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1. Introduction. A distributive p-algebra is an algebra (L; v, A,*,0, 1) for which
(L,v,A,0,1) is a bounded distributive lattice and * is a unary operation on L such that
anx=0 if and only if x=<a* (i.e. a pseudocomplementation). A distributive double
p-algebra is an algebra (L;v, A,*,*,0, 1) in which the deletion of * gives a distributive
p-algebra and the deletion of * gives a dual distributive p-algebra, that is avx =1 if and
only if x=a*.

In the following it will be shown that for any finite monoid M there exists a finite
listributive double p-algebra L whose endomorphism monoid End(L) is isomorphic to M.

The general question of whether for any given monoid M there exists a distributive
double p-algebra L such that End(L)= M remains open. However, it will be shown that
there exist rigid distributive double p-algebras of arbitrarily large cardinality. (An algebra
L is rigid if and only if |[End(L)|=1.)

2. Preliminaries. A directed graph is a pair (X, R) in which R is a set of ordered
pairs of distinct elements of X. A mapping f: X — X’ for which (f(x,), f(x,)) € R’ for every
(x,, x;)€ R is called a compatible mapping of the directed graph (X, R) into the directed
graph (X', R').

An ordered space (S, 7, <) is a set S, with a topology 7, and a partial order relation =.
A subset X of a partially ordered set S is decreasing if and only if, for all xe X, y=<x
implies that y € X; increasing is defined dually. An ordered space (S, 1, =) is totally order
disconnected if and only if, for x, ye S, x# y implies that there exists a clopen decreasing
set X such that xe X and y¢ X. If S,, S, are partially ordered sets then a mapping
f:8,— S, is order preserving if and only if for x, ye S;, x =<y implies that f(x)=<f(y).

H. A. Priestley has used ordered spaces to give a duality theory for the category of
bounded distributive lattices.

THeoreM 1 (H. A. Priestley [8]). The category of (0, 1)-distributive lattices with
(0, 1)-lattice homomorphisms is dual (that is, isomorphic under a contravariant functor) to
the category of compact totally order disconnected spaces with continuous order preserving
maps.

Each (0, 1)-distributive lattice L is isomorphic to the lattice of clopen decreasing
subsets of its dual space P(L).

Let S be a poset; for xe S let Min(x)={y|y=x and y is minimal} and Max(x) =
{y|y=x and y is maximal}. For X<, let Max(X)= U{Max(x)|xe€ X}; Min(X) is
defined dually. The Priestley duality can be used to recognize those (0, 1)-distributive
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lattices possessing pseudocomplements and dual pseudocomplements and to characterize
their homomorphisms as distributive double p-algebras; the duality for distributive double
p-algebras follows from H. A. Priestley [10].

ProrostTion 2. Let $(L) be a compact totally order disconnected space.

(i) L is a distributive double p-algebra if and only if for every clopen decreasing set X,
[X) is open in P(L), and for every clopen increasing set Y, (Y] is open in ¥(L).

(ii) Let ¢:L,— L, be a (0, 1)-lattice homomorphism between the distributive double
p-algebras L, and L,. Then ¢ is a double p-homomorphism if and only if the corresponding
continuous order preserving map f:P(L,)— F(L,) satisfies f(Min(x))=Min(f(x)) and
f(Max(x))=Max(f(x)) for all xe F(L,).

Observe that if L is a distributive double p-algebra, then each clopen decreasing set
in (L) corresponds to an element of the algebra. Let X be a clopen decreasing subset of
P(L), then X*=FL(L)\[X) and X* = (F(L)\ X].

Further information on distributive double p-algebras may be found in R. Beazer [1]
and T. Katriiidk [5]; the duality is considered in B. A. Davey [2].

We would like to acknowledge stimulating conversations with R. Beazer who also
suggested an investigation of distributive double p-algebras to us.

3. Representation of finite monoids. Let (X, R) be a finite directed graph for which
both the domain and the range of R are equal to X. We will define a finite partially
ordered set P(X, R) associated with (X, R).

