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A NON-HAUSDORFF MULTIFUNCTION ASCOLI 
THEOREM FOR ^-SPACES 

PEDRO MORALES 

1. I n t r o d u c t i o n . A non-Hausdorff Ascoli theorem for continuous func
tions was established in [6]. The present purpose is to extend this result to 
point-compact continuous mul t i funct ion , using Levine's generalization for 
closed subsets [12]. The paper is organized as follows: the object of section 2 
is to establish the necessary multifunction lemmas and to introduce the notion 
of a Tychonoff set; section 3 generalizes to multifunction context the partial 
exponential law of R. H. Fox [9, p . 430], and establishes a special exponential 
law for multifunctions; section 4 concerns the crucial properties of even con
t inui ty for multifunctions, introduced in [8] ; the main theorem of the paper is 
established in section 5. In this section we show tha t the main theorem of the 
paper contains all known Ascoli theorems for continuous functions or point-
compact continuous mutifunctions. 

Unexplained terminology is tha t of Kelley [11]. 

2. M u l t i f u n c t i o n s . We review the established definitions for multifunc
tions [3; 15; 22]. Let X, Y be non-empty sets. A multifunction is a point to set 
correspondence / : X —•> F such tha t , for all x £ X, fx is a non-empty subset 
of F. For i Ç I , B Ç F it is customary to write f(A) = UxeAfx, f -(B) = 
{x : x e X a n d / x H ^ ^ 0} a n d / + ( £ ) = ( x : x G l a n d / x Ç B). If F is 
a topological space, a multifunction / : X —•> F is point-compact (point-closed) 
iîfx is compact (closed) for all x £ X. If X, Y are topological spaces, a multi
f u n c t i o n / : X —» F is lower semi-continuous (upper semi-continuous) if f~(U) 
(f + (U)) is open in X whenever U is open in F A mul t i func t ion / : X —•> F on 
a topological space X to a topological space F is continuous if it is both lower 
semi-continuous and upper semi-continuous. Henceforth, the set of all point-
compact continuous multifunctions, continuous functions, on a topological 
space X to a topological space F will be denoted &(X, F ) , C(X, F ) , respec
tively. 

2.1. LEMMA. Let f be a continuous multifunction on a topological X to a regular 
space Y and let U be an open subset of F. 

(i) If x (z f~(U) there exists a closed neighbourhood V of x such that V Ç 

-(to. 
(ii) If x £ f+(U) and f is point-compact, there exists a closed neighbourhood V 

of x such that V Qf+(U). 
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Proof, (i) Let y £ fx P U. There exists an open neighbourhood W of y 
such t ha t W Q U. Then x €f~(W) Qf~(W) C / - ( [ / ) , and since / is con
tinuous, V = f~(W) is the required closed neighbourhood of x. 

(ii) Since fx C [7, / x is compact and F is regular, there exists an open 
neighbourhood W of fx such tha t fxQWQ WQ U. Then x ^ / + ( l f ) Ç 
f + (W) Ç^f + (U). T h u s F = / + (JF) is the required closed neighbourhood 
of x. 

Let { Yx}xex be a family of non-empty sets. The m-product P{ Yx : x Ç X] of 
the Fa; is the set of all multifunctions / : X —» U ^ x F ^ such t h a t / x C F^ for 
all x Ç I . In the case Yx = F for all x f I , the m-product of the F^, denoted 
F m X , is the set of all multifunctions on X to F. For x Ç X , the x-projection 
prx : P{YX : x £ X} —> Yx is the multifunction defined by £ r x / = / x . If the Yx 

are topological spaces, the pointwise topology rp on P{ F x : x G X} is defined 
to be the topology having as open subbase the sets of the forms prx~(Ux), 
prx

+(Ux), where Ux is open in Yx, x G X [13; 20]. 

For F Ç YmX, x Ç X, we write F[x] = \J f(zFfx. Let F be a topological space. 
We say tha t a subset F of F m X is pointwise bounded if F[x] has compact closure 
in F for all x £ X. We say tha t a subset T of YmX is Tychonoff if, for every 
pointwise bounded subset F oî T,T C\ P{F[x] : x £ X} is -^-compact. We cite 
four examples: 

(1) Yx is Tychonoff, by the classical Tychonoff theorem. 
(2) YmX is Tychonoff, by the theorem of Lin [13, p. 400]. 
(3) The set of all point-closed members of YmX is Tychonoff, by [7, Corol

lary 2]. 
(4) (YmX)0, the set of all point-compact members of YmX, is Tychonoff, 

by [7, Corollary 3]. 

2.2 LEMMA. / / F is a pointwise bounded subset of a Tychonoff set T, then the 
Tp-closure of F in T is compact. 

Proof. Let F denote the rp-closure of F in T. Since T C\ P{F[x] : x Ç X) 
is a Tp-compact subset of T, it suffices to show tha t F C P{F[x] : x £ X}. Let 
/ £ F. We mus t show tha t , for x G X, y £ fx and an open neighbourhood V of 
3/, F[#] H 7 ^ 0 . Since M = {h : h ^ T and hx P F F^ 0} is a ^ -ne ighbour
hood of / in r , there exists h' ^ M C\ F. Then ^ x H F ^ 0 and fc'x C F[x]} 

so F M P V y£ 0. 

