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OSCILLATION CRITERIA FOR QUASILINEAR 
EQUATIONS 

W. ALLEGRETTO 

1. In t roduc t ion . Several authors have recently considered the problem of 
establishing sufficient criteria to guarantee the oscillation or non-oscillation of 
all solutions of a second order elliptic equation or system. We mention in 
particular the papers of C. A. Swanson, [15; 16], K. Kreith [9], Kreith and 
Travis [10], Noussair and Swanson [13], Allegretto and Swanson [3], Allegretto 
and Erbe [2] and the references therein. 

However, all of the criteria obtained in the above mentioned papers, appear 
to stem from a linear comparison theorem, and therefore can only be applied 
to nonlinear operators which can be "majorized" by linear oscillatory operators. 
Consequently, the type of nonlinear operator which can be considered is 
severely restricted. 

The main purpose of this paper is to obtain a description of the oscillatory 
behaviour of the solutions of the scalar equation =Sf u — f in a domain 12 for a 
much wider class of quasilinear operators «if than that previously considered. 
In particular, we shall show that subject to certain conditions on the coefficients 
of J2?, on Q and on / , either u oscillates or its minimum decays in a specified 
fashion. Since in the cases previously considered it was always assumed t h a t / 
was either zero or of fixed sign, related to that of u, some of our results are new 
even in the linear case. As another departure from most previous considera­
tions, we will establish results which will not depend on a suitable comparison 
theorem or on another extension of the Swanson-Picone identity, although these 
concepts are used to obtain additional results. The primary tools that we shall 
use are some simple considerations involving the maximum principle and some 
results from ordinary differential equations. 

Finally, we remark that simplicity of presentation and relation to known 
results were considered in the formulations of our theorems. Consequently the 
criteria obtained are not, by and large, the most general possible with the 
methods used. For example, by merely complicating the presentation, analo­
gous theorems can be obtained for solutions in various Sobolev spaces, for 
operators whose coefficients satisfy weaker conditions than those we shall 
state, for special systems of first order equations, etc. We also note, on the 
same argument, that the introduction of Green's functions, or of eigenvalues 
or of any other quantity whose calculation could present as much (or more) 
difficulty as the original problem were deliberately avoided. 

Received February 26, 1973 and in revised form, July 24, 1973. 

931 

https://doi.org/10.4153/CJM-1974-088-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-088-0


932 W. ALLEGRETTO 

2. Some preliminary considerations. Let 12 denote a domain of n-
dimensional Euclidean space R*\ and let C2(12) denote the space of real valued, 
twice continuously differentiable functions defined in 12. As is usual, we denote 
by x = (xi, . . . xn) the points of Rn and differentiation with respect to xt by 
Dt for i = 1, . . . n. We consider the elliptic operator ££ defined in C2(12) by: 

(1) S£u(x) = Lu{x) + d(x, T(u)(x)) 

where L is a quasilinear operator given by: 

n n 

(2) Lu(x) = ^ aij(x)DiDju(x) + 2 ^ bj(x)DjU(x) — e(x,u(x)). 

The coefficients a a, bj are assumed real, continuous and the matrix (atj(x)) 
symmetric uniformly positive definite in 12. We shall assume that T is an 
operator from C2(12) to C(12) and that d, e denote continuous maps from 12 X R 
to R with (at least) the following properties: 

(i) d(x, £) is non-decreasing in £ for every x £ 12; 
(ii) d(x, T(— f)(x)) = —d(x,T(f)(x)) and e(x, — £) = —e(x,£) for all 

f£ C2(12) and (*, £) G 12 X R; 
(iii) there is a non-negative continuous function pipe) and a number 5 ^ 0 

such that if f è 0 then e(x, £) g £(*)[S + £] for all x £ 12. 
Note that the above conditions are satisfied by the functions: e = 0, 

r = identity, d(x, £) = 2*=i Q_i(x)£yi with g*(x) ^ 0 and yt odd integers for 
i = 1, . . . , k. Consequently, the operator ££ includes as special cases those 
operators whose expression involves a polynomial in the function, if, for 
example, the polynomial coefficients are non-negative and only odd powers of 
the function are involved. 

