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ISOMETRIES OF WEIGHTED BERGMAN SPACES 

CLINTON J. KOLASKI 

1. Introduction. In [2], [8] and [10], Forelli, Rudin and Schneider 
described the isometries of the Hp spaces over balls and polydiscs. 
Koranyi and Vagi [6] noted that their methods could be used to describe 
the isometries of the Hp spaces over bounded symmetric domains. Recently 
Kolaski [4] observed that the algebraic techniques used above and Rudin's 
theorem on equimeasurability extended to the Bergman spaces over 
bounded Runge domains. In this paper we use the same general argument 
to characterize the onto linear isometries of the weighted Bergman spaces 
over balls and polydiscs, (all isometries referred to are assumed to be 
linear). 

2. Pre l iminar ies . Horowitz [3] first defined the weighted Bergman 
space Ap'a(0 < £ < o o , 0 < a < o o ) t o b e the space of holomorphic 
functions/ in the disc which satisfy 

(1) 11/11,./ = -1" fT f1 ! / ( « " ) \'0- - r'Yrdrde < œ. 
7T »/ o +> 0 

Since the Bergman kernel for the disc is given by 

B(z,w) = [1 - <z, w)}-\ 

it was natural to define the weighted Bergman space Ap,r(Q) (0 < p < oo ) 
to be the class of holomorphic functions/on the domain 12 C Cn for which 

(2) ML/ = f |/(*)rJ3o(*, zT'dmiz) < oo 

where B^ is the Bergman kernel for 12, m denotes Lebesgue measure on 
Qn _ 2̂ŵ  a n c j r -g g r e a ter than some negative constant i£(12) which 
depends on the domain 12. For recent papers dealing with these spaces 
see [1] and [11]. 

In Section 3 we give a general theorem on the isometries of ^4P(12) 
(12 a bounded Runge domain). In Sections 4 and 5 we give a complete 
characterization of the isometries of ^4P(12) onto ^4P(12) when 12 is the ball 
or polydisc in Cn. 

3. A general theorem. For a given bounded domain 12 C Cn, let 
Aut (12) denote the class of biholomorphic maps of 12 onto 12, and, for 
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appropriate r > i£(12), let Av,r{Q) denote the weighted Bergman spaces 
defined in Section 2. 

THEOREM 1. Let 12 be a bounded Runge domain, Iet0<p<co,p9^2, 
and let r > K(il). 

(i) If T : Ap>r(U) —> AV'T(Q) is a linear isometry and if 7T is denoted 
by g, then there is a holomorphic map $ taking 12 onto a dense subset of 12 
such that, 

(3) (Tf)(z) = *(«)•/(*(*)) ( 2 6 O ) 

for allf 6 ^4p'r(12); and, for every bounded B or el function h on 12, 

(4) I (/*o#)|g|pZr rdm = I AZTrdw 

where D is the diagonalized Bergman kernel, D(z) = BQ(Z, Z),Z £ 12. 
(ii) Conversely, if $ is a holomorphic map of 12 into 12, awd if g G ^4p,r(12) 

satisfies (4) /or e^ery continuous function h on 12, then (3) defines an iso
metry ofAv'•''(12). 

(iii) 7/ /fee linear isometry T is onto AV'T(ÇÏ), then $ G Aut (12). Con
versely, if $ G Aut (12) and # g G ^p,r(12) w re/a/ed /<? $ by (4), /Aen (3) 
defines an isometry of Ap'r(Q) onto ^4p,r(12). 

Proof. In the proof of Theorem (2.1) in [4], replace the measure m^ 
by the measure dar = D~rdm. The measure dp = \g\pdar clearly satisfies 
v « 0>. On the other hand, g ^ 0 is a holomorphic function in 12 so 
g{z) 9^ 0, a.e. [m]. Moreover, D(z) = B^{z, z) > 0, for all z G 12, so 
g{z) 7± 0, a.e. [ar]\ consequently ar « v. The proof of Theorem (1) may 
now be completed by the argument given in [4, Theorem 2.1]. 

