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EVERY ARITHMETIC PROGRESSION CONTAINS
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Abstract

For an integer b ≥ 2, a positive integer is called a b-Niven number if it is a multiple of the sum of the digits
in its base-b representation. In this article, we show that every arithmetic progression contains infinitely
many b-Niven numbers.
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1. Introduction

Let N denote the set of positive integers and let b ≥ 2 be an integer. For all n ∈ N
and 0 ≤ i ≤ �logb n�, let νb(n, i) be nonnegative integers such that νb(n, i) ≤ b − 1 and
n =
∑�logb n�

i=0 νb(n, i)bi. In other words, νb(n, i) is the (i + 1)st digit from the right in the
base-b representation of n. Furthermore, define sb : N→ N by sb(n) =

∑�logb n�
i=0 νb(n, i).

A positive integer n is b-Niven if sb(n) | n.
It was shown in 1993 by Cooper and Kennedy [1] that there are no 21 consecutive

10-Niven numbers. Their result was generalised in 1994 by Grundman [4], who showed
that there are no 2b + 1 consecutive b-Niven numbers. In 1994, Wilson [6] proved that
for each b, there are infinitely many occurrences of 2b consecutive b-Niven numbers.
These results were recently extended by Grundman et al. [5], who investigated the
maximum lengths of arithmetic progressions of b-Niven numbers. Furthermore, an
asymptotic estimate for the number of b-Niven numbers not exceeding x was found
in 2003 by De Koninck et al. [2] and in 2008, they [3] showed that given any r ∈
{2, 3, . . . , 2b}, there exists a constant c = c(b, r) such that the number of r-tuples of
consecutive b-Niven numbers not exceeding x is asymptotic to cx/(log x)r as x tends to
infinity.

In this article, we prove that every arithmetic progression contains infinitely many
b-Niven numbers.
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2. Main results

The following lemma is sometimes referred to as the ‘postage stamp theorem’, the
‘chicken McNugget theorem’ or the ‘Frobenius coin theorem’.

LEMMA 2.1. Let u and v be integers with uv ≥ 0 and gcd(u, v) = 1. Then every integer
w such that w shares the same sign with u and v and satisfies |w| ≥ (|u| − 1)(|v| − 1) can
be written in the form w = gu + hv for some nonnegative integers g and h.

The following two lemmas, which will be useful in our proof, are easy exercises in
elementary number theory.

LEMMA 2.2. If d | b − 1, then for all u ∈ N, we have d | u if and only if d | sb(u).

LEMMA 2.3. For all integers n and n′ with 2 ≤ n′ ≤ n, sb(n′) ≤ (b − 1)	logb(n)
.

For positive integers m and r, let

Sm,r = {mx + r : x ∈ N}.

PROPOSITION 2.4. Let d = gcd(sb(m), sb(r), b − 1). If gcd(sb(m), sb(r)) = d, then Sm,r
contains at least one b-Niven number.

PROOF. Let k0(b, m, r) ∈ N be such that for all integers k ≥ k0,

k ≥ (b − 1)
⌈

logb

(sb(m)
d
· k + sb(r)

d

)⌉
+ (b − 2)

(
(b − 1)

⌈
logb

(sb(m)
d
· k + sb(r)

d

)⌉
− 1
)
.

(2.1)

Note that k0 is well defined since b, m, r are constants and the right-hand side of (2.1)
is of order O(log k). Using Dirichlet’s theorem on primes in arithmetic progressions,
let k ∈ N be such that k ≥ max{k0, b, m} and

p =
sb(m)

d
· k + sb(r)

d
is a prime. Since p > k ≥ max{b, m}, we have p � bm. Furthermore, let x̃ be the
smallest positive integer such that x̃ ≡ −m−1r (mod p). From Lemma 2.3 and (2.1),

k ≥ sb(x̃) + (b − 2)(sb(p) − 1).

By Lemma 2.1, there exist nonnegative integers g and h such that

k = sb(x̃) + g(b − 1) + h · sb(p).

Let ω∈N be a multiple of p−1 such that bω > max{m, r}. Note that bω ≡ 1 (mod p)
by Fermat’s little theorem since p � b. We now define a function τb : N→ N as
follows. For each fixed n ∈ N, let σ−1 = 0 and σi =

∑i
j=0 νb(n, j) for 0 ≤ i ≤ �logb n�.

Then,

τb(n) =
σ�logb n�∑

j=1

bjω+�j ,
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where �j = i for the unique i ∈ {0, 1, 2, . . . , �logb n�} satisfying σi−1 < j ≤ σi. It is
important to notice that the construction of τb(n) guarantees sb(τb(n)) = σ�logb n� =

sb(n) and τb(n) ≡ ∑σ�logb n�
j=1 b�j ≡ ∑�logb n�

i=0 νb(n, i)bi ≡ n (mod p).
Let x0 = τb(x̃) and, for each positive integer t ≤ g, let

xt = xt−1 − b�logb xt−1� +

b∑
ι=1

bιω+�logb xt−1�−1.