Let Î2 denote the closure of 12 in the topology induced by the standard one 
point compactification of Kn. Given a subset T of 12 and a function u £ C2(12), 
we define u to be oscillatory at T if and only if u has at least one zero in N C\ 12, 
for any neighbourhood N of T. If 12 is unbounded and we set T = {co}, then 
the above definition reduces to the usual definition of oscillation (at oo ). 

Even if we restrict ourselves to the set of solutions of the equation *£u = 0 
in 12, it is clear that some solutions may oscillate at 512 while others do not. 
For example, the equation: 

sp _ 2 y d U 0 ( -2y OU] -2y ~ 
J£u = e

 u~-2 + — \e -r-) + e uu = 0 
dx dy \ ay/ 

has, in particular, solutions u = sin x, v = ey, where we take 12 = R2, T = {&>}. 
We shall obtain criteria which will ensure that this cannot happen. 

The following notation will be used throughout in the sequel: given any 
function h mapping Kn to R + we shall denote by Sa,n the surface {x\h(x) = a) ; 
by !2a>ft the set 12 C\ Sa,n and by Qa>/3,» the set 12 Pi {x\a <h(x)</3\.Iff is any 
function defined in 12 then we will set mh(f,a) = inî{f(x)\x £ Qa,h}- If the 
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function h which is used is obvious from the context, we shall drop the subscript 
h and write Sa for Sa,h, 12a for fia>A, etc. 

The following lemma and related corollary will be useful in what follows. 
Since these are standard results (similar ones were established, for example, by 
Agmon in [1, p. 16] for the case k ^ 0) we merely sketch the proofs: 

LEMMA 1. The nonlinear boundary value problem: 

y" — a\y'\ = k for a g r ^ fi 

(3) y (a) = m (a) ^ 0 

yifi) = o 

where a, k are continuous and a is non-negative, has a unique solution y and 

(3') y(r) = m (a) 
Iexpl_IaJ 
c r f-i 
I exp I I a \ 

*s a L *)a J 

+ G[-k] 

for some function a, dependent on y, such that \a\ = a, where G is the Green's 
Operator associated with the problem w" — âwf = k and zero boundary conditions. 

Proof. The equation in (3) satisfies a Nagumo condition [7, p. 143] and 
suitable lower and upper solutions for (3) can easily be constructed. Con­
sequently, it is known [7, p. 144] that there is a C2 solution y to the boundary 
value problem (3). That this solution is unique follows from a small variation 
of the maximum principle. Finally, we set a = a sign (yf) to obtain (3')- (Note 
that a is, at least, Lebesque integrable.) 

The usefulness of Lemma 1 comes from the fact that the kernel P of G can 
be obtained explicitly. I t is: 

p(i, i) = 

Ï (*)*(*) W® 

fora ^ / ^ £ g jS 

f or a g £ g I ^ fi 

where 

o(l) = I exp â p 

g(l) = J exp [ £ âjdt 

W(l) = exp I J â\f exp I J a Ut. 
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934 W. ALLEGRETTO 

COROLLARY 1. Let y be the solution of Problem (3) and further assume that k is 
non-negative and that 

pro pro r p% "j 

m (a) ^ I I exp I a\k(£)d£dt for allr0 € (a, 0). 

Then y' ^ 0 in (a, /3) and therefore a = —a. 

Proof. I t is obvious that in this case y'(a) ^ 0 and that y' can change sign 
at most once in (a, ft). If y' is positive somewhere in (a, /3) then there is a 
point r0 G (a, /3) such that y (r0) = 0, and 3/ > 0 in (r0l /3). Clearly 3; has a 
minimum at r0 and a = —a to the left of r0. Consequently, 

y (a) = - j jfe(*)exp J a Lfe 

and therefore, 

pro pro r /»£ ~| 

y(/3) > y(r0) = - J J exp I J a\ k(£)d£dt + m(a) ^ 0. 

The contradiction establishes the corollary. 

