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A GENERALIZATION OF COMMUTATIVE 
AND ALTERNATIVE RINGS II 

ERWIN K L E I N F E L D 

We shall call a linear function on the elements of a ring R skew-symmetric if it 
vanishes whenever at least two of the variables are equal. Here we shall study 
rings R of characteristic not 2 which satisfy the following two identities: 

(1) (x, x, x) = 0, 

(2) F(w, x, y, z) = ((Wj x), y, z) + (w, x, (y, z)) is skew-symmetric. 

Both of these identities hold in alternative rings. The fact that F(w, x, y, z) is 
skewT-symmetric in alternative rings is an important tool in the study of such 
rings. It is also obvious that both identities hold in commutative rings. But 
unlike other recent generalizations of commutative and alternative rings it 
turns out that there exist simple, finite dimensional algebras of degree two which 
are neither alternative nor commutative and satisfy (1) and (2). Nevertheless 
we are able to determine all those simple rings R which possess an idempotent e 
such that (e, R) ^ 0, while (e, e,R) = 0 = (R, e, e), for it turns out that they 
must be alternative. 

Because of our assumptions about e, we can use (1) to prove that (e, R, e) = 0. 
But then we have the usual Peirce decomposition R = Ru 0 Rw 0 R0i 0 RQ0, 
where xtj G Rtj if and only if e(xtj) = ixtj, {xtj)e = jxtj, and i,j = 0, 1. We shall 
now concern ourselves with the multiplication table of the Peirce decomposition. 
We have 0 = F(e, yio, e, xn) = ((e,;yio),e,a;ii) + 0,3>io, (>,^ii)) = (yio,e,xn) = 
— yioXn. Thus 

(3) R10Ru = 0. 

Similarly 0 = F(xn,e,e,y01) = ((xllfé),e,y01) + (xu,e, (e,y01)) = - ( x n ^ ^ o i ) = 
— Xuyoi. Thus 

(4) R11R01 = 0. 

Also 0 = F(e, you e, x00) = ((e, 3/01), e, x00) + (e, you (e, x00)) = —(you e, xQ0) = 
— 3̂ 01̂ 00. This shows 

(5) 7?oii?oo = 0. 

Finally 0 = F(x00j e, e, y10) = ((x00, e), e, y 10) + (x0o, e, (e, yi0)) = (x00, e, y10) = 
— ̂ 00^10, so t h a t 

(6) i?ooi?io = 0. 
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Because of (3), it follows that 0 = (y10l Xu,e) = (e,yio,Xn) = (yio, e, xn). Also by 
expansion (xn, e, yio) = 0. But then 0 = F(e, xn, e, y10) = ((e, Xn), e, yio) + 
(e, Xu, (e, yio)) = (e, Xu, yio). A linearization of (1) implies that (yio, Xu, e) + 
(xn, e, yio) + (e, yio, xn) + (yio, e, xn) + (xn, yio, e) + (e, xllf yio) = 0. But five 
of these associators have already been shown to be zero. Hence the sixth must be 
zero. From 0 = (e, Xu, yio) = ( in, yio, e), it follows that e(xuy10) = Xuyio, and 
(^n^io)^ = 0. Thus Xn^io € Rio. We have shown 

(7) RnRio C Rio. 

By switching subscripts in the proof of (7) and by going to the anti-isomorphic 
copy of R, as well as by a combination of the two we are quickly led to 

(8) RooRoi C Rou 

(9) RoiRn C Rou 

(10) RioRoo C Rio. 

Then 0 = F(e, x10, e, yio) = ((e, x10), e, yio) + (e, x10l (e, y10)) = (xi0, e, yio) + 
(e,Xio,yio) = —^îo^io + Xio3̂ io — e(xi0yio) = —e(xioyio). AlsoO = F(e,Xi0,yio,e) 
= ((e, *io), yio, e) + (e, xio, (yio, e)) = (xi0, yio, e) — (e, Xi0, yio) = (xi0y10)e — 
xio^io + e(xi0yio) = (xioyio)e — Xio îo. Clearly Xio îo G Roi. Thus 

(11) RioRio C ^oi-

By reversing subscripts in the proof of (11), we obtain 

(12) RoiRoi C ^io. 