Let X,, X, be two distinct copies of X; for x € X, the corresponding element of X;

will be denoted by x;;. For i =0, ..., 8, choose new elements a;. For i =0,...,7, choose
~ new elements b, Set A ={a,,...,ag} and B={b,, ..., b;}. The domain of P(X, R) is the
set
AUBUXURUX,UX,.

A partial ordering relation is defined over this set as the transitive closure of the following
relation:

ay<by, bo>ay,...,a,<b,b,>au:1,...,b;>as,
x;<bgand b; for xeX|
(x,y)<b, and b; for (x,y)eR,
as and ag<x for xeX,
a; and ag<xg for xeX,
x and x<x; for xeX|
x and y<{(x,y) for (x,y)eR.

It is a matter of checking to see that the transitive closure of the above relation is indeed a
partial ordering; intuitively, the four sets X, X, X;, and R are added to a fence with a
prescribed order relation between them.
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Endowed with the trivial topology the finite partially ordered set P(X, R} is the dual
space of a finite distributive lattice, and hence of a finite distributive double p-algebra. Let
DP(X, R) denote the distributive double p-algebra whose dual space is P(X, R). Using
Proposition 2 we now investigate the endomorphisms of DP(X, R).

LemMa 1. Let f: P(X, R)— P(X, R) be the dual of an endomorphism of DP(X, R).
Then f(a)=a for a€ A and f(b)=b for be B.

Proof. By definition, Min(P(X, R)) = A and Max(P(X, R))= B. Thus, by Proposition
2, f(A)= A and f(B)cB. The poset P(X,R) is connected (i.e. for x,yeP(X, R),
there exist x;, i=0,...,n, such that x=xp, Xo=<X;, X;=Xy,..., X3 SXpj41, Xpju1 =
XaG+1) - - - » Xa = ¥). The connectivity together with Proposition 2 can be used to show that
A cf(A) and B c f(B). Since P(X, R) is finite the restrictions of f to the sets A and B are
bijections. Thus, |Max(a)| = |Max(f(a))| for a€ A and |Min(b)| = Min(f(b))| for be B. In
particular, since |Max(ao)|=1 and a, is the only element of A with this property, we
deduce that f(a,) = a,. The mapping f is order preserving. Thus, f(b,) € Max(ay); that is
f(bo) = bo. In consequence, f(a,)€Min(b,)={a,, as, as, a,, as}. However, |Max(a,)|=2
and a, is singled out from Min(b,) by this property. Whence, f(a;)=a,. By similar
reasoning, we inductively show that first f(b,) = b, and then f(a;,,)=a;,, fori=1,...,7.

LemMA 2. Let f:P(X, R)—P(X, R) be the dual of an endomorphism of DP(X, R).
Then x € R implies f(x) € R, x € X implies f(x)€ X, and, fori=0, 1, x € X, implies f(x)e X.

Proof. For xe P(X, R), xe R if and only if x<b,, x<b;, as=x, as=x, a,<x, and
ag=<x. The mapping f is order preserving. Thus, by Lemma 1, f(x)e R.
Similarly, if xe X then f(x)e X and, for i=0,1 if xe X, then f(x)e X..

LemMa 3. Let f: P(X, R)— P(X, R) be the dual of an endomorphism of DP(X, R).
Then the restriction of f to X defines a compatible mapping of the directed graph (X, R) into
itself.

Proof. By Lemma 2, x € X implies that f(x) € X. Thus f is well defined on the vertex
set of the directed graph (X, R).
It remains to be shown that if (x, y)e R then (f(x), f(y))€ R. First we show that if
x € X then f(xq)) = (f(x)))- By definition, x < x,). Thus, f(x) < f(x,) € X;; that is f(x)) =
(f(x))q1y. Similarly, from xy> x, we deduce that f(xg,) = (f(x))qy> f(xq) € X,o. Hence,
" f(xy) =(f(x))). I {x, y)€ R then x, Yoy <{x, y) in P(X, R). By Lemma 2, f(x) € X, f(yw) =
(f(y)oy€ Xo, and f((x,y))=(x',y)eR for some ordered pair (x’,y’). However,
fx), (F(y)@y<(x', y') if and only if x'= f(x) and y’'= f(y). We conclude that (f(x), f(y))e
R.