For a given isometry T, it would be desirable to have a more explicit 
description of the relationship between 3> and g than that given by (4). 
It is improbable that such a relation can be found as the situation is 
extremely complicated even when r — 0 (see [4]). Thus we shall con
sider only the isometries which are onto. Furthermore, because we shall 
need an explicit description of the group Aut (12), we shall restrict our
selves to the cases when our domain is a ball or a polydisc. The interested 
reader may wish to apply the methods given here to other domains 12 for 
which the group Aut (12) is known. 

4. The ball as our domain. Because our proofs are rather technical, 
we shall now state our setting more explicitly. 

Let Cw denote the vector space of all ordered n-tuples z = (zi, . . . , zn) 
of complex numbers, with inner product 

(5) (z,w) = ziWi + . . . + znwn 
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and norm 

(6) \z\ = (z,zy*. 

The unit ball B of Cn is then the set of all z G O with |z| < 1. Let mB 

denote Lebesgue measure on B, normalized so that mB(B) = 1. As is 
well known, the Bergman kernel for B is given by 

(7) B(z, w) = [1 - <z, w)]-(n+v (z £ B,w £ B). 

In order to simplify our computations, we define, for each x > — 1, 
the measure ax on B by 

(8) dax(z) = (1 - \z\*)*dmB(z) (z £ B). 

For 0 < p < oo , let Ap(ax) denote the subspace of Lp(ax) consisting of 
the holomorphic functions on B. We note that Ap(ax) is the closure of 
the analytic polynomials. By (2), (7) and (8), we see that 

(9) Ap(ax) = A*'(B) 

by setting x = (n + l)r. We shall determine the isometries of AP'T(B) 
by describing the isometries of Ap(ax). The following lemma follows easily 
from [9, Theorem 2.2.2]. 

LEMMA 2. If <ï> £ Aut (B) with $(a) = 0, then 

(io) i _ | * W | « = ILzJ£J!mj=JîÛ {zeB) 

|1 — <z, a ) | 

and 

(11) l - ( $ ( Z ) ( $ ( 0 ) ) = T
1 - = 7 ^ | - ( s G i i ) . 

I — \z, a) 
We recall [5] that the Hilbert space A2(ax) possesses a reproducing 

kernel Cx : B X B —> C given by 

- ( • : * ) « 
i-Cn+l+z) (12) C,(s,«/) = ^ ; * j [ l - < * , » > ] • 

where the binomial coefficient is Y(n + 1 + x)/Y(n + l)T(x + 1). 
Define the kernel Kx : 5 X B -> (0, oo ) by 

(13) i^(s,^) - lC^ g 'w ) l 2 

Cx(w,w) 

We recall [4], if $ 6 Aut (£) , then 

(14) | /*(z) | = Ko(z, $-i(0)) (s G 5 ) 

where / $ denotes the Jacobean of <£. Letting a — 3>-1(0), equating (12), 
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(13) and (14) shows 

|y.(«)l (seu). <S)a)|2 

LEMMA 3. If $ 6 Aut (5) wM $(a) = 0, then 

(16) / (/ o *)KX( • , a)dax = ( w + *) J ^ / f o , 

for e»ery bounded Borel function f on B, and for allx > — 1. 

Proof. If $ e Aut (5) with $(a) = 0, then (8) and (15) show 

(17) f (fo*)Kx(-,a)d*x 

-(*r)a-wv/.(/o.)«r 1-|s'2 

= (w + ^)(i-H2r/B/(2) 

\l-(z,a)\\ 

1 ~ |^ X (g ) | 2 

l l - ^ ^ . a ) ! 2 

\Ji(z)\dmB(z) 

dmB (z) 

("V)f. / ( s ) ( l - IslVdm^s). 

The last equality follows from Lemma (2) applied to <£_1, and the fact 
that | <î>(0)|2 = |a|2. This completes the proof of Lemma (3). 

THEOREM 4. Let x > — 1 and let 0 < p < oo , p j£ 2. 