But then 0 = F(e,Xi0,yoi,e) = ((e,Xi0),yoi,e) + (e,Xi0, (yoi,e)) = (xio,yoi,e) + 
(e, xio, yoi). Also 0 = F(xi0, e, y0i, e) = ((x±0, e), y0i, e) + (xï0, e, (you e)) = 
— (xio, you e) + (xio, e, y0i) = — (xi0, you e). But then (xi0, you e) = 0, so that 
(e, Xio, yoi) = 0. Expanding one gets (xioyoi)e = Xio^oi = e(xi0yoi). Thence 
Xio3>oi £ Riu proving 

(13) RioRoi C Riu 

Reversing subscripts in the proof of (13) one obtains 

(14) RoiRio C Roo. 

A linearization of (1) implies that 0 = (e, Xi0, Xio) + (xio, e, xi0) + (xio, ffio, e). 
Expanding these associators and using (11), we see that 0 = Xio2 — Xio2 + #io2 = 
#io2. Thus 

(15) xX0
2 = 0 = Xio îo + yio^io. 

By reversing subscripts in the proof of (15) it follows that 

(16) xoi2 = 0 = Xorjoi + yoiXou 
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Then F(a10, e, cn, 60i) = ((aio, e), cn, 60i) + (aio, e, (cluboi)) = —(^10,^11,^01) — 
(aio, e, 601^11) = 0, using (3), (4) and (9). Hence we may use (2) to obta in 
0 = F(a10, e, boi, cn) = ((aio, e), 601, cn) + (a i 0 , e, (601, d i ) ) = — (a™, 601, di) + 
(aio, e, boiCn) = — (a™, &01, Cn), using (4) and (9). Therefore 

(17) (R10, R01, Ru) = 0 and (R10R01)Ru C RioRoi-

Again 

0 = ^(ci i , 601, e, aio) = ( (d i , &01), e, a10) + (cn, 601, (e, «10)) 

= — (601^11, e, aio) + (cn, 601, «10) 
= \Cuj box, aio) 

= — Cn(&oi#io), 

using (4), so t h a t 

(18) (Ru, R01, Rio) = 0 and Rn(RoiRio) = 0. 

Next 

0 = F(e, 601, aio, cn) = ((e, 60i), «10, Cn) + (e, 601, (aio, Cn)) 

= —(601, aio, Cn) — (e, 601, Cnaio) 
= — (boi, aio, £11), 

using (4) and (14). Hence 

(19) ORoi, i^io, Ru) = 0 and (R01R10)RU = 0. 

Again 

0 = F(cn, aio, e, Ô01) = ((cn, aio), e, &01) + (d i , aio, (e, &01)) 
= (^naio, e, boi) — (cu, aio, &01) 

= ~~(cn, aio, #01), 

using (4) and (7). Hence 

(20) (Rn,Rio,Roi) =0 and Rn(RioRoi) C RIQROL 

Similarly, reversing subscripts in the proofs of (17)-(20) we get 

(21) (R01, Rio, Roo) = 0 and (R01R10)R0o C R01R10 ; 

(22) (Roo, Rio, R01) = 0 and R0o(RioRoi) = 0 ; 

(23) (R1Q, R01, Roo) = 0 and (R10Roi)Roo = 0 ; 

(24) (i?0o, JROI, i?io) = 0 and R0o(RoiRio) C RoiRio-

We are now ready to construct an ideal. 

T H E O R E M 1. A = R10Roi + Rio + Roi + R01R10 is an ideal of R. 

Proof, (R1QRoi)Rii CR10R01 C A, using (17). (RwRoi)Rio CR11R10 CR10CA, 
using (13) and (7). (RioRoi)RoiCRnRoi = 0, using (13) and (4). (R10Roi)Roo = 0, 
using (23). Rn(RioRoi) C R10R01 C A, using (20). R10(R10R0i) C R10R11 = 0, 
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using (13) and (3). R0i(R1QRoi) C RoiRn C Roi C A, using (13) and (9). 
Roo(RioRoi) = 0, using (22).R1QRu = 0, using (3).R10Rio C^oi C A, using (11). 
RioRoi C A. ThenR10Roo CRioCA, using (10). RnR10 CRioCA, using (7). 
RioRio C Roi C A, using (11). RoiRio C A, while RooRio = 0, using (6). Then 
RoiRn CRoiCA, using (9). RoiRw C A, while R01R01 CRioCA, using (12). 
Theni^oi^oo = 0, using (5). Similarly RnRoi = 0, using (4). RioRoi C A, while 
RoiRoi C i ^ i o C i , using (12). R00Roi C Roi C A, using (8). (R0iRio)Ru = 0, 
using (19). (RoiRio)Rio C RooRio = 0, using (14) and (6). (R0iRio)Roi C RooRoi C 
Roi C A, using (14) and (8). (R0iRio)Roo C RoiRio, using (21). R11(R01R1Q) = 0, 
using (18).R10(RoiRio) CRioRooCRio C A, using (14) and (10). Rol(RoiRio) C 
RoiRoo = 0, using (14) and (5). i^ooC^oi^io) C RoiRio, using (24). This completes 
the proof of the theorem. 

