EVERY ARITHMETIC PROGRESSION CONTAINS INFINITELY MANY *b*-NIVEN NUMBER[S](#page-0-0)

\mathbf{JOSHUA} HARRINGTON®[,](https://orcid.org/0000-0002-2651-9500) MATTHEW LITMA[N](https://orcid.org/0000-0002-0908-9369)® and TONY W. H. WON[G](https://orcid.org/0000-0003-2234-3189)®

(Received 26 April 2023; accepted 16 June 2023; first published online 31 July 2023)

Abstract

For an integer $b \ge 2$, a positive integer is called a *b*-Niven number if it is a multiple of the sum of the digits in its base-*b* representation. In this article, we show that every arithmetic progression contains infinitely many *b*-Niven numbers.

2020 *Mathematics subject classification*: primary 11A63; secondary 11B25. *Keywords and phrases*: Niven number, arithmetic progression.

1. Introduction

Let N denote the set of positive integers and let $b \ge 2$ be an integer. For all $n \in \mathbb{N}$ and $0 \le i \le \lfloor \log_b n \rfloor$, let $v_b(n, i)$ be nonnegative integers such that $v_b(n, i) \le b - 1$ and $n = \sum_{i=0}^{\lfloor \log_b n \rfloor} v_b(n, i) b^i$. In other words, $v_b(n, i)$ is the $(i + 1)$ st digit from the right in the base-*b* representation of *n*. Furthermore, define $s_b : \mathbb{N} \to \mathbb{N}$ by $s_b(n) = \sum_{i=0}^{\lfloor \log_b n \rfloor} v_b(n, i)$.
A positive integer *n* is *h*-*Niven* if $s_b(n) \mid n$ A positive integer *n* is *b*-Niven if $s_b(n) \mid n$.

It was shown in 1993 by Cooper and Kennedy [\[1\]](#page-3-0) that there are no 21 consecutive 10-Niven numbers. Their result was generalised in 1994 by Grundman [\[4\]](#page-3-1), who showed that there are no $2b + 1$ consecutive *b*-Niven numbers. In 1994, Wilson [\[6\]](#page-4-0) proved that for each *b*, there are infinitely many occurrences of 2*b* consecutive *b*-Niven numbers. These results were recently extended by Grundman *et al.* [\[5\]](#page-4-1), who investigated the maximum lengths of arithmetic progressions of *b*-Niven numbers. Furthermore, an asymptotic estimate for the number of *b*-Niven numbers not exceeding *x* was found in 2003 by De Koninck *et al.* [\[2\]](#page-3-2) and in 2008, they [\[3\]](#page-3-3) showed that given any *r* ∈ $\{2, 3, \ldots, 2b\}$, there exists a constant $c = c(b, r)$ such that the number of *r*-tuples of consecutive *b*-Niven numbers not exceeding *x* is asymptotic to $cx/(\log x)^r$ as *x* tends to infinity infinity.

In this article, we prove that every arithmetic progression contains infinitely many *b*-Niven numbers.

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

2. Main results

The following lemma is sometimes referred to as the 'postage stamp theorem', the 'chicken McNugget theorem' or the 'Frobenius coin theorem'.

LEMMA 2.1. Let u and v be integers with $uv \ge 0$ and $gcd(u, v) = 1$. Then every integer *w* such that w shares the same sign with u and v and satisfies $|w| \geq (|u| - 1)(|v| - 1)$ can *be written in the form w* = *gu* + *hv for some nonnegative integers g and h.*

The following two lemmas, which will be useful in our proof, are easy exercises in elementary number theory.

LEMMA 2.2. *If d* | *b* − 1*, then for all* $u \in \mathbb{N}$ *, we have d* | *u if and only if d* | $s_b(u)$ *.*

LEMMA 2.3. *For all integers n and n' with* $2 \le n' \le n$, $s_b(n') \le (b-1)\lceil \log_b(n) \rceil$.