Lemma 4. Let f:(X, R)— (X, R) be a compatible mapping of the directed graph (X, R).
Then f has a unique extension to a mapping of P(X, R) into itself which is the dual of an
endomorphism of DP(X, R).

Proof. Using Lemma 1 and Lemma 2, we extend f to a mapping of P(X, R) into itself
in the only way possible: f(a)=a for ac A and f(b)=b for beB. For i=0,1, set
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f(x@) = (f(x))q. Finally, for (x, y)e R, let f((x, y))=(f(x), f(y)); since f is a compatible
mapping this is always possible. The extended mapping f is continuous (since P(X, R) is
finite), order preserving, and satisfies condition (ii) of Proposition 2.

Lemma 3 and Lemma 4 combine to the following:

LemMma S. Let (X, R) be a finite directed graph and DP(X,'R) the associated finite
distributive double p-algebra. Then End(DP(X, R)) is dually isomorphic to End(X, R).

It follows from [4] or [12] that for any finite monoid M there exist infinitely many
non-isomorphic finite directed graphs (whose vertices are both elements of the domain
and the range of the set of edges) for each of which the endomorphism monoid of
compatible mappings is isomorphic to M. We conclude:

THEOREM 3. Let M be a finite monoid. There exist infinitely many non-isomorphic finite
distributive double p-algebras L,, i=0,1,2,... such that End(L;)=M, i=0,1,2,... .

4. Rigid distributive double p-algebras. Let L be a chain with a greatest and a least
element. Then C= (L) is a compact totally order disconnected space; C is totally
ordered by the partial order on the space. For i=0, 1, choose topological spaces C;
homeomorphic to C. If f: C— C,; is a homeomorphism, let c;, denote f(c) for ce C; for
DcC, let D, ={d | d € D}. Since C, C,, and C, are compact totally disconnected spaces
the disjoint union S(C) is also a compact totally disconnected space. We define a partial
order on S(C) in the following manner:

for c=d in C cp<c=d<dg.

Observe that C,=Min(S(C)) and C, = Max(S(C)).
LEMMA 6. The space S(C) is the dual of a distributive double p-algebra.

Proof. Let x, y € S(C) with x#y. The subspaces C, C, and C, are each totally order
disconnected. Further, C, and C, are totally unordered. Thus, if either xe C, or ye C, we
may choose a clopen decreasing set X < S(C) such that xe X and y# X. Let us suppose
that x¢ Cy and y€ C;. If xe S(C), then x€{c, cq), ¢} for some ceC; set x'=c. By
assumption x'2 y’. Thus there exists a clopen decreasing set X'< C such that x'€ X' and
y'€ X' It follows that x € X and y€ X, for the clopen decreasing set X = X'U X', U X'(y).
We conclude that S(C) is totally order disconnected.

It remains to be shown that the compact totally order disconnected space S(C) satisfies
the condition of Proposition 2(i). Let X be a clopen decreasing set. If XN C# J, then
[X)=XUCUC, is an open set. Alternatively, if XN C= O then X = Dy, for some open
set D < C. However, the chain L is a distributive double p-algebra; thus, [D) N C is open.
Hence [X)=XU[D) is open in S(C). A similar argument shows that if X is a clopen
increasing set then (X] is open. The proof is complete.
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By compactness, the chain C has a minimum element a and a maximum element b.

