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Abstract. Let Rþ be the set of all non-negative real numbers, I 2 fR;Rþg and
UI ¼ fUðt; sÞ : t 	 s 2 Ig be a strongly measurable and exponentially bounded evo-
lution family of bounded linear operators acting on a Banach space X: Let
� : Rþ ! Rþ be a strictly increasing function and E be a normed function space
over I satisfying some properties; see Section 2. We prove that if

� � ð�½s;1Þð�ÞjjUð�; sÞxjjÞ

defines an element of the space E for every s 2 I and all x 2 X and if there exists
M > 0 such that

sup
s2I

j� � ð�½s;1Þð�ÞjjUð�; sÞxjjÞjE ¼ M <1 8x 2 X with jjxjj � 1;

then UI is uniformly exponentially stable. In particular if  : Rþ ! Rþ is a non-
decreasing function such that  ðtÞ > 0, for all t > 0, and if there exists K > 0 such
that

sup
s2I

Z1

s

 ðjjUðt; sÞxjjÞdt ¼ K <1; 8x 2 X with jjxjj � 1;

then UI is uniformly exponentially stable. For I ¼ Rþ;  continuous and URþ

strongly continuous this last result is due to S. Rolewicz. Some related results for
periodic evolution families are also proved.

2000 Mathematics Subject Classification. 47A30, 93D05, 35B35, 35B40, 46A30.

1. Introduction. Let T ¼ fTðtÞgt	0 be a strongly continuous semigroup on a
Banach space X; and !0ðTÞ :¼ limt!1

ln½jjTðtÞjj�
t be its growth bound. It is a well

known theorem of Datko [9], that if the function t 7!jjTðtÞxjj belongs to L2ðRþÞ, for
all x 2 X, then !0ðTÞ is negative; i.e. T is uniformly exponentially stable. This result
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was generalized by Pazy [15] who showed that the exponent p ¼ 2 may be replaced
by 1 � p <1; and by Datko [10], who proved the following result.

Let URþ
¼ fUðt; sÞ : t 	 s 	 0g be a strongly continuous and exponentially bounded

evolution family of bounded linear operators acting on X; see definitions below. In what
follows we consider that Uðt; sÞ ¼ 0 if t < s: Let us consider the function

t 7!Ux
s ðtÞ :¼ �½s;1ÞðtÞjjUðt; sÞxjj : I ! Rþ; s 2 I; x 2 X:

If there exists 1 � p <1 such that Ux
s belongs to LpðRþÞ for all s 	 0 and every x 2 X

and if, in addition,

sup
s	0

jjUx
s jjp ¼ MðxÞ <1 8x 2 X;

then the family URþ
is uniformly exponentially stable, that is, there exist the constants

N > 0 and 	 > 0 such that

jjUðt; sÞjj � Ne�	ðt�sÞ; 8t 	 s 	 0:

This last result was generalized by S. Rolewicz [17]. More precisely, S. Rolewicz
has proved that if  : Rþ ! Rþ is a continuous and nondecreasing function such
that  ðtÞ > 0, for all t > 0;  �Ux

s belongs to L1ðRþÞ, for all s 	 0, and if in addition

sup
s	0

jj �Ux
s jj <1 8x 2 X with jjxjj � 1;

then URþ
is uniformly exponentially stable. See also [18].

A shorter proof of Rolewicz’s theorem was given by Q. Zheng [23] (cf. Neerven
[14, p. 111]) who also removed the continuity assumption about  : Other proofs of
(the semigroup case) Rolewicz’s theorem was offered by W. Littman [12], and van
Neerven [14, Theorem 3.2.2]. Some related results have been obtained by K.M.
Przy�uski [16], G. Weiss [20] and J. Zabczyk [22].

The paper is organized as follows. Section 2 contains the necessary definitions
for the paper to be self-contained. In this section we also state the main result. In
Section 3 we prove this result and consider some natural consequences. Section 4 is
devoted to some dual results connected with a classical result of Barbashin while the
last section deals with certain integral characterizations of non-uniform exponential
stability.

2. Definitions and notations. Let X be a real or complex Banach space. We shall
denote by LðXÞ the Banach space of all bounded linear operators acting on X: We
also denote by jj � jj the norms of vectors and operators in X and LðXÞ; respectively.