COROLLARY. A = R, ROIRIO = Roo, RioRoi = Rn, RuRu C Rn, RooRoo C Roo, 
RnRoo = 0, ROQRH = 0. 

Proof. Since R is simple, either A = 0 or A = R. Bu t ^ 4 = 0 implies Ri0 = 
Roi — 0, so t ha t Rn + Roo = R and hence (e, R) = 0, contrary to assumption. 
T h u s A = R. But then it follows from the directness of the Peirce decomposition 
t h a t i^ioi^oi = Rn, and thati^oii^io = î oo- The rest of the corollary follows from 
subst i tut ing the latest two equalities in (17), (21), (22) and (23). 

T H E O R E M 2. Ris alternative, hence is either associative or a Cayley vector matrix 
algebra over its center. 

Proof. As in the case of an al ternative ring it is possible to prove t h a t all 
associators wTith components from Rtj vanish except possibly those which have 
all three components in the same RiU or those which have a t least two com­
ponents in the same Rtj, where i 9e j . Most of the calculations are simple 
applications of the appropriate equation chosen from (3)-(14) and (17)-(24). 
W e present now a sample of those which require additional calculations. T h u s 
it is a direct consequence of (3) and the corollary tha t (Rio, Rn, Rn) = 0, and 
(Rn, Rio, Rn) = 0. But then 

F(e, xio, yn, zn) = ((e, Xi0), yn, zn) + (e, x10, (yn, *n)) 

= (*io, yiu «a) + (e, Xio, wn) = 0. 

Hence 

0 = F(yn, zn, e, x10) = ((yn, Zn), e, x10) + (yu, zxl, (e, x10)) 

= (wu, e, x10) + (yn, zlu x10) = (yu, zlu x10). 

This proves (Rn, Rn, Rio) = 0. In a like manner we can establish (Roi, Rn, Rn) 
= 0, (Rio, Roo, Roo) = 0, and (Roo, Roo, Roi) = 0. The remaining associators in­
volving either two elements from Rn or two elements from Roo are easy to dispose 
of. Suppose we need to prove (xn, yio, Zoo) = 0. I t is clear t ha t (xu, 2oo, yio) = 0, 
using (6) and the corollary. Then (z0o, yio, Xn) = 0, using (6) and (3). Also 
(zoo, Xu, yio) = 0, using the corollary, (7) and (6). But (y10, z0o, xn) = 0, using 
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(10), (3) and the corollary, while (yio, xn, 2oo) = 0, using (3) and the corollary. 
But a l inearization of (1) implies t h a t (xn, yio, Zoo) + (yio, z0o, Xu) + (z0o, xn, y10) 
+ (xn, Zoo, yio) + (yio, #n , Soo) + Ooo, yio, Xn) = 0. Since five of the six te rms 
are known to be zero then (xn, y10, z0o) = 0. W e can establish (y10, xn, z0i) = 0 
using (3) and (4). Also (#n, z0i, yio) = 0, as a result of (18), while (zou yio, Xn) = 0, 
because of (19). Now (17) implies (yio, zou Xu) = 0, while (20) implies 
(#n, ^10, Zoi) = 0. By using the linearization of (1) we obtain (s0i, xlu yio) = 0. 
T h e remaining calculations can be obtained by reversing subscripts in the 
previous calculations as well as by going to the anti-isomorphic copy of R. For 
those associators which do not vanish we mus t prove the a l ternat ive law. First 
we will establish t h a t Ru and Roo are associative. In an arb i t rary ring we have the 
Teichmuller ident i ty (wx, y, z) — (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z. 
Therefore (wnXiU yn, z10) — (wluxnyii,z1()) + (wn,Xii,yiiZio) = Wii(xu,yu,z10) 
+ (wiu #ii) yii)zio- Then using the corollary, (7), and the fact t h a t 

0 = (i?n, Rn,Rio), 

which we established earlier in the proof, we see t ha t (^n , x iL, yn)zio = 0. 
Consequently 

(25) (Ru, Rn, Rn)Rio = 0. 