Lemma 7. Let f:S(C)— S(C) be the dual of a double p-homomorphism. If the
minimum element of L has no cover and the maximum element of L is not a cover, then

f(C U {a(O)s b(l)}) =CU {a(0)1 b(l)}'

Proof. The poset S(C) is connected. Thus, for i =0, 1, f(C)=C,. Let f(c)e C,, for
some ce C. Then f((c])={f(c)}; in particular, f(a)= f(c). However, C,=Max(a). Thus,
f(C)) =Max(f(a)) = Max(f(c)). If f(c) # ai, then ay, €Max(f(c)) = f(Cy); that s, Cy & f(Cy)
which is a contradiction. Hence, f(c) = a(,). Similarly, if f(c)e C,, for some ce C, then
f(c) = bgyy. We conclude that f(CU{ay, bay}) € CU{ap), bay}-

Choose ce C such that c# a, b. Then ¢, = f(d,) for some de C. Since d=d,,, it
follows that f(d) = f(d)) = cu). As c# b, this implies that f(d) =< c. Because c# a, if f(d)<c
then f(d) € (c]\{c, ¢(}- The element c, is minimal and less than c,, = f(d;,). Hence there
exists e < d, such that f(e) = cq,. By definition, d;, covers d; that is, e = d. Thus f(e) is an
element of the decreasing set (c]\{c, ¢} This contradiction shows that f(d)=c. We
deduce that C\{a, b}< f(C). Since the minimal element of L has no cover and the
maximal element of L is not a cover, a and b are limit points of the space $(L). The
function f is continuous; thus, {a, b}< f(C). Further, f(aq)=aq, and f(bq))=bu). In
COﬂCIUSiOH, f(CU {a(o), b(l)}) = CU{a(o), b(l)}'

LemMA 8. Let f: S(C)— S(C) be the dual of a double p-homomorphism. If f | C=id
then f=id.

Proof. Suppose that f(c,) # ¢y for some ce C. Thus f(c,)) = d;, for some deC.
Since f is order preserving, ¢ <d; in particular, d, % c. However, d, <d,,, implies that
there exists e <c(, such that f(e)=dq). As e<c,, it follows that e=<c. Hence, dyg =
f(e)=f(c)= c, which is a contradiction. Thus, f(c(;)) = ¢, for ¢ € C. Similarly, f(c.) = ¢,
for ce C. The proof is complete.

The subspace CU{a,, b} of S(C) is a compact totally order disconnected space and
is dual to the lattice L™ obtained by adding a new zero and unit to L. By Lemma 7, if
f:S(C)— S(C) is the dual of a double p-homomorphism, then the restriction of f to the
subspace CU{a,), by} is a continuous order preserving map of this space onto itself. By
H. A. Priestley (8], f is dual to a (0, 1)-lattice embedding of L* into itself. If. L is
stationary (i.e. the only embedding of L into itself is the identity), then the restriction of f
to this subspace is the identity. Consequently, by Lemma 8, f is the identity on S(C). Thus
if L is stationary then the endomorphism monoid of the distributive double p-algebra
corresponding to S(C) has only the identity mapping (i.e. the algebra is rigid). In B.
Dushnik and E. W. Miller [3], it is shown that there are 2>*° non-isomorphic stationary
chains of car¢ iality 2%. Under the assumption of the Generalized Continuum
Hypothesis, ' Rotman [11] showed that there are X, ., non-isomorphic stationary chains
of cardinality R, for each successor cardinal X,,. A. G. Pinus [6] extended this result to the
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case when X, is singular (cf. [7]). Combining the above we obtain:

TueoreM 4. (G.C.H). If R, is an uncountable cardinal that is either a successor
cardinal or a singular cardinal, then there exist N,,, non-isomorphic rigid distributive
double p-algebras.

In general, finite distributive double p-algebras are better understood than infinite
ones; a pattern that is repeated here. It would be of interest to know if arbitrary monoids
may be represented as endomorphism monoids of distributive double p-algebras; it is felt
that a positive answer to this would add to an understanding of endomorphisms of
distributive lattices.
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