Oscillation criteria. Assume now that there is a C2 function h mapping 
a subdomain of Kn onto R + and with the following properties: 

(i) grad(^) is never zero; 
(ii) if a, a" G R + and a1 < a!! then the set 

U Sa 
a '<.a<ia ' ' 

is a bounded domain with boundary Sa' W Sa>>\ 
(iii) 0 admits the representation: 

12 = U Sa 
a>ao 

for some a0 G R+, and au-, 6̂ -, p G C(Î2ao, 0) for any /3 ^ a0, and i, 7 = 1, . . . , n. 
Obviously, for any given 12 there may be many such functions, and each one 

will give rise to oscillation criteria. 
We shall obtain a description of the oscillatory behaviour of u at T = d!2 — 

SaQ in terms of the behaviour of u on Sa for a large. Note that if 12 is unbounded 
then {00 } G T. It is useful to introduce the following notation: 

a(r) = sup 

+ 
,{ £ atjWDiDMx) + 2 X) b^Djhix) 

3=1 

2 YJ aij(x)Dip(x)p 1(x) 'Djh(x)\ • ( ^ aij(x)Dih(x)Djh(x)j x( 
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where p denotes any positive function such that 

n n 

Y, ciiPiDjP + 2 X) bjDjP ^ pp. 

in Œ. 
For definiteness and convenience we choose the function p given by: p(x) = 

w(h(x)) where; 

w(r) = exp [ j j £(£) exp [ j <njd&tj 

PiU) = sup 

Y cLij(x)Dih (x)Djh (x) 
L-l,j=:l 

aitt) = sup j 

We remark that if £ = 0, then w = 1. 

LEMMA 2. Le£ Lẑ  ^ / iw Q«f/s aizJ assume u is non-negative in 12a^ and 

/ € C(£2afjs). Then, for all x 6 12a^, w satisfies the inequality: 

\ f exp ( f a)dt | 

( l e x p U 5 r )+ 
where (i) a is a function dependent on / , a, /3 awd £/^ coefficients of L such that 
\a(r)\ = a(r), 

!/(*)! +fi/>0 * 0 I - 1 / N (ii) / * 0 ) = sup ) — 

(iii) G is the inverse operator associated with the problem 

y" - ay' = / * a < r < 0 

?(«) = y (18) = 0. 

Proof. Let L^ ^ / in Q,a^ and ^ ^ 0 in Q,a^. By assumption, this implies 

that e(x, u(x)) ^ ^(x)[ô + u(x)] in fiat/3. Let A denote the operator defined 

in C2(Œ) by the expression 

(5) 
n n I n \ 

A(4>) = E atjD(Dj<t> + 2 £ I Z atjDjP • p-1 + bt)Dt<l>. 
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936 W. ALLEGRETTO 

Following Protter and Weinberger [14, p. 90], we introduce the function v 
denned by: v(x) = u(x)p~1(x). A trivial calculation shows that v satisfies in 
Oaj3 the inequality 

A(v) ^ (\f\+p)P-1 

and the boundary conditions: 

m(v,a) = m(u, a)ixr1(a); rn(v, fi) là 0. 

A lower bound in Œa>/3 can be obtained for v by classical procedures (see, for 
example, Protter and Weinberger [14, p. 134] for analogous arguments): let y 
denote the solution of the problem 

( 6 ) y"-a\y'\=f*, a<r<p 
y M — m(u1a)w~1(a); y(j3) = 0 

whose existence is guaranteed by Lemma 1. The function y(h(x)) satisfies for 
x 6 12a>/3 (and consequently a < h(x) < /3) the inequality: 

n 

A(y(h(-)))(x) ^ E ailDih{x)Djh{x){y"{h{x)) - a\y'{h{x))\} 
à, . 7 = 1 

^p-\x){\f\(x)+ôp(x)}. 

Since diïatp is given by Sa \J Sp, if x £ dŒa>/3 then y(h(x)) ^ v{x). By the Hopf 
maximum principle it follows that v(x) ^ y(h(x)) and consequently, u(x) ^ 
p(x)y(h(x))+ in Qatp. Since by Lemma 1 the solution of (6) is given by the 
expression in the large brackets on the right hand side of inequality (4), the 
conclusion of Lemma 2 follows. 

