Bull. Aust. Math. Soc. 85 (2012), 191-201
doi:10.1017/S0004972711002681

ON SOME PEXIDER-TYPE FUNCTIONAL EQUATIONS
CONNECTED WITH THE ABSOLUTE VALUE
OF ADDITIVE FUNCTIONS. PART I

BARBARA PRZEBIERACZ

(Received 2 March 2011)

Abstract
We investigate the Pexider-type functional equation
max{f(x+y), f(x =} = f(¥ex) + hx), x,yeG,
where f, g, h are real functions defined on an abelian group G.
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1. Introduction

Our research is inspired by the result obtained by Aczél and presented in [1, Ch. 15]. It
concerns the common Pexiderization of two classical Cauchy’s functional equations,
that is the additive Cauchy’s equation,

a(x+y) =alx)+ a(y), (1.1)

and the multiplicative Cauchy’s equation,

e(x +y) = e(xe(y). (1.2)
Both equations can be generalized by one equation as follows:
fx+y) = f(0g(y) + h(y). (1.3)

This is just the equation which was solved in [1, Ch. 15]. It turns out that the solutions
of (1.3) are one of three types: the trivial solutions with constant function f, solutions
connected with either (1.1) or with (1.2). Namely, if f,g,h: N — F, where N is a
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groupoid with a neutral element and F is a field, satisfy (1.3) then either

{f (x) =0,

g is an arbitrary function,
h(x) = b(1 - g(x)),

or
f(x) =a(x) + b,
g =1,
h(x) = a(x),

or

g(x) = e(x),
h(x) = b(1 — e(x)),

where b, c are constant, and @, e : N — F are solutions of, respectively, (1.1) and (1.2).

This paper is devoted to Pexider generalizations, obtained in an analogous way,
from the functional equations

max{f(x +y), f(x =)} = f(x) + f()) (1.4)

{f(x) =ce(x) + b,

and
max{f(x+y), f(x —y)}=f)f(y. (1.5)

Here f: G — R is a real function defined on an abelian group (G, +, 0) with neutral
element 0. Since the roles of x and y are different in both equations we obtain two
Pexider generalizations, that is

max{f(x +y), f(x = y)} = f(x)g(y) + h(y) (1.6)

and
max{f(x+y), f(x —y)}=f(»gx) + h(x), (L.7)

with f,g,h:G — R. One can ask, whether here, analogously to [1], we obtain
three types of solutions: the trivial one, that connected with (1.4) and that connected
with (1.5). As we will see, it turns out that the answer is negative. In this paper we are
going to prove the following.

Tueorem 1.1. Let f,g,h:G — R, where G is an abelian group. Then f, g, h are

solutions of (1.7) if and only if they are one of the following forms:
f(x)=b,
e8) g is an arbitrary function,

h(x) = b(1 — g(x)),
where b € R;
(2) 8(x) = ¢(x),
h(x) = b(1 — ¢(x)),
where c,b €R, ¢ >0, and ¢ : G — R is a solution of (1.5);

{f (x) = c¢(x) + b,
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f(x) =co(x) + b,

3) g(x) = ¢(x),
h(x) = b(1 — ¢(x)),

where c,b €R, ¢ <0, and ¢ : G — R is a solution of
min{f(x +y), f(x =y} = f(X)f(¥); (1.8)

S(x)=¢(x) + b,

4 gx) =1,
h(x) = ¢(x),

where b € R, and ¢ : G — R is a solution of (1.4).

In a second paper [7], we solve the functional equation (1.6), but under the
assumptions that G = R and f is continuous.

This first paper is organized as follows. In the second section we recall some
information about (1.4), complete the results concerning (1.5), and also solve (1.8),
which appears in Theorem 1.1. In the third section we solve (1.7). The last section is
devoted to other Pexider equations connected with (1.4) and (1.5), that is

max{f(x +y), f(x = y)} = gx) + h(y), (1.9)

and
max{f(x+y), f(x — y)} = g()h(y). (1.10)

At the end of this introduction we would like to mention other papers devoted to
equations like (1.3) considered in [1]. These are the papers [3] and [10]. However, in
those papers the functions are defined on sets different from those here, or the emphasis
is put on the problem of extendability of the solutions.

2. About equations (1.4), (1.5) and (1.8)

Equation (1.4) was considered in a paper [9] and, as the title of this paper indicates,
it is a characterization of absolute value of additive functions.