Let B be the associator ideal of Ru. This ideal can be described as the addi t ive 
subgroup generated by all associators and right multiples of associators in­
volving elements of Rn. T h e same ideal results if we subst i tu te left multiples for 
r ight multiples. Since (Rn, Rn, Rn) C i^n, and (Rn, Rn, Rio) = 0, then use of the 
corollary leads to [Rn(Rn, Rn, Rn)]Rio = Rn[(Rn, Rn, Rn)Rio] = 0, using (25). 
T h u s 

(26) BR10 = 0. 

Since we showed earlier t h a t (Ru, Rio, Roi) = 0, then 0 = (B, R1Q, R01) = 
B(RIQRQI). N O W we have all the information necessary to prove t h a t 
B(R10Roi + Rio + Roi + RoiRio) = 0, or BA = 0, where A = RioRoi + Rio + 
Roi + RoiRio- But the corollary established t h a t A = R, so we mus t have B = 0. 
In similar fashion if C is the associator ideal of R0Q, then CA = 0, so t h a t C = 0. 
Consequently Rn and Roo are associative subrings of R. Expanding, 

/ = (xio,yio,zn) = (xioyio)zn = — (yio^io)zn 

= —(yio, #io, Zn), 

using (3) and (15). Then 

g = (xio, Zn, yio) = -x10(znyio) 

= (znyio)x10 = (zn,yio,x10), 

using (3), (15), (7) and (11). Interchanging Xio and yio in the last equat ion we 
obtain h = (yio, zn, Xio) = (zn, Xio, yio). Using a linearization of (1) we get 
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f - f + 2g + 2h = 0, implying g = —h. Also F(x10, yio, e, zn) = ((xi0j yl0), e, zn) 
+ (*io, yio, (e, zu)) = ((a;™, ^10), e, zn) = (wou e, zu) = 0. Thus (2) implies 
0 = F(x10, e, y10, zn) = ((x10, e), y10, zn) + (x10j e, (y10, zn)) = -(x10j y10, zn) -
(xio, e, zny10) = —f + Xio(zuyio) = —/ - (*io, Su, yio) = —/ - g- But then 
f = —g = h. This proves the alternative law for the triple Xio, yio, zn. Inter­
changing subscripts in the proof and going to the anti-isomorphic copy of R 
yields the same result for x01, y0i, z0o, then for Xio, yio, z00 and finally for x0i, you zn. 
Note that F(x10l e, y10, z10) = ((x10,e),yio,Zio) + (x10,e, (yio,2io)) = —(x10, yio,z10) 
+ (xio,e,w0i) = — (xio, yio, Z10), using (11). Now it follows from (2) that we have 
the alternative law for the triple Xio, yio, Zio- Then interchanging subscripts in the 
proof we are led to the same result for x0i, you z0u Let a = F(x10, e, yi0, zQ1) = 
((*io, e), yio, zoi) + (xio, e, (yio, z01)) = ~-(x10t yio, z0i) — Xi0(yioZoi) = — 
(*io, yio, 201) = (yio, ffio, *oi), using (2). Since — (xio, yio, Zoi) = — 0*aoyio)soi = 
Zoi(xioy10) = — (zoi, #10, yio), using (16), we see that a = (y10t Xi0, z0i) = — 
(xio, yio, Z01) = — (zou #10, yio) = (zou yio, #10). By using a linearization of (1) we 
get (yio, Zou #10) + (#10, Soi, yio) = 0. Let b = (yio, 201, #10) = -(#10, 201, yio). 
Then -a = F(xi0, e, zou yio) = ((#io, e), z0i, yio) + (#10, e, (zou yio)) = -
(#10, Z01, yio) + (#10, e, Woo — W11) = — (#10, Zou yio) = b. This proves the alterna­
tive law for #io, yio, £oi- By interchanging subscripts in the proof we get the same 
result for #01, yoi, zi0. Thus we have proved that R is alternative. Then by a 
theorem of A. A. Albert [1] R must be either associative or a Cayley vector matrix 
algebra of dimension 8 over its center. This completes the proof of the theorem. 

In [2] we gave an example of a three dimensional algebra with basis 1, x, y such 
that xy = 1, while yx = x2 = y2 = 0. This algebra turns out to be simple, 
power-associative, quadratic and every commutator lies in the center. Hence it 
certainly satisfies (1) and (2). Moreover this algebra has an idempotent 
e = | (1 + x + y), with ey — ye = \ 7^ 0. Clearly this algebra is neither com­
mutative nor alternative. This shows the necessity of assuming the existence of a 
Peirce decomposition relative to e before one can hope to prove alternativity. 
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