COROLLARY 2. Let the conditions of Lemma 2 hold. Then for x Ç S2aj3, 

u(x) ^ \m(ii, oi)w~x(a) — I I I exp ( I a))f*(t)dtc 

I exp I à \dt 

Iexp L l *r 
Proof. We note that, employing the previously introduced notation, 

and the estimate is immediate. 

We can now state our first Theorem: 
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THEOREM 1. Let££u = f in®, and define 

I I e x p l_- la\dL 

Further assume that u(x0) ^ v(x0) implies (Tu)(x0) ^ (Tv)(x0). Finally, 
assume that there is a positive constant c such that: 

(i) I exp — I a \z(t)dt = + co 

(ii) J J exp J a \z(t)dtd£ = +co 

for any positive constant a ^ a0, where 

H(r) = w(r) I exp — I a \dt, if I < co 

= w(r), if I = + 0 0 

, . \d(-,T(cH(h))) r - i . . 
z(r) = m 1— — — , r\w (r). 

and 

22 CLijDihDjh 

Then either u oscillates at T, or for all a sufficiently large, 

m(\u\,a) £w(a) £ [ j^xP (j'y^jf*^ 

(7) + w(a)c I exp I —a \dt, if I < co 

m(\u\, a) g w{a) I I exp ( J a)d£ u*(t)dt + cw(a), if I = oo. 

where f * is as defined in Lemma 2. 

Proof. \iu does not oscillate at T and if (7) is not valid for all a sufficiently-
large, then we can choose a value «i for which (7) fails and we may assume, 
without loss of generality, that u(x) is positive if h(x) ^ «i, and satisfies 
Lu S I / | for such x. Next, we note that, for all /3 > ai, 

f Ç exp I f a\f*(i;)dW= f P exp| f a\f*(t)d^dt. 

Therefore, since ai was chosen so that (7) is not valid, the condition of Corollary 
1 is satisfied and we can set a = —a in Lemmas 1, 2 and Corollary 2. Conse-
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quently, for any (3 > ai we find that in Çlaijp: 

u(x) ^ {ni(u,ai)w 1(«i) " " I I I e x P I a)f*(t)dti 

J exp | —a\dt 

£explL-ar 
X P W 

Letting j3 approach +00 yields: 

u(x) ^ cpix) I exp I — a \dt, if I < 00 

^ c • p(x), if / = + °o 

for all x such that /z(x) ^ «i. From the monotonicity properties of d and 7\ 
it follows that, for x Ç {x\h(x) ^ «1}, ^(x) satisfies the inequality: 

Lu ^ l / l -<*(*, T(cH)(x)). 

Again setting u(x) = u(x)p~1(x) we find that v(x) satisfies in \x\h(x) ^ 0^}, 
the inequality: 

.4 GO ^ i(\f\+àp) -d(.,T(cH).)}p-i 

where A is the operator defined by (5). Let 0 again denote any scalar larger 
than a\. Repeating the argument of Lemma 2, we conclude that in Î2ai>/S u 
satisfies the inequality 

f r f ' 1 
7T I e x p j I —a 

I /i(ft(*)) + *hM *=-^ -J (8) u(x)^ p(x) 

exp - a 
> p{x)fi{h{x)) 

(9) 

where 7r is nonnegative and /1 is the solution of the problem: 

/ i " - a | / i ' l = - « ( 0 , « < r < 0 

/ i ( « i ) = / i ( / 3 ) = 0 

(and, consequently, fi(h(x)) satisfies .4 (/1 (&(•))) ^ — d(-, T(cH)-)p~l in 
&ai,/3). 