Tueorem 2.1 [9]. Let G be an abelian group. Function f:G — R is a solution
of (1.4) if and only if f(x) = |a(x)| for some additive function a: G — R (that is, a
satisfying (1.1)).

Later on, rewriting this equation in the form

max{f(x), f(x +2y)} = f(x +y) + f(¥),

this equation was examined in [4]. This form allowed the authors to avoid subtraction,
and, thanks to this, gave them the possibility of defining the function f on a semigroup.
See also paper [5].

Under the additional assumption that G is divisible by 6, solutions of (1.5) were
determined in [9].
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THeOREM 2.2 [9]. Suppose that G is an abelian group divisible by 6. Then f : G — R is
a solution of (1.5) if and only if f = 0 or f(x) = exp(la(x)]), with some additive function
a:G-R

RemMark 2.3. Actually, in the proof of this theorem, it has been shown, without using

this additional assumption about divisibility by 6, that the following properties are true.

(1) Either f(0) =0 and then f =0, or f(0)=1.

(2) If £(0) =1 then |f(x)| = 1 for every x € G.

(3) If f(x)>0 for every x€ G then f(x)=exp(a(x)]), x<€ G, for some additive
function @ : G — R. This is a simple corollary from Theorem 2.1.

(4) fiseven.

Now we can complete the above theorem in the following way.

TueoreMm 2.4. Function f: G — R satisfies (1.5) if and only if:
1 f=00r

2) fx) =exp(ax))), x € G, for some additive a : G — R; or
(3) there is a subgroup Gy of G, with the property

X y¢Gy=>(x+yeGyVx—-yeGy), x,y€G, 2.1)

and
x € Gy,

1,
S = {—1, x ¢ Go.
Proor. The ‘if” part can easily be checked. For the ‘only if” part, we assume that f
satisfies (1.5) and will show that it has one of the forms (1)—(3), above. In view of
Remark 2.3, we can assume that f(0) =1 and that there exists an xy € G such that
f(xo) <—1. We will show that, in fact, f(xp) =—1. Assume on the contrary that
f(xp) <—1. Since
max{f(2xo), f(0)} = f(x0)* > 1,

we have f(2xo) = f(xo)*. Moreover,

f(x0) < max{fBx0), f(x0)} = f(2x0) f(x0) = f(x0)* < f(x0),

which is a contradiction.
Further, if f(y) > 1 for some y € G, then

max{f(xo +y), f(xo = )} = f(x0) f(y) = =f(y) < -1,

which is impossible, as we have already shown. Consequently, f(G) c {1, —1}. Put

Go ={x€G; f(x) = 1}. Now it is easy to check that Gy is a subgroup of G and has the

property (2.1). m|
Notice that

(1) If G is a group divisible by 6 then there is no subgroup Gy G G with
property (2.1).
(2) 2Z and 3Z are subgroups of Z with property (2.1).

https://doi.org/10.1017/S0004972711002681 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002681

[5] On some Pexider functional equations. Part I 195

(3) {0} is a subgroup of the cyclic group Z, with property (2.1).
(4) {0} is a subgroup of the cyclic group Z; with property (2.1).

Now let us pass to (1.8), which is strictly related to (1.5).
THEOREM 2.5. Let G be an abelian group and f : G — R. Then f is a solution of the
functional equation (1.8) if and only if it has one of the following forms:

(1) f=0;o0r
2)  f(x) =exp(—la(x)]), x € G, for some additive & : G — R; or
(3) there is a subgroup G of G with the property

X, y¢€Gy=>(x+yeGoAx—-yeGy), x,yeG (2.2)
and
_ 1, XGG(),
f(x)_{—l, x ¢ Go;
or

(4) there is a subgroup Gy of G with the property
X, y¢Go=x+y¢EGoVx—y¢Go), x,yeG, (2.3)

and
1, xe€ G(),

J@= {o, x¢ G.
Proor. Assume that f: G — R satisfies (1.8). Putting x =y = 0 in (1.8) we obtain

min{f(0), f(0)} = £(0)f(0),

which gives f(0) = f(0)>. Hence, f(0)=0 or f(0) = 1. In the first case, if f(0)=0,
putting y = 0 in (1.8) we get f(x) = f(x)f(0), x € G, which means that f = 0.

Now assume that the second case holds, that is f(0) =1. Let us consider the
following cases.