A family UI :¼ fUðt; sÞ : t 	 s 2 Ig is said to be an evolution family of bounded
linear operators on X if and only if

ðe1Þ Uðt; sÞUðs; rÞ ¼ Uðt; rÞ and Uðt; tÞ ¼ Id for all t 	 r 	 s 2 I; Id is the identity
operator in LðXÞ:

The evolution family UI is said to be
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ðe2Þ strongly continuous if for every x 2 X the function

ðt; sÞ 7!Uðt; sÞx : fðt; sÞ : t 	 s 2 Ig ! X

is continuous;
ðe3Þ strongly measurable if for every x 2 X and any s 2 I the function

t 7!jjUðt; sÞxjj : ½s;1Þ ! Rþ

is measurable;
ðe4Þ exponentially bounded if there are M1 	 1 and !1 > 0 such that

jjUðt; sÞjj � M1e
!1ðt�sÞ for all t 	 s 2 I;

ðe5Þ q-periodic (with fixed q > 0) if

Uðtþ q; sþ qÞ ¼ Uðt; sÞ for all t 	 s 2 I:

It is easy to see that a q-periodic and strongly continuous evolution family on X
is an exponentially bounded evolution family on X (see for example [4, Lemma 4.1]).

Let ðI;L;mÞ be the Lebesgue measure space, and MðIÞ be the linear space of all
measurable functions f : I ! R; identifying the functions which are equal a.e. on I.
We consider a function 
 : MðIÞ ! ½0;1� with the following properties:

ðn1Þ 
ð f Þ ¼ 0 if and only if f ¼ 0;
ðn2Þ 
ðaf Þ ¼ jaj
ð f Þ for any scalar a 2 R and any f 2 MðIÞ; with 
ð f Þ <1;
ðn3Þ 
ð fþ gÞ � 
ð f Þ þ 
ðgÞ for all f; g 2 MðIÞ:
Let F ¼ F
 be the set of all f 2 MðIÞ such that j f jF :¼ 
ð f Þ <1: It is clear that

ðF; j � jÞ is a normed linear space. The normed linear subspace E of F is said to be a solid
space over I; (see also [19], [21] for similar notions), if the following two conditions hold:

ðn4Þ if f 2 E; g 2 E and j f j � jgj a.e., then j f jE � jgjE;
ðn5Þ �½0;t� 2 E for all t > 0:

A solid space E over I has the ideal property if for all f 2 MðIÞ and any g 2 E; from
j f j � jgj a.e. it follows that f 2 E: It is clear that F
 has the ideal property.

Let E be a solid space over I: We say that E satisfies the hypothesis ðHÞ if the
following condition holds:

ðn6Þ if the sequence ðAnÞ
1
n¼0 is such that An 2 L, mðAnÞ <1 and �An

2 E then
j�An

jE ! 1 as n ! 1:
Let E be a solid space. For all t > 0; we define

�EðtÞ :¼ j�½0;t�jE and �Eð1Þ ¼ lim
t!1

�EðtÞ:

It is clear that if E is a solid space that satisfies the hypothesis ðHÞ; then
�Eð1Þ ¼ 1; but the converse statement is not true. See for example [5, Example
1.1]. However if E is rearrangement invariant (see for example [14, p. 222] or [11] for
this class of spaces) and �Eð1Þ ¼ 1, then E satisfies the hypothesis ðHÞ: In this
paper we shall prove the following result.

Theorem 2.1. Let � : Rþ ! Rþ be a strictly increasing function, UI ¼ fUðt; sÞ :
t 	 s 2 Ig be a strongly measurable and exponentially bounded evolution family of

SOLID FUNCTION SPACES 127

https://doi.org/10.1017/S001708950201008X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950201008X


bounded linear operators acting on a Banach space X and E be a solid space over I. We
suppose that E has the ideal property, �Eð1Þ ¼ 1 and

j�½0;t�jE � j�½�;tþ��jE 8t 	 0; 8� 2 I: ð1Þ

Here �A is the characteristic function of the set A. If, for all x 2 X and every s 2 I;
� �Ux

s defines an element of the space E and, in addition, there exists M > 0 such that

sup
s2I

j� �Ux
s jE ¼ M <1 8x 2 X with jjxjj � 1 ð2Þ

then UI is uniformly exponentially stable; i.e., there exist N > 0 and 	 > 0 such that

jjUðt; sÞjj � Ne�	ðt�sÞ ðt 	 s 2 IÞ: ð3Þ

For E :¼ LpðRþ;CÞ the condition ð1Þ is verified with equality. The condition ð1Þ
is essential in the proof of Theorem 2.1; see [5, Example 3.2], but it may hold except
in the autonomous case [14, Theorem 3.1.5] and it may also hold except in the
periodic case [4, Theorem 4.5]. In the paper [1] the authors replaced the continuity
assumptions of solutions, by measurability.