We observe that the right hand side of (9) is nonpositive and conclude that 
fi (pu) ^ 0 a n d / / changes sign precisely once in (ai, /3). Let r0(/3) denote a 
point such t h a t / / ( r ) è 0 for r G («i, r0(/3)) and/x^r) < 0 for r G (r0(/3), j8). 
A trivial calculation shows that: 

) J J e x p L " J aJzfé)d**' forai =r = r°^) 
fi(r) = \ P ^ r /•«' 1 

/ exp - a \z(t)d&t, for ro(0) ^ r ^ . 
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Consequently, 

J
^TQ(B) /.roOS) r nk "I /»0 /•* I" / . j 1 

exp - a s(£)d#/ = exp - a s(f)J&ft. 
ai «J « L «/* J «Jro(0) ^ro(|8) L */£ J 

This implies that l im^^ r0(/3) = +00, since otherwise there would exist a 
sequence {/3j and a constant 0 such that limn_>œ{r0(fti)} = 0 and limn^œ{/3w} = 
+ 00. In such a case, substituting /3W for fi in equation (10) would lead to a 
contradiction, since the left side of (10) would remain bounded, whereas the 
right side would diverge (by condition (ii)) as n —» +00. Letting /5 approach 
+00, and choosing a fixed r > on we note that: 

J exp [ - J ^ ajzfàd&t 

={nexp [ si 44 {r"exp [ - n 4^4 
Since the second integral is divergent by condition (i), we conclude tha t / i ( r ) 
can be made arbitrarily large by choosing sufficiently large values of ($. This 
contradicts inequality (8) and establishes the theorem. 

Despite their similarity, conditions (i) and (ii) are independent of each 
other. However condition (i) will imply condition (ii) under very general 
conditions on the decay of 

exp [-£•] 
and the growth of z. 

It is clear from the proof of Theorem 1 that if the integrals in condition (i), 
(ii) diverge for all positive constants c, then we can replace inequality (7) in 
Theorem 1 by: 

(7') m(\u\,a) ^w{a) £ [ £ exp ( £ a}dl\f*{t)dt 

both for I < 00 and I = +00. 
We remark that conditions (i), (ii) are not sufficient for oscillation of u, so 

that we cannot change the conclusion of Theorem 1 to read "u oscillates" 
(unless, of course, / * = 0). We illustrate this remark by considering the 
example: 

Au + Ai = e" (l - ~r + A 

in the outside of a sphere in R3. We note that all the conditions of Theorem 1 
are satisfied but yet the equation has the non-oscillatory solution u = e~r. 
However we can conclude the following: 
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COROLLARY 3. Let the conditions of Theorem 1 holdy except assume that the 
integrals in (i), (ii) diverge for all positive constants c, and that the right hand side 
of (7') converges to zero as a-* +co . Further assume that u has a continuous 
extension to Q,. Then u has a zero in Y. 

Several other corollaries can now be stated by specializing d, T, e. As an 
example, let T = identity, e(x, £) = p(x)p° and 

where p(x), qt(x) are non-negative, yt are the ratio of two odd positive integers 
for i = 0, . . . , n and 0 < 70 ^ 1. Note that if £ is non-negative then 

e(x, f) ^ £(x)[7o(7°-1)7° - To^0"^ + ?]. 

Theorem 1 is thus clearly applicable, and we have: 

COROLLARY 4. Let 

n n k 

Sen = £ atjDiDjU + 2 £ 1>PP - puyo + X) q<Uyi = / 

where: 

X exp — I a \dt = + 00 , 

(H) X X e x p[-Xa] 
x S m ( g . ^ • «) »-w«>** = + °° • 

Jï, w are as given in Theorem 1, and ô = 70^0-1)70 _ <yo(70-1). Then either 11 
oscillates at Y or, for all a sufficiently large, satisfies (7')-

COROLLARY 5. Let the conditions of Corollary 4 hold, but further assume that 
f == 0 and hp = 0. Then all solutions oscillate. 

Similar theorems can be stated for the case where T is a shift operator by 
making a small change in the proof of Theorem 1. 

COROLLARY 6. Let Tu{x) = u(j(x)) where T is a regular function mapping 
9, to 0 and taking the set [x\h(x) ^ a] to the set {x\h(x) ^ A (a)} for all a suffi-
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ciently large, where lima^+ooX(a) = + 0 0 - Let 

n n 

f£u{x) = ^2 aij(x)DiDju(x) + 2 ^ bj(x)Dju(x) 
i,j=l j=l 

+ qo(x)u(r(x)) = f(x) 

where qG ^ 0 and: 

® £m ( z ^ ^ ' ')exp t ~ X' a]m[HiHr • ))'t] = + °° 
(i i)X"X'exp[-J>] 

^(s,^-^^-»-^8 
+ 00 

TTzen either u oscillates at Y or satisfies (!') for all a sufficiently large. 