(a) f(x) > 0 forevery x € G.
It is easy to check that the function 1/f:G — R satisfies (1.5), which, in view
of Theorem 2.4 and 1/f >0, gives f(x)=exp(—|la(x)|), x € G, for some additive
a:G—- R

(b) There is xo € G such that f(x;) <O0.
Putting x = y in (1.8) we get

1= £(0) = min{f(2x), f(0)} = f(x)?,

whence f(x)e[-1,1], x€G. In particular, f(xp)€[-1,0]. If f(xo) € (—1,0) we
would have

min{f(2x0), f(0)} = f(x0)* < 1,

and hence f(2xo) = f(xo)*>. However,

F(x0) > min{f(3x0), f(x0)} = f(2x0)f (x0) = f(x0)* > f(x0),
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which is a contradiction. Therefore, f(xyp) =0 or f(xo) =—1. Notice also that the
conjunction, f(x) =0 and f(y) = —1 for some x, y € G, is impossible. Indeed, in such
a case we would obtain

=1 2 min{f(y), f(y =20} = f(y - ) f(x) = 0.

Therefore, we have proved that f(G) c {1, -1} or f(G) c {1, 0}. Notice also that f is
even, since

min{f(y), f(=)} = fO)f(y) = f(y), yeG.
It is easy to check that if f(G) c {1, —1}, respectively f(G) C {1, 0}, then
Go:={xeG; f(x)=1}

is a subgroup of G with the property (2.2), or respectively (2.3). To finish the proof it
is enough to see that every function f described by (1)—(4) is a solution of (1.8). ]

Notice that

(1) Qs the subgroup of R with property (2.3).
(2) 22 s the subgroup of Z with property (2.2).

3. Proof of Theorem 1.1

As part ‘if” of Theorem 1.1 can be easily checked, let us assume that G is an abelian
group and f, g, h : G — R are solutions of (1.7).

(D) f is constant.

Let f(x) =b, xe€ G. Then (1.7) is of the form b = bg(x) + h(x), x € G, and we see
that i(x) = b(1 — g(x)), x € G. Hence we get (1) from Theorem 1.1.

(IT) f is not constant.

Putting y =01in (1.7) we get f(x) = f(0)g(x) + h(x), x € G, and hence

h(x) = f(x) - f(0)g(x), x€G. (3.1)
Therefore,
max{f(x +y), f(x =y} = f(ygx) + f(x) — f(0)g(x), x,y€G. (3.2)
Putting x = 0 in (3.2) we get
max{f(y), f(=»} = f(y)g0) + f(0) - f(0)g(0), yeG. (3.3)

‘We will show that
2(0)=1 (3.4)

Suppose, on the contrary, that g(0) # 1. Put
A={yeG: f(N2f(-y}, A :=G\A
Obviously, y e A" = —y € A. Moreover, if y € A then, by (3.3),
F) = f(»g0) + £(0) — f(0)g(0),
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which gives

(f(y) = f(0)(1 - g(0)) =0.
Thereby, f(y) = f(0) for every y € A. The set A’ is not empty, since f is not constant.
Let yo € A’. We have f(yo) < f(—yo) = f(0). From (3.3) with y, we get

J0) = f(»0)g(0) + f(0) = f(0)g(0),

whence
(f(y0) = £(0))g(0) = 0.
Therefore, g(0) = 0. Now, with x = yy and y = —y; in (3.2) we obtain

f(0) < max{f(0), f2yo)} = f(=y0)g(yo) + f(yo) — f(0)g(yo)
= f(0)g(yo) + f(y0) — f(0)g(yo) = f(yo) < f(=y0) = f(0),

a contradiction. Hence, we proved (3.4).
Notice also that (3.3) implies

max{f(y), f(=»)} = f(» + f(0) - f(0O) = f(y), yeGC,

whence
F» =1y, yeG. (3.5)
We have, by (3.2) and (3.5),

FMegx) + f(x) — f(0)g(x) = max{f(x +y), f(x —y)}
= max{f(-x —y), f(y — x)}
= f(Mg(=x) + f(=x) — f(0)g(—x)
= f(»g(=x) + f(x) = f(0)g(—x),

whence

(f) = fO))(g(x) —g(=x)) =0, x,yeG.
This, together with the assumption that f is not constant, shows that g is even. Further,
by (3.1), also & is even. Moreover, by (3.2) and (3.5),

F)g(y) + f(y) = f(0)g(y) = max{f(y + x), f(y = 0)}
= max{f(x +y), f(x =y} = f(g(x) + f(x) — f(0)g(x),
thereby,
(8(x) = D) = f(0)) = (g(y) = D(f(x) = f(0)), x,y€G.
Let yo € G be such that f(yg) # f(0). Put

o= g(yo) — 1
"~ f(yo) = f(0)

Hence

g(x) — 1 =a(f(x) - f(0)).
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Let us define
g =g -1, xegq,
)= f) = f(0), x€G.
We have g = a.f and f(0) = 0. Moreover, by (3.2),
max{f(x +y), f(x - y)} = max{f(x +y), f(x - y)} = f(0)
= f(»gx) + f(x) - f(0)g(x) — f(0)
= f(0g() + f(x) = g0 f () + f0) + f()
=afWf) + f) + (). xyeGC.