For positive integers *m* and *r*, let

$$
\mathcal{S}_{m,r} = \{mx + r : x \in \mathbb{N}\}.
$$

PROPOSITION 2.4. *Let d* = $gcd(s_b(m), s_b(r), b - 1)$ *. If* $gcd(s_b(m), s_b(r)) = d$ *, then* $S_{m,r}$ *contains at least one b-Niven number.*

PROOF. Let $k_0(b, m, r) \in \mathbb{N}$ be such that for all integers $k \geq k_0$,

$$
k \ge (b-1) \left[\log_b \left(\frac{s_b(m)}{d} \cdot k + \frac{s_b(r)}{d} \right) \right] + (b-2) \left((b-1) \left[\log_b \left(\frac{s_b(m)}{d} \cdot k + \frac{s_b(r)}{d} \right) \right] - 1 \right).
$$
\n(2.1)

Note that k_0 is well defined since b, m, r are constants and the right-hand side of [\(2.1\)](#page-1-0) is of order $O(\log k)$. Using Dirichlet's theorem on primes in arithmetic progressions, let *k* ∈ $\mathbb N$ be such that *k* ≥ max{*k*₀, *b*, *m*} and

$$
p = \frac{s_b(m)}{d} \cdot k + \frac{s_b(r)}{d}
$$

is a prime. Since $p > k \ge \max\{b, m\}$, we have $p \nmid bm$. Furthermore, let \tilde{x} be the smallest positive integer such that $\tilde{x} = -m^{-1}r \pmod{n}$. From Lemma 2.3 and (2.1) smallest positive integer such that $\tilde{x} = -m^{-1}r \pmod{p}$. From Lemma [2.3](#page-1-1) and [\(2.1\)](#page-1-0),

$$
k \ge s_b(\tilde{x}) + (b-2)(s_b(p) - 1).
$$

By Lemma [2.1,](#page-1-2) there exist nonnegative integers *g* and *h* such that

$$
k = s_b(\tilde{x}) + g(b-1) + h \cdot s_b(p).
$$

Let $ω ∈ ℕ$ be a multiple of $p-1$ such that $b^ω > max{m, r}$. Note that $b^ω ≡ 1 \pmod{p}$ by Fermat's little theorem since $p \nmid b$. We now define a function $\tau_b : \mathbb{N} \to \mathbb{N}$ as follows. For each fixed $n \in \mathbb{N}$ let $\sigma_{\lambda} = 0$ and $\sigma_{\lambda} = \sum_{i=1}^{i} v_i(n_i)$ for $0 \le i \le \lfloor \log n \rfloor$. follows. For each fixed $n \in \mathbb{N}$, let $\sigma_{-1} = 0$ and $\sigma_i = \sum_{j=0}^i v_b(n,j)$ for $0 \le i \le \lfloor \log_b n \rfloor$.
Then Then,

$$
\tau_b(n) = \sum_{j=1}^{\sigma_{\lfloor \log_b n \rfloor}} b^{j\omega + \ell_j},
$$

[3] *b*-Niven numbers 411

where $\ell_j = i$ for the unique $i \in \{0, 1, 2, \ldots, \lfloor \log_b n \rfloor\}$ satisfying $\sigma_{i-1} < j \le \sigma_i$. It is important to notice that the construction of $\tau_b(n)$ guarantees $s_b(\tau_b(n)) = \sigma_{\text{log}_b n}$ = $s_b(n)$ and $\tau_b(n) \equiv \sum_{j=1}^{\sigma_{\lfloor \log_b n \rfloor}} b^{\ell_j} \equiv \sum_{i=0}^{\lfloor \log_b n \rfloor} v_b(n, i) b^i \equiv n \pmod{p}$.
Let $r_0 = \tau_b(\tilde{r})$ and for each positive integer $t < \sigma$ let

Let $x_0 = \tau_b(\tilde{x})$ and, for each positive integer $t \leq g$, let

$$
x_t = x_{t-1} - b^{\lfloor \log_b x_{t-1} \rfloor} + \sum_{\iota=1}^b b^{\iota \omega + \lfloor \log_b x_{t-1} \rfloor - 1}.
$$

From this construction, $s_b(x_t) = s_b(x_{t-1}) + b - 1$ and

$$
x_t \equiv x_{t-1} - b^{\lfloor \log_b x_{t-1} \rfloor} + b \cdot b^{\lfloor \log_b x_{t-1} \rfloor - 1} \equiv x_{t-1} \pmod{p}
$$

for all *t* ≤ *g*. It follows that $s_b(x_g) = s_b(x_0) + g(b-1) = s_b(\tilde{x}) + g(b-1)$ and $x_g \equiv x_0 \equiv \tilde{x} \pmod{p}$. Lastly, let α and β be integers such that $b^{\alpha \omega} > x_g$ and $b^{\beta\omega} > \tau_b(p)$. We define

$$
x = x_g + \sum_{\iota=0}^{h-1} \tau_b(p) \cdot b^{(\iota \beta + \alpha)\omega}.
$$