3. Proof and consequences of Theorem 2.1.

Proof of Theorem 2.1. We shall prove the Theorem in two steps.
Step 1. Here we shall state that UI is uniformly bounded. Upon replacing � by

some multiple of itself we may assume that �ð1Þ ¼ 1: Also we may assume that
�ð0Þ ¼ 0: Let N be a positive integer such that j�½0;N�jE >M; t0 2 I; t 	 t0 þN and
x 2 X; jjxjj � 1: For t�N � � � t we have

e�!1N�½t�N;t�ðuÞjjUðt; t0Þxjj � e�!1ðt��Þ�½t�N;t�ðuÞjjUðt; �ÞjjjjUð�; t0Þxjj

� M1jjUðu; t0Þxjj 8u 	 t0:

Therefore in view of ðn4Þ it follows that:

j� � ð
1

M1e!1N
jjUðt; t0Þxjj�½t�N;t�ð�ÞÞjE � j� �Ux

t0
jE: ð4Þ

Moreover,

j�ð
1

M1e!1N
jjUðt; t0ÞxjjÞ�½0;N�ð�ÞjE � j�ð

1

M1e!1N
jjUðt; t0ÞxjjÞ�½t�N;t�ð�ÞjE

¼ j� � ð
1

M1e!1N
jjUðt; t0Þxjj�½t�N;t�ð�ÞÞjE:

Now from (2) and (4) we have

�ð
1

M1e!1N
jjUðt; t0ÞxjjÞj�½0;N�ð�ÞjE � M;

and so, using the fact that �ð1Þ ¼ 1, it follows that
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jjUðt; t0Þxjj � M1e
!1N for all x 2 X with jjxjj � 1:

Now it is not hard to see that there exists a constant K1 > 0 such that

sup
t	s2I

jjUðt; sÞjj ¼ K1 <1:

Step 2. We consider the function t 7!�ðtÞ : Rþ ! Rþ defined by

�ðtÞ ¼

Rt
0

�ðsÞds if t < 1,

�ðtÞ if t 	 1.

8<
:

It is clear that � is strictly increasing, �ð1Þ ¼ 1 and � � �: Moreover the inequality
(2) from Theorem 2.1 remains valid when we replace � by �: Let s 2 I; x 2 X;
jjxjj � 1 and t > s: For all u 	 s we have

�½s;t�ðuÞjjUðt; sÞxjj � K1�½s;t�ðuÞjjUðu; sÞxjj

� K1jjUðu; sÞxjj:

As before, it follows that

�ð
1

K1
jjUðt; sÞxjjÞ �

M

j�½0;t�s�jE
x 2 X; jjxjj � 1: ð5Þ

From (5) for t� s sufficiently large we have the inequality

jjUðt; sÞjj � K1�
�1
� M

j�½0;t�s�jE

�
:

The proof of Theorem 2.1 is complete if we use the following lemma.

Lemma 3.1. Let UI ¼ fUðt; sÞ : t 	 s 2 Ig be an exponentially bounded *-evolution
family of bounded linear operators on a Banach space X: If there exists a function
g : Rþ ! Rþ such that

inf
t>0

gðtÞ < 1 and jjUðt; sÞjj � gðt� sÞ; for all t 	 s 2 I;

then UI is uniformly exponentially stable; that is (3) holds.

For the proof of Lemma 3.1 we refer to [6, Lemma 4].

Corollary 3.2. Let � : Rþ ! Rþ be a non-decreasing function such that
�ðtÞ > 0 for all t > 0 and UI a strongly measurable and exponentially bounded evolu-
tion family of bounded linear operators acting on X: If there exists a K > 0 such that

sup
s2I

Z1

s

�ðjjUðt; sÞxjjÞdt ¼ K <1; 8x 2 X with jjxjj � 1;

then UI is uniformly exponentially stable.
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Proof. This follows from Theorem 2.1 on putting E ¼ L1ðI;RþÞ and using the
fact that � can be replaced by a function  which is strictly increasing on Rþ and
 � �: Such a function can be defined in the following manner.

Let �ð1Þ ¼ 1 and a ¼
R1
0

�ðtÞdt: The function

t 7! ðtÞ :¼

Rt
0

�ðsÞds if t � 1,

at
atþ1�a if t > 1.