(3.6)

Let us consider three cases.
ea=0.
Then g(x) = 0, for x € G, which means that g(x) = 1, x € G. By (3.6) we get

max{f(x +y), f(x =y} = f(x) + f(»), xyeG,

which means that f satisfies (1.4). Hence, f(x) =|a(x)|, x € G, for some additive
a : G — R. Finally, using (3.1), we see that f, g, # are as in point (4) from Theorem 1.1:

J(x) = la(x)] + f(0),

g =1,
h(x) = la(x)|.

o a>0.
Put f(x) := af(x), x € G. Multiplying (3.6) by a we get

max{f(x +y), f(x =y} = af () f(y) + f(x) + ()
=(f+DFM+DH -1, xyeG.
Therefore, with ¢(x) := f(x) + 1, x € G, we get
max{g(x +y), p(x — y)} = p(x)(y), x,y€G,

which means that ¢ satisfies (1.5). We have that f, g, & are as in point (2) from
Theorem 1.1:

1 1
f(x) = afﬁ(x) + f(0) - o
g(x) = ¢(x),
1
ho) = (£0) = = )01 = gCo.
a
o a<0.
Put f(x) := —af(x), x € G. Multiplying (3.6) by —a we get
max{f(x +y), f(x = )} = —af () f(y) + f(x) + F()
=-(fx)-D(f(»-D+1, xyeG.
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Therefore, with ¢(x) := f(x) — 1, x € G, we get

max{¢(x +y), p(x — y)} = —p()d(y), x,y€q,

which means that ¢ := —¢ satisfies (1.8). We have that f, g, h are as in point (3) from
Theorem 1.1:

1 1
f(x)=—=¢x) + f(0) - —,

a a
g(x) = ¢(x),

1
o = (£0) = = )01 = gCo.
The proof is finished. O

Let us finish this section with the remark from the above proof, which we will need
in [7].

Remark 3.1. If f, g, h: G — R satisfy the functional equation (1.7), then f is even,
moreover if f is not constant then also g and 4 are even and g(0) = 1.
4. Other Pexider equations
We recall a result about the functional equation (1.9) from [8].

TueorEM 4.1 [8, Satz 2]. Let G be an abelian group and f,g,h:G —R. Then f, g
and h are solutions of the equation

max{f(x +y), f(x —y)} = g(x) + h(y)

if and only if
Jf=ax)+c+c
{g(X) =a(x) + ¢
h(x) = la(x)| + c2,
or

g(x) = la(x) + col + ¢y
h(x) = la(x)| + c2,

{f(X) =la(x) + col + c1 + 2

with some a : G — R satisfying (1.1) and cy, c1, c; constants.

As a corollary from [7] we get the result concerning the multiplicative version of
the above equation.

THeorEM 4.2. Let f, g, h:R — R, f continuous. Then

max{f(x +y), f(x = y)} = g(x)h(y) (1.10)
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if and only if one of the following holds:

f=0

g=0

h is arbitrary;
or

£=0

h=0

g is arbitrary;
or

f(x) = bee® ol
§(x) = be~

h(x) = ce®™,
where a, b, ¢, xo € R, abc > 0; or
f(x) = bce™
2(x) = be®

h(x) — cesgn(bc)\axl7
where a, b, c € R.

Proor. One can check that functions f, g, s, described by the formulas above,
satisfy (1.10).

Now assume that f, g, & are solutions of (1.10). First notice that if f = 0, then either
g =0or h =0, moreover, if f is constant, then g and & are constant and f = gh. Now,
consider the case, that f is not constant. With y =0 in (1.10), we get f(x) = g(x)h(0),
x € R. Therefore h(0) # 0. Put & := h/h(0). We get that f, h, 0 are solutions of (1.6),
and from [7, Theorem 3.1] we obtain the formulas for f, g and 4. This ends the proof. O
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