Proof. If we assume that u does not oscillate at Y and does not satisfy (7') 
for all a sufficiently large, it follows that there is a constant ai such that: 
(7') fails at aly and if h(x) > «i then both u(r(x)) and u(x) are positive. By 
the same procedure as in Theorem 1 we can conclude that there is a constant 
c such that u ^ cH for h(x) > aly and consequently that there is a value a2 

such that (7') is not valid for a = a2 and for h(x) è <*2, « satisfies the 
inequality: 

n 

Y, a-ijDiDjU + 2 £ ftjDyw ^ 1/ I - cqoH(h(r • )). 

The divergence of the integrals in (i), (ii) then gives a contradiction. 
We note in passing that the growth estimate e(x, £) ^ [5 + £\p(x), can be 

considerably weakened if we assume that u is bounded. Analogous results hold 
in this case if we assume, for example, that |£| < N and x £ Œ imply e(x, £) <̂  
K(N)p(x). 

We illustrate the above results by considering the very special equation: 

(11) f£ u = Au + c{x)W = f 

where 12 is now assumed to be the complement of a sphere, Y = {co }, h(x) = 
j ^ = 1 Xi2}1/2

y c(x) ^ 0 and continuous for all x € 0, and 7 is the ratio of two 
odd positive integers. In this case, a = (n — l)/r and consequently I = +00 
for n = 2 and / < 00 for w ^ 3. It is clear that for this operator condition 
(ii) of Theorem 1 is implied by condition (i) and we can conclude, therefore, 
that if 

r m(c,ryz-n,y+i-ndr= + 0 0 
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then either u oscillates at {oo}, or, for all a sufficiently large, satisfies the 
inequality: 

(12) m(\u\,a) ^ 7—r^ I tint) sup \f(x)\\dt n = 2 
In (a) Ja \\x\=t J 

«^•a)g r&^2){^ | / ( x ) |}((«r ,- i} f t (w=3)-
I t does not seem possible to obtain these results from any of the previously 
known theorems. 

If the elliptic operator considered is of a more special type, for example if 
we consider 

n 

&iu = + Z) DiiAijDju) - 2 X) BPiU + Cuy - Du€ 

= L\u + Cu7 — Du 

with 0 < e ^ 1 ^ 7 and 7, e the ratio of two odd positive integers, then the 
Swanson-Picone identity can be combined with the above methods to obtain 
results which do not depend on the minimum of the coefficients on various 
surfaces. We remark that the coefficients of i f 1 are assumed to satisfy analo­
gous conditions to those satisfied by the coefficients of »Sf, and in particular, 
C and D are assumed non-negative. Finally, to relate our results to some of 
the previous work we shall restrict ourselves to the case where 0 contains the 
complement of a sphere, h{x) = \YTi=\ #*2}1/2, and T = {00 }. 

Let the symbols H, a, w denote the analogous functions for «if 1 to those 
defined for i f , and let (r, co) denote hyperspherical coordinates in Rn. 

THEOREM 2. Let <if \U = / in 12 and assume that the ordinary differential 
equation 

(13) +(A(r)r»-1y'y - (rn^C{r, v))y = 0 

has oscillatory solutions at 00 for all positive constants rj, where: 

J» n 
^ AijXiXjdiù, 

(13") C(r, r,) = £ { ^ - CiHvf-1 + DiHr,)-1 

+ £ A^BtB,- Ê Dt(B,)\d<o, 

(A ij) = (^4iJ')_1, U denotes the full range of the angular variables co, a\ù denotes 
the angular component of the volume element dQ, and the integrands in (13'), 
(13") are viewed as functions of (r, co). Then either u oscillates at {co} or satisfies 
(T) for all a sufficiently large. In particular iff*(t) = 0 then u oscillates. 
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(15) 

Proof. By exactly the same procedure as the one adopted for Theorem 1, 
we may assume that if u is not oscillatory and if (7') is not satisfied for all a 
sufficiently large, then there are positive constants «i, 770 such that if x satisfies 
\x\ > ai then: 

(14) u(x) ^ r,oH{x). 