8<
:

has the desired properties.

Theorem 3.3. Let � : Rþ ! Rþ be a non-decreasing function such that �ðtÞ > 0
for all t > 0; UI a strongly continuous and q-periodic evolution family of bounded lin-
ear operators on X, and E a solid space over Rþ that has the ideal property and satis-
fies the hypothesis ðHÞ: If � �Ux

0 defines an element of the space E, for all x 2 X; then
UI is uniformly exponentially stable.

Proof. It is sufficient to consider the case when I ¼ Rþ because if the restriction
U0

I of UI to the set fðt; sÞ : t 	 s 	 0g is uniformly exponentially stable then UI is
uniformly exponentially stable too. We shall modify the first step of Theorem 2.1.
The argument is standard, see [15, Theorem 4.4.1], [7, Theorem 2.1], [14, Theorem
2.2] or [5, Theorem 3.1]. In fact we can prove that if � �Ux

0 defines an element of the
space E for some x 2 X; jjxjj � 1 then

lim
t!1

jjUðt; 0Þxjj ¼ 0:

Indeed, if not, then

lim sup
t!1

jjUðt; 0Þxjj > 0

and there exists a � > 0 and a sequence ðtnÞ
1
n¼0 with t0 > 0 and tnþ1 � tn >

1
!1

such
that jjUðtn; 0Þxjj > � for all positive integers n: Let

Jn ¼ ½tn �
1

!1
; tn�;An ¼ [n

k¼0Jk and t 2 Jn:

We have

�ð�Þ � �ðjjUðtn; 0ÞxjjÞ � �ðM1ejjUðt; 0ÞxjjÞ:

Therefore, as � can be considered strictly increasing, it follows that

� � M1ejjUðt; 0Þxjj 8t 2 An; 8n 2 N:

Now in view of hypothesis ðHÞ we have

1 ¼ lim
n!1

�ð
�

M1e
Þj�An

ð�ÞjE � j� �Ux
0 jE;
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which is a contradiction. Using the linearity of Uðt; 0Þ and the uniform boundedness
principle it follows that there exists a constant K2 > 0 such that

sup
t	0

jjUðt; 0Þjj ¼ K2 <1:

Moreover in view of ðe4Þ and ðe5Þ it easily follows from, for example [5, Proof of
Theorem 3.1] that

sup
t	s	0

jjUðt; sÞjj � K2M1e
!1q <1:

From here the proof can be continued as in the proof of Theorem 2.1.

4. The dual results. A reformulation of an old result of E. A. Barbashin
[2, Theorem 5.1] is as follows.

Let URþ
be an exponentially bounded evolution family of bounded linear operators

on X: We suppose that the function

s 7!jjUðt; sÞjj : ½0; t� ! Rþ

is measurable, for all t > 0: If

sup
t	0

Zt

0

jjUðt; sÞjjds <1;

then URþ
is uniformly exponentially stable.

See also [13] and [3] for similar facts.

The following theorem is a generalization of the result above in the case I ¼ R:

Theorem 4.1. Let � : Rþ ! Rþ be a non-decreasing function such that �ðtÞ > 0
for all t > 0 and UR ¼ fUðt; sÞ : t 	 sg an exponentially bounded evolution family of
bounded linear operators on X: We assume that the function

s 7!jjUðt; sÞjj : ð�1; t� ! Rþ

is measurable, for all t 2 R: If

sup
t2R

Zt

�1

�ðjjUðt; sÞjjÞds <1;

then UR is uniformly exponentially stable.

Proof. Let X� be the dual space of X and Uðt; sÞ� the adjunct operator of Uðt; sÞ
for t 	 s: Let t 2 R; u ¼ �t and
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Vðs; uÞ :¼ Uð�u;�sÞ� 2 LðX�Þ:

We have

Zt

�1

�ðjjUðt; sÞjjÞds ¼

Zt

�1

�ðjjUðt; sÞ�jjÞds

¼

Z1

�t

�ðjjUðt;�sÞ�jjÞds

¼

Z1

u

�ðjjUð�u;�sÞ�jjÞds

¼

Z1

u

�ðjjVðs; uÞjjÞds:

It is clear that the family VR :¼ fVðs; uÞ : s 	 u 2 Rg is an exponentially bounded
evolution family of bounded linear operators on X� and, in addition, the function

s 7!jjVðs; uÞjj : ½u;1Þ ! Rþ

is measurable, for all u 2 R:
From the uniform variant of Corollary 3.2 it follows that VR is uniformly

exponentially stable. Hence UR is uniformly exponentially stable, too.