Now, $s_b(x) = s_b(x_g) + h \cdot s_b(\tau_b(p)) = k$, $x \equiv x_g + \sum_{l=0}^{h-1} p \cdot b^{(\beta + \alpha)\omega} \equiv -m^{-1}r \pmod{p}$
and since every summand of r is a distinct power of *b* where the powers differ by at and since every summand of *x* is a distinct power of *b* where the powers differ by at least ω , we have $s_b(mx + r) = s_b(m) \cdot s_b(x) + s_b(r) = s_b(m) \cdot k + s_b(r) = dp$. Therefore, $mx + r$ is a *b*-Niven number based on the following observations:

- $mx + r \equiv m(-m^{-1}r) + r \equiv 0 \pmod{p}$;
- *d* $|(mx + r)$ since *d* $|m$ and *d* $|r$ by Lemma [2.2;](#page-1-3)
- $gcd(p, d) = 1$ since $p > b$ and $d | b 1$.

LEMMA 2.5. Let *n* be a nonnegative integer. For all nonnegative integers y, $s_b(yn)$ = $y s_h(n) + z(b-1)$ *for some integer z.*

PROOF. Note that for all nonnegative integers *n*, if $n = \sum_{i=0}^{\lfloor \log_b n \rfloor} v_b(n, i) b^i$, then $s_b(n) = \sum_{i=0}^{\lfloor \log_b n \rfloor} (a_i - b_i)$ $\sum_{i=0}^{\lfloor \log_b n \rfloor} v_b(n, i) \equiv n \pmod{b-1}$. Hence, $s_b(yn) \equiv yn \equiv y s_b(n) \pmod{b-1}$. \Box

PROPOSITION 2.6. Let $d = \gcd(s_b(m), s_b(r), b - 1)$. Then there exists a positive multi*ple* \overline{m} *of m* such that $gcd(s_b(\overline{m}), s_b(r)) = d$.

PROOF. Let *i*₀ be the smallest nonnegative integer such that $v_b(m, i_0) \neq 0$. Then there exists a nonnegative integer $a < b - 1$ such that $v_b(am) = v_b(a, v_b(m, i_0), 0) > b/2$ exists a nonnegative integer $a \le b - 1$ such that $v_b(am, i_0) = v_b(a \cdot v_b(m, i_0), 0) \ge b/2$. Next, if $v_b(am, i_0 + 1) \neq b - 1$, then let $m' = am$; otherwise, let $m' = (b + 1)am$ so that $v_b(m' \text{ is}) = v_b(am \text{ is}) \geq b/2$ and $v_b(m', i_0) = v_b(am, i_0) \ge b/2$ and

$$
\nu_b(m', i_0 + 1) \equiv \nu_b(am, i_0 + 1) + \nu_b(am, i_0) \equiv b - 1 + \nu_b(am, i_0) \not\equiv b - 1 \pmod{b}.
$$

Furthermore, define m'' to be a multiple of m' such that the leading digit of m'' in base-*b* representation is at least *b*/2, that is, $v_b(m'', \lfloor \log_b m'' \rfloor) \ge b/2$. Let $m^* = b^2 m'' +$ *m'*. Then *m*[∗] is a multiple of *m* such that $v_b(m^*, i_0) \ge b/2$, $v_b(m^*, i_0 + 1) \ne b - 1$ and $v_b(m^* | \log m^*) > b/2$ $v_b(m^*, \lfloor \log_b m^* \rfloor) \ge b/2$.

Let *x*, *y*, *z* be integers such that $xs_b(r) + ys_b(m) + z(b-1) = d$. Define y^* such that $m^* = y^*m$ and let z^* be an integer such that $s_b(m^*) = y^*s_b(m) + z^*(b-1)$ by Lemma [2.5.](#page-2-0) Letting $m^{**} = (b^{\lfloor \log_b m^* \rfloor - i_0} + 1)m^*$, we see that $v_b(m^{**}, \lfloor \log_b m^* \rfloor) =$ $v_b(m^*, \lfloor \log_b m^* \rfloor) + v_b(m^*, i_0) - b$ and $v_b(m^{**}, \lfloor \log_b m^* \rfloor + 1) = v_b(m^*, i_0 + 1) + 1 \le$ $b - 1$. Hence, $s_b(m^{**}) = 2s_b(m^*) - (b - 1) = 2y^*s_b(m) + (2z^* - 1)(b - 1)$. By Lemma [2.1,](#page-1-2) there exist nonnegative integers *g* and *h* such that $gz^* + h(2z^* - 1) \equiv z \pmod{s_b(r)}$. Let *j* be a nonnegative integer such that $gy^* + h(2y^*) + j \equiv y \pmod{s_b(r)}$. Consider