For any /3 > «i, the well-known Swanson-Picone identity, [15; 16; 17], gives, 
for any function 0 £ C?(12ai, 0), the identity: 

+ £ A^BtBrf \dQ 
3=1 J 

= f { -*Li(«) + Ê 4"5*5^4^0 

+ I — Li(tt)<ffi. 
«/£2*1,0 ^ 

As is customary, the term 2".y=i AiSBiBj4>i is added to both sides of (15) to 
ensure that the integrand on the left side is a non-negative definite form. 
Consequently, 

0 ^ f i -*Li(«) + E 4"£iBi*4 <m 
« / f i a i , (3 \ i,j=*l y 

+ f i " - c"7_1 + £«' r **<». 
By means of estimate (14), integration by parts, and the assumption that 
0 < É ̂  1 ^ 1 we conclude that the inequality: 

DiHrjoY'1- £ Z>i(50}*2]dO 

(16) 

+ 
is valid for any function </> G C?(fiai^). To establish a contradiction we need 
to find a function 0 which makes the right hand side of (16) negative. By the 
averaging procedures introduced by Kreith and Travis [10], and Noussair 
[12], a sufficient condition for the existence of such a 0 is that (13) be oscil­
latory for all 7]. Since, if this is the case, then by the standard theory of eigen­
values there exist a scalar 0i > ai, and a function \p £ CS((aifi\)) such that: 

(16') f1 [A (r)W{r)f + C(r, vo)^(r) \rn-ldr < 0. 

But the integral in (16') is precisely the integral on the right hand side of 
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(16) expressed in spherical coordinates and with the choices 4>(x) = ^( |x |) , 
13 = Pi. This gives the desired contradiction. 

We remark that Theorem 2 extends the linear result of Kreith and Travis 
[10] and Noussair [12] which is obtained by setting / = 0, and e = y = 1. 
Theorem 2 can also be thought of as a Sturm comparison theorem between 
solutions of oèf \U = / and the operator defined by the right hand side of (16), 
of which equation (13) is, for some 77, a majorant. 

We also note that inherent in the proof of Theorem 2 is the assumption that 
the coefficients Atj(x) and Bj(x) (i,j = 1, . . . , n) are differentiate. This 
condition can be weakened by technical arguments based on the same ideas 
as those used in the proof of Theorem 2 (see, for example [2]). 

Several corollaries can now be stated giving oscillation criteria for J£\ by 
employing any of the well know oscillation criteria for ordinary differential 
equations. We merely state two of the Leighton-Wintner type and one of the 
Kneser type. 

COROLLARY 7. Let u be a solution of^iu = / inQ and further assume that the 
coefficients of equation (13) satisfy the following conditions: 

<« £M A(r) 
dr = + co 

(2) I [C(r, n) + Yf + ^ ^ J dr = - ° ° 

for all positive constants 77. Then either u oscillates at {co} or satisfies (T) for all 
a sufficiently large. 

Proof. A simple change of variable shows that (13) is oscillatory if the 
equation: 

+ (A(r)y')' 

is oscillatory. A sufficient condition for this to happen is given by conditions 
(1), (2) by the standard Leighton-Wintner test [11]. 

COROLLARY 8. Let u be a solution of J£i(u) = / in 12, and, further, let the 
coefficients of equation (13) satisfy: 

(1) A (r) < Kfor some constant K, 

(2) J \rC{ry r]) H — + —^— (n - 2) J dr = -co 

for all positive constants t\. Then either u oscillates or satisfies (7') for all a 
sufficiently large. 
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Proof. It is easy to see that (13) is oscillatory if 

+ {rA (r)y')' - (rC(r, , ) + ^ (» - 2) + ^ (n - 2)2)y = 0 

is oscillatory. Corollary 8 then follows by again using the Leighton-Wintner 
test [11]. 