Theorem 4.2. Let � : Rþ ! Rþ be a non-decreasing function such that �ðtÞ > 0
for all t > 0, and UR a q-periodic evolution family of bounded linear operators on X:
We assume that the function

t 7!jjUð0;�tÞjj : ½0;1Þ ! Rþ

is measurable. If

Z1

0

�ðjjUð0;�tÞjjÞdt <1;

then UR is uniformly exponentially stable.

Proof. As in the proof of Theorem 4.1 it follows that

Z1

0

�ðjjVðt; 0ÞjjÞdt <1:

Now apply Theorem 3.3 for E ¼ L1ðRþÞ:
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Corollary 4.3. Let � and UR be as in Theorem 4.2. We shall assume that the
function

s 7!jjUðt; sÞjj : ½0; t� ! Rþ

is measurable on ½0; t� for all t > 0: If

sup
t	0

Zt

0

�ðjjUðt; sÞjjÞds ¼ N0 <1; ð6Þ

then UR is uniformly exponentially stable.

Proof. From (6) for t ¼ nq, n 2 N it follows that

N0 	 sup
n2N

Znq

0

�ðjjUðnq; sÞjjÞds ¼ sup
n2N

Znq

0

�ðjjUð0; s� nqÞjjÞds

¼ sup
n2N

Znq

0

�ðjjUð0;�tÞjjÞdt ¼

Z1

0

�ðjjUð0;�tÞjjÞdt:

Now we can apply Theorem 4.2 to complete the proof.

5. Nonuniform exponential stability. An evolution family UI ¼ fUðt; sÞ :
t 	 s 2 Ig of bounded linear operators on X is said to be exponentially stable if there
exists a constant 	 > 0 and a function N : I ! ð0;1Þ such that

jjUðt; sÞjj � NðsÞe�	ðt�sÞ 8t 	 s 2 I:

It is easy to see that the function Nð�Þ can be chosen to be non-decreasing on I: In
the case I ¼ Rþ we have the following Datko’s theorem version for non-uniform
exponential stability.

Theorem 5.1. A strongly continuous and exponentially bounded evolution family
URþ

¼ fUðt; sÞ : t 	 s 	 0g is exponentially stable if and only if there exists an 
 > 0
such that

Z1

s

e
tjjUðt; sÞxjjdt <1 8x 2 X and 8s 	 0:

For the proof of Theorem 5.1 and its other variants we refer to [8, Theorem 2.1],
[7, Theorem 2.2] or [5, Theorem 3.2]. The extension of Theorem 5.1 for the case
I ¼ R can be easily obtained. Moreover we have the following result.

Theorem 5.2. Let � : Rþ ! Rþ be a non-decreasing function such that �ðtÞ > 0,
for all t > 0, and UI a strongly measurable and exponentially bounded evolution family
of bounded linear operators on X: If there exists an 
 > 0 such that
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Z1

s

�ðe
tjjUðt; sÞxjjÞdt <1 8s 2 I and 8x 2 X;

then UI is exponentially stable.
The proof of Theorem 5.2 follows as in [7, Theorem 2.2]. The Barbashin’s

theorem version for exponential stability is as follows.

Theorem 5.3. Let � : Rþ ! Rþ be a non-decreasing function such that �ðtÞ > 0
for all t > 0 and UR an exponentially bounded evolution family of bounded linear
operators on X: We assume that the function

s 7!jjUðt; sÞjj : ð�1; t� ! Rþ

is measurable, for all t 2 R: If there exists an 
 > 0 such that

Zt

�1

�ðe�
sjjUðt; sÞjjÞds <1 8t 2 R;

then UR is exponentially stable.

Proof. As in the Proof of Theorem 4.1, it follows that the family VR :¼ fVðs; uÞ :
s 	 u 2 Rg; where Vðs; uÞ :¼ Uð�u;�sÞ�; is exponentially stable; that is, there exist
	 > 0 and a function N : R ! ð0;1Þ such that

jjVðs; uÞjj � NðuÞe�	ðs�uÞ 8s 	 u 2 R:

Let 
 :¼ �u 	 � :¼ �s: Then

jjUð
; �Þjj � Nð�
Þe�	ð
��Þ � Nð��Þe�	ð
��Þ;

that is, UR is exponentially stable.
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