if $[S_i, T] \leq Z(T)$, then $[S_j, T, T] = [T, S_j, T] = 1$ so by the Three Subgroups Lemma, $[T, T, S_j] = 1$, and thus $[T, S_j] = 1$ (since T' = T).

If $C_S(T) = 1$, then, since F(T/Z(T)) = 1, the theorem follows from Lemma 2 applied to the group ST/Z(T). Hence we may assume that $C_S(T) \neq 1$. Note that since $C_G(F(G)T) = Z(F(G))$, no S_i centralises both F(G) and T. Thus we may assume that $C_S(T) = S_{s+1} \dots S_u$ for some $u \ge s + 1$.

Applying Lemma 2 to the group $S_0T/Z(T)$ where $S_0 = \prod_{i=1}^s S_i \prod_{j=u+1}^t S_j$ and noting that $C_{S_0Z(T)/Z(T)}[T/Z(T)] = 1$, we find that there exists $y \in T$ such that $[S_0Z(T)]^y \cap S_0Z(T) = Z(T)$. Let $S_{00} = \prod_{j=s+1}^t S_j$. Then $C_{S_{00}}(F(G)) = 1$ and $\{N_{F(G)}(S_j)|j > s\}$ satisfies the hypotheses of Lemma 1. Hence there exists $x \in F(G)$ such that $S_{00}^x \cap S_{00} = 1$.

We now prove that $S \cap S^{xy} = 1$. For suppose $S_j^{xy} = S_j$. If $1 \le j \le s$, this gives $S_j^y = S_j$ and thus $[S_jZ(T)]^y = S_jZ(T)$ and since $S_j \le Z(T)$, this contradicts our choice of y. If $s + 1 \le j \le u$, then $S_j^x = S_j$ contradicting our choice of x. Suppose then that j > u. Let $S_j = \langle w \rangle$. Then $w^{xy} = w^m$ for some integer m and thus $[w, xy] = w^{m-1} \in S_j \cap F(G)T$. If $S_j \le F(G)T$ this implies that $w^{m-1} = 1$, and thus $[w, y] \in F(G) \cap T = Z(T)$ and $[S_jZ(T)]^y = S_jZ(T)$, contrary to our choice of y. Suppose finally that $S_j \le F(G)T$. Let $S_j = \langle a_j b_j \rangle$ where $a_j \in F(G)$, $b_j \in T$ are p_j -elements. Then $(a_j b_j)^{xy} = (a_j b_j)^r$ for some integer r, and thus $a_j^{-r}a_j^x = b_j^rb_j^{-y} \in F(G) \cap T = Z(T)$. In particular

$$a_j^{-r}a_j^x \in Z(F(G))$$
 and $a_j^{-(r-1)} \in [a_j, x]^{-1}Z(F(G))$.

Let $F_0 = F(G)$, $F_1 = [F_0, F_0]$, $F_2 = [F_0, F_1]$,... be the lower central series for F(G). If $a_j \in Z(F(G))$, then $a_j b_j \in Z(F(G))$ and S_j centralises F(G), contradicting j > u. Hence there exists a maximum integer n for which $a_j \in F_n Z(F_0)$. Then $a_j^{r-1} \in F_{n+1} Z(F_0)$, so $\langle a_j^{r-1} \rangle \neq \langle a_j \rangle$ and thus p_j divides r-1 and since $a_j^{p_j} = b_j^{-p_j}$, $a_j^{r-1} \in Z(T)$. Also

$$b_i^{-(r-1)} \in Z(T)$$
 and $(a_i b_i)^{-1} (a_i b_i)^{y} \in Z(T)$.

Thus $[S_jZ(T)]^y = S_jZ(T)$ and this contradicts our choice of y. The proof of the theorem is now complete.

Corollary 1. Let G be a finite group and S a cyclic subgroup of G with $S \cap F(G) = 1$. Then there exists $x \in G$ with $S \cap S^x = 1$.

Corollary 2. Let G be a finite group and w an automorphism of G such that no nontrivial subgroup of $\langle w \rangle$ fixes $F(G)[C_G(F(G))]'$ pointwise. Then $\langle w \rangle$ has a regular orbit on G (i.e. there exists $g \in G$ such that

$$|\{gw'|i \in Z\}| = |\langle w \rangle|).$$

Proof. Let H be the natural semidirect product G(w). The result

THOMAS J. LAFFEY

follows from the theorem if we can show that no nontrivial subgroup of $\langle w \rangle$ is normal in F(H).

Suppose then that $\langle w_1 \rangle$ is a nontrivial subgroup of $\langle w \rangle$ with $\langle w_1 \rangle \lhd F(H)$. Then $[F(G), w_1] \leq F(G) \cap \langle w_1 \rangle = 1$, and

$$[C_G(F(G)), \langle w_1 \rangle] \leq F(H) \cap C_G(F(G)) = Z(F(G)).$$

Thus $[C_G(F(G)), \langle w_1 \rangle, C_G(F(G))] = 1$. So, by the Three Subgroups Lemma, $[[C_G(F(G))]', w_1] = 1$. This completes the proof.

Note. This result is of interest since $F(G)[C_G(F(G))]'$ is a characteristic subgroup of G containing its centraliser.

The proof of the next result is easy, using Corollary 1 of Theorem 3, and is omitted.

Theorem 4. Let G be a group with |G| < 3600 and let S be a cyclic subgroup of G. Suppose that no nontrivial subgroup of S is normal in G. Then there exists $x \in G$ with $S \cap S^x = 1$.

We now give the example referred to in the introduction. Let $M = A \times B \times C$ be the direct product of the elementary abelian groups A, B, C of orders 4, 9, and 25 respectively. Let $\{x_1, x_2\}, \{y_1, y_2\}, \{z_1, z_2\}$ be generating sets for A, B, C respectively.

Let v, w be the automorphisms of H defined by

$x_1v=x_2;$	$\boldsymbol{x}_2\boldsymbol{v}=\boldsymbol{x}_1;$	$\mathbf{y}_1 \mathbf{v} = \mathbf{y}_1;$
$y_2v=y_2;$	$z_1v=z_2;$	$z_2v=z_1;$
$x_1w = x_1;$	$\boldsymbol{x}_2 \boldsymbol{w} = \boldsymbol{x}_2;$	$y_1w = y_2;$
$y_2 w = y_1;$	$z_1w=z_2;$	$z_2w=z_1;$

Note that $\langle v, w \rangle$ is the four group. Let G be the semidirect product $H\langle v, w \rangle$ and let $S = \langle x_1 \rangle \langle y_1 \rangle \langle z_1 \rangle$, $S_1 = \langle x_1 \rangle$, $S_2 = \langle y_1 \rangle$ and $S_3 = \langle z_1 \rangle$. Then |G| = 3600 and $G = \bigcup_{i=1}^3 N_G(S_i)$ and $[G: N_G(S_i)] = 2$, i = 1, 2, 3. The automorphism of G induced by conjugation by $x_1y_1z_1$ has no regular orbit on G.

REFERENCES

(1) O. E. BARRIGA, On a problem about cyclic subgroups of finite groups, *Proc.* Edinburgh Math. Soc. 20 (1977), 225-228.

(2) T. J. LAFFEY, A problem on cyclic subgroups of finite groups, Proc. Edinburgh Math. Soc. 18 (1973), 247-249.

MATHEMATICS DEPARTMENT University College Dublin 4

232