$$
\overline{m} = \sum_{\iota=0}^{g-1} m^* b^{\iota(\lfloor \log_b m^* \rfloor + 1)} + \sum_{\iota=0}^{h-1} m^{**} b^{\iota(\lfloor \log_b m^{**} \rfloor + 1) + g(\lfloor \log_b m^* \rfloor + 1)}
$$

$$
+ \sum_{\iota=0}^{j-1} m b^{\iota(\lfloor \log_b m \rfloor + 1) + g(\lfloor \log_b m^* \rfloor + 1) + h(\lfloor \log_b m^{**} \rfloor + 1)}.
$$

By construction, \overline{m} is a multiple of *m* and

$$
s_b(\overline{m}) = gs_b(m^*) + hs_b(m^{**}) + js_b(m)
$$

= $g(y^*s_b(m) + z^*(b-1)) + h(2y^*s_b(m) + (2z^* - 1)(b-1)) + js_b(m)$
= $(gy^* + h(2y^*) + j)s_b(m) + (gz^* + h(2z^* - 1))(b-1)$
= $ys_b(m) + z(b-1) \equiv d \pmod{s_b(r)}$.

Note that *d* | *s_b*(\overline{m}) since *d* | *s_b*(m) and *d* | *b* − 1. Therefore, gcd($s_b(\overline{m})$, $s_b(r)$) = *d*. \Box

Combining Propositions [2.4](#page-1-4) and [2.6,](#page-2-1) we obtain the following theorem.

THEOREM 2.7. Let *m* and *r* be positive integers. The arithmetic progression $S_{m,r}$ *contains infinitely many b-Niven numbers.*

PROOF. By Proposition [2.6,](#page-2-1) there exists a multiple \overline{m} of *m* such that

$$
\gcd(s_b(\overline{m}), s_b(r), b-1) = \gcd(s_b(\overline{m}), s_b(r)).
$$

Hence, by Proposition [2.4,](#page-1-4) $S_{\overline{m},r}$, and thus $S_{m,r}$, contains at least one *b*-Niven number since $S_{\overline{m}}$ *, is a subset of* $S_{m,r}$. Let this *b*-Niven number be $\eta m + r$ for some nonnegative integer *η*. Applying the same argument on the arithmetic progression, $S_{m,(n+1)m+r}$ vields another *b*-Niven number and our proof is complete by induction. yields another *b*-Niven number and our proof is complete by induction. -

References

- [1] C. Cooper and R. E. Kennedy, 'On consecutive Niven numbers', *Fibonacci Quart.* 31 (1993), 146–151.
- [2] J.-M. De Koninck, N. Doyon and I. Kátai, 'On the counting function for the Niven numbers', *Acta Arith.* 106 (2003), 265–275.
- [3] J.-M. De Koninck, N. Doyon and I. Kátai, 'Counting the number of twin Niven numbers', *Ramanujan J.* 17 (2008), 89–105.
- [4] H. Grundman, 'Sequences of consecutive *n*-Niven numbers', *Fibonacci Quart.* 32 (1994), 174–175.

[5] *b*-Niven numbers 413

- [5] H. Grundman, J. Harrington and T. W. H. Wong, 'Arithmetic progressions of *b*-Niven numbers', *Rocky Mountain J. Math.*, to appear.
- [6] B. Wilson, 'Construction of 2 ∗ *n* consecutive *n*-Niven numbers', *Fibonacci Quart.* 35 (1997), 122–128.

JOSHUA HARRINGTON, Department of Mathematics, Cedar Crest College, 100 College Dr, Allentown, PA 18104, USA e-mail: joshua.harrington@cedarcrest.edu

MATTHEW LITMAN, Department of Mathematics, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA e-mail: mclitman@ucdavis.edu

TONY W. H. WONG, Department of Mathematics, Kutztown University of Pennsylvania, 15200 Kutztown Rd, Kutztown, PA 19530, USA e-mail: wong@kutztown.edu