(i) / / r is a linear isometry of Ap(ax) onto Ap(ax), then there is a $ £ 
Aut (5) such that 

(18) (7J)(2) = g ( 2 ) - ( / o $ ) ( z ) (8 6 5 ) 

/or allf Ç ̂ "(o^). Moreover, g is related to 3> fry 

(19) g(s) = 0 1 - la I 
L ( i - < * . « » M 

(n+l+z)/p 

( ^ 5 ) 

where 6 £ C, |(9| = 1 and $(a) = 0. 
(ii) Conversely, if $ G Aut (J5) and i/' g is related to $ fry (19), /feew (18) 

defines an isometry ofAp(ax) onto Ap(ax). 

Proof. To see that (ii) holds, let 3> £ Aut (B) and assume g is defined 
by (19). Then (12) and (13) imply 

(20) |*(*) | '= (n + X)1Kx(z1a) (zeB) 

where $(a) = 0. Lemma (3) now shows that (4) holds for the pair ($, g). 
Thus (ii) follows from Theorem (1) part (iii). 
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The argument given in the proof of Theorem (3.2) of [4] may now be 
modified to prove (i). 

5. The polydisc as our domain. As in Section 4, we shall deter
mine the isometries of Av,r(Un) by describing the isometries of Ap(ax) 
for an appropriate measure ax defined on the polydisc Un. 

Let mv denote normalized Lebesgue measure on the unit disc U in C1. 
For 1 S i S n, let xt > — 1 and let c7 be the measure on the disc U 
given by 

(21) d<rt(w) = (1 - \(a\2)xidmu((a). 

For a given choice of xt with xt > - 1 (1 ^ i ^ n), let X = (xi, . . . , 
xn), let (7X = (Ji X . . . X o-w be the product measure on the polydisc Un 

and, for 0 < p < oo, let Ap(ax) be the subspace of Lp(ax) consisting of 
the holomorphic functions on Un. 

Since the Bergman kernel Bn for Un is given by 

(22) Bn(z} w) = f l (1 - z<Cbt)-
2 (z eUn,w£ Un) 

i=l 

it is clear that 

(23) Ap(ax) = Ap'r(Un) 

by setting X\ = . . . = xn — 2r. Thus our class of spaces Ap(ax) properly 
contains the class of weighted Bergman spaces Ap,r(Un). 

Given X = (xu • • • , xn), define the kernels Cxi and Kxi on U X U by 
setting n = 1 in (12) and (13), respectively. If we define the kernel 
Kx on Un X Un by 

(24) Kx(z, w) = U Ksi(zi9 wt) = E[ (1 + xt) 
1 — WjWj 

L|l - ztwt\
2i 

(2+zi) 

then Lemma (3) shows: 

LEMMA 5. Ifypt G Aut (£7) with\pi{at) = 0 (1 ^ i g »), /Ag» 

(25) I {fo^i)Kzi{ • , a,)<**•< = (1 + xO I /do-i 
° u J u 

for every bounded B orel function f on U. 

We recall [7], if $ G Aut (Un), then 

(26) $(zi, . . . , z„) = (</>I(ZÙ), . . . , « « ( z j ) 

where 0i, . . . , <pn are biholomorphic maps of U onto U, and (ii, . . . , in) 
is a permutation of (1, . . . , n). 

It follows easily from (26) and Lemma (5) that: 
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(2+a-i) 

LEMMA 6. / / $ 6 Aut {Un) with $(a) = 0, /feew 

(27) J ( / o % ( - , a ) f e = [ ( l + * 0 . . . ( ! + * , ) ] • f d/er* 

/or ^ ^ 3 / bounded B or el function f on Un. 

For a given fixed X = (xi,. . . , xn) and a given $ G Aut ( Un) (described 
by (26)) we define the function g = gx,$ on Un by 

(28) g ( 2 i , . . . , 2 » ) = ^ 1 ( 2 * 0 . . . *»(s<n)]1 / P 

where 

and (9 G C, |0| = 1, $(au . . . , an) = 0. 
By (24), (28) and (29) 

(30) \g\* = Kx(.,a) 

with a = (ai, . . . , an). Using (30) and Lemma (6), a slight modification 
of the proof of Theorem (4) shows: 

THEOREM 6. If one replaces <rx by ax, and B by Un in Theorem (4), then 
the resulting statement is true when g is related to $ (and X) by (28). 
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