COROLLARY 9. If u satisfies =£?i(u) = f in 12 and the coefficients of equation 
(13) satisfy: 

lim sup ) r 
C(rlV) A'(r) (n-1) in - l )(n - 3) 

. ^ (r) "^ ^ (r) 2r "*" 4r2 

1 4 " ( r ) _ l / ^ ' ( r ) \ 2 " R _ 1 
^ 2 ^ ( r ) 4 \ ^ ( r ) / J / ^ 4 

/or a// rj > 0, //zew either u oscillates or satisfies (7') /or a// a sufficiently large. 

Proof. I t is easy to see that (13) oscillates if 

_ u , » _ (Cfr.*) » ^ ( 0 ( ^ - 1 ) , ( * - l ) ( n - 3 ) , lA"(r) 
~^y \ Air) ^ A{r) 2r "*" 4r2 t 2 i ( r ) 

i(A'(r)y\ 
4\A(r) J J if) 1 ! J 

is oscillatory. We then merely apply Kneser's classical result [8]. 

To illustrate the above results, we once again consider the special example: 

(11) Au + c(x)W* = f 

on the outside of a sphere in Rw, where we now further assume that y ^ 1. As 
a consequence of Corollary 8 we conclude that if: 

(17) lim I f \rjc(x) (r2-nY - ^ \ dti - M(E7) {n ~ 2 ) ' In R1 = + oo 

for all positive constants y, a, and u satisfies equation (11) then either u 
oscillates at {oo} or satisfies conditions (12) (here ii(U) denotes the measure 
of the surface of the unit sphere). Consequently if / = 0 and condition (17) is 
satisfied, then u must oscillate. It is interesting to note that for n = 2 and 
/ = 0, condition (17) reduces to: 

(18) lim f c(x)dQ = + oo. 

It is obvious that we can consider by exactly the same methods the more 
general operator: 

m y 

J^iu = Liu — J 3 Dtu
H + 23 CiUyi 
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with 0 ^ €i; ^ 1 ^ ji and euji the ratio of two odd positive integers. However 
the problem of using the Swanson-Picone identity for the sublinear case 
0 < ji < 1, which was allowed in Theorem 1, remains open. We also note that 
the conditions on et can be weakened if u is assumed bounded. 

Clearly, analogous results also apply to the nonlinear equation 

n 

(19) ££iii = ^2 cLijDtDjU + b(x, u, Diu, . . . , Dnu) = / 

if we assume that, for u > 0, b satisfies relations which imply that, as a 
consequence of (19), J ^ = | / | whereJ?f is an operator of the same type as (1). 

We conclude by examining the one-dimensional criteria which follow from 
the above theorems. Unlike the case for partial differential equations, oscilla­
tion criteria for nonlinear ordinary differential equations have been obtained 
by numerous authors. The survey article by Wong, [18], gives an extensive 
bibliography up to 1968. More recent references can be found in the articles 
of Coffman and Wong [4], and Erbe [5]. It seems unreasonable to expect that 
for this special case relevant new results can be obtained by the above methods. 
However, several classical results can be obtained immediately. We illustrate 
these remarks by considering the equation 

(20) y" + d(x,y) = 0 

in the interval x > 0. Here d(x, £) is assumed to be continuous, nondecreasing 
in £ for each fixed x, and such that d(x, — £) = —d(x, £) for all (x, £) G R2. 
Theorem 1 is immediately applicable and, noting that for this case a = 0, 
/ = -j-oo, h(x) = x, we conclude that if 

/*oo 

(21) J^ d(x,n) = +oo 

for all constants rj > 0 then any solution of (20) oscillates. Similarity, by a 
trival variation of Theorem 2 and a classical result of Zlamal [19], we conclude 
that if 

(22) f V i n f (*&£) = + 0 0 

for some X < 1 and all 77 > 0 then all solutions of (20) oscillate. Criteria (21) 
and (22) are well-known; they are contained, for example, in results of Wong 
[18], and Izyumova [6]. 
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