From this construction, sb(xt) = sb(xt−1) + b − 1 and

xt ≡ xt−1 − b�logb xt−1� + b · b�logb xt−1�−1 ≡ xt−1 (mod p)

for all t ≤ g. It follows that sb(xg) = sb(x0) + g(b − 1) = sb(x̃) + g(b − 1) and
xg ≡ x0 ≡ x̃ (mod p). Lastly, let α and β be integers such that bαω > xg and
bβω > τb(p). We define

x = xg +

h−1∑
ι=0

τb(p) · b(ιβ+α)ω.

Now, sb(x) = sb(xg) + h · sb(τb(p)) = k, x ≡ xg +
∑h−1
ι=0 p · b(ιβ+α)ω ≡ −m−1r (mod p)

and since every summand of x is a distinct power of b where the powers differ by at
least ω, we have sb(mx + r) = sb(m) · sb(x) + sb(r) = sb(m) · k + sb(r) = dp. Therefore,
mx + r is a b-Niven number based on the following observations:

• mx + r ≡ m(−m−1r) + r ≡ 0 (mod p);
• d | (mx + r) since d | m and d | r by Lemma 2.2;
• gcd(p, d) = 1 since p > b and d | b − 1. �

LEMMA 2.5. Let n be a nonnegative integer. For all nonnegative integers y, sb(yn) =
ysb(n) + z(b − 1) for some integer z.

PROOF. Note that for all nonnegative integers n, if n =
∑�logb n�

i=0 νb(n, i)bi, then sb(n) =∑�logb n�
i=0 νb(n, i) ≡ n (mod b − 1). Hence, sb(yn) ≡ yn ≡ ysb(n) (mod b − 1). �

PROPOSITION 2.6. Let d = gcd(sb(m), sb(r), b − 1). Then there exists a positive multi-
ple m of m such that gcd(sb(m), sb(r)) = d.

PROOF. Let i0 be the smallest nonnegative integer such that νb(m, i0) � 0. Then there
exists a nonnegative integer a ≤ b − 1 such that νb(am, i0) = νb(a · νb(m, i0), 0) ≥ b/2.
Next, if νb(am, i0 + 1) � b − 1, then let m′ = am; otherwise, let m′ = (b + 1)am so that
νb(m′, i0) = νb(am, i0) ≥ b/2 and

νb(m′, i0 + 1) ≡ νb(am, i0 + 1) + νb(am, i0) ≡ b − 1 + νb(am, i0) � b − 1 (mod b).

Furthermore, define m′′ to be a multiple of m′ such that the leading digit of m′′ in
base-b representation is at least b/2, that is, νb(m′′, �logb m′′�) ≥ b/2. Let m∗ = b2m′′ +
m′. Then m∗ is a multiple of m such that νb(m∗, i0) ≥ b/2, νb(m∗, i0 + 1) � b − 1 and
νb(m∗, �logb m∗�) ≥ b/2.
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Let x, y, z be integers such that xsb(r) + ysb(m) + z(b − 1) = d. Define y∗ such
that m∗ = y∗m and let z∗ be an integer such that sb(m∗) = y∗sb(m) + z∗(b − 1) by
Lemma 2.5. Letting m∗∗ = (b�logb m∗�−i0 + 1)m∗, we see that νb(m∗∗, �logb m∗�) =
νb(m∗, �logb m∗�) + νb(m∗, i0) − b and νb(m∗∗, �logb m∗� + 1) = νb(m∗, i0 + 1) + 1 ≤
b − 1. Hence, sb(m∗∗) = 2sb(m∗) − (b − 1) = 2y∗sb(m) + (2z∗ − 1)(b − 1). By Lemma
2.1, there exist nonnegative integers g and h such that gz∗ + h(2z∗ − 1) ≡ z (mod sb(r)).
Let j be a nonnegative integer such that gy∗ + h(2y∗) + j ≡ y (mod sb(r)). Consider

m =
g−1∑
ι=0

m∗bι(�logb m∗�+1) +

h−1∑
ι=0

m∗∗bι(�logb m∗∗�+1)+g(�logb m∗�+1)

+

j−1∑
ι=0

mbι(�logb m�+1)+g(�logb m∗�+1)+h(�logb m∗∗�+1).

By construction, m is a multiple of m and

sb(m) = gsb(m∗) + hsb(m∗∗) + jsb(m)
= g(y∗sb(m) + z∗(b − 1)) + h(2y∗sb(m) + (2z∗ − 1)(b − 1)) + jsb(m)
= (gy∗ + h(2y∗) + j)sb(m) + (gz∗ + h(2z∗ − 1))(b − 1)
≡ ysb(m) + z(b − 1) ≡ d (mod sb(r)).

Note that d | sb(m) since d | sb(m) and d | b − 1. Therefore, gcd(sb(m), sb(r)) = d. �

Combining Propositions 2.4 and 2.6, we obtain the following theorem.

THEOREM 2.7. Let m and r be positive integers. The arithmetic progression Sm,r
contains infinitely many b-Niven numbers.

PROOF. By Proposition 2.6, there exists a multiple m of m such that

gcd(sb(m), sb(r), b − 1) = gcd(sb(m), sb(r)).

Hence, by Proposition 2.4, Sm,r, and thus Sm,r, contains at least one b-Niven number
since Sm,r is a subset of Sm,r. Let this b-Niven number be ηm + r for some nonnegative
integer η. Applying the same argument on the arithmetic progression, Sm,(η+1)m+r
yields another b-Niven number and our proof is complete by induction. �
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