Let X , F be topological spaces. The multifunction ( / , x) —>fx on YmX X X 
to F, or any restriction, will be denoted by the sumbol co. Let F Ç F m X . A 
topology r on F is said to be jointly continuous if co : (F, r) X X —> F is con
tinuous [20, p . 48]. The compact open topology rc on YmX is defined to be the 
topology having as open subbase the sets of the forms {f:f(K) C U}, 
{ f : fx Pi t / ^ 0 for all x Ç X } , where i£ is a compact subset of X and U is 
open in F [14, p . 742; 20, p . 47]. Obviously r c is larger than TV. 
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3. Exponential law. Let X, F, Z be topological spaces. An element / G 
£m(xxY) determines the function / : x —»/(x, • ) on X to ZmY. The function 
JLC i / ^ / , called the exponential map, is a bijection of Zm ( X x F ) onto (ZmY)x. 
When r is a topology on ^ {X, F), we say that (X, F, Z, r) satisfies the 
partial exponential law if 

t(<g{X X F, Z)) ç C{X, ( ^ ( F , Z), r ) ) . 

If, further, equality holds, (X, F, Z, T) is said to satisfy the exponential law. 
We extend Lemma 1 of R. H. Fox [9, p. 430] to mul tif unctions: 

3.1. LEMMA. (X, F, Z, rc) satisfies the partial exponential law. 

Proof. Let / 6 ^ ( X X F, Z). Let x £ X. Since /(x, • ) = foj, where 
i(y) = (x> y)if(xi ' ) is continuous [22, p. 35]. T h u s / maps X into ^ ( F , Z). 
It remains to show t h a t / : X —> (&(Y, Z), rc) is continuous. 

Let M = {h : h £ të(Y, Z) and /*(X) £ f/}, where Z is a compact subset 
of F and f/ is open in Z. Let x0 G f~l(M). Then /(x0, • ) G M, so |x0} X 
-K" Qf+(U). By the theorem of Wallace, there is a neighbourhood F of x0 

such that VX K C / + ( [ / ) . Let x G F. Then, for all y € K, f{x)y = f(x,y) ç 
£7, so/(x) (K) C [/. Thus x G /_ 1(^0> a n d we have shown that/_1(ikf) is open 
i n Z . 

Let M = {h:he &(Y, Z) and hy H [7 ^ 0 for all y G # } , where 2£ is a 
compact subset of F and U is open in Z. Let x0 G f~l{M). Then/(x0 , • ) G M, 
so {x0} X i ^ Ç f~(U). There is a neighbourhood F of x0 such that V X K C 
/ - ( £ / ) . Let x 6 F. Then, for all y G K,f{x)yr\ U j* 0, so /(x) G M. Thus 
x G / _ 1 ( M ) , and we have shown tha t / _ 1 (M) is open in X. 

Let X, F, Z be topological spaces. The symbol Sk(X X F, Z) denotes the 
set of all mul tif unctions / G (Zm(XXF))0 such that, for each x £ X and each 
compact subset K of F, the restrictions/ |{x} X Y, f \X X K are continuous. 

3.2. LEMMA. If Z is regular, then fx-l(C(X, (<i£(F, Z), rc)) C 5, (Z X F, Z). 

Proof. Le t / G M _ 1 ( C P C ( ^ ( F, Z) , r c ) ) . Since/(x, • ) is point-compact for all 
x G X, / is point-compact. 

Let x G X be fixed. Consider j(y) = (x, y) as the homeomorphism of F 
onto {x} X F; t h e n / |{x} X F = /(x) o j _ 1 is continuous. 

Let (xo, yQ) € ( / |X X # ) - (£ / ) = / - ( £ / ) C\ (X X K), where K is a com
pact subset of F and C7 is open in Z. Then y0 G (f(x0))~(U) C\ K. By Lemma 
2.1, there is a closed neighbourhood F of yo such that F C (/(x0) )"(£/). Then 
i£' = F Pi K is a compact neighbourhood of yQ in X, and 

M = {h: h G ^ ( F , Z) and /ry Pi f/ ^ 0 for ail y G # '} 

is a neighbourhood of/(x0) in ( ^ ( F , Z), rc). Since/ is continuous,/ - 1 (M) X 
K' is a neighbourhood of (x0, yo) in X X K, which is contained in f~(U) P 
(XXiO.Nowlet(x 0 , ;yo) G ( / |X X K)+(U) = /+([/) n (X X # ) , wherein is 
a compact subset of F and [7 is open in Z. Then y0 G (/(xo) )+( £/) P K. There 
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exists a closed neighbourhood V of y0 contained in (](xo))+(U). Then K' = 

V H K is a compact neighbourhood of yQ in K, and 

M = {ft : ft G ^ ( F , Z) and ft(iT) C [/} 

is a neighbourhood o f / (# 0 ) in ( ^ ( F , Z ) , rc). S i n c e / is continuous, f~~l(M) X 

Kf is a neighbourhood of (x0, 3>o) in X X i£, which is contained in f+(U) Pi 

(X X 2 0 . 

Let X = (X, T) be a topological space. T h e k-extension of r is the family 
fe(r) of all subsets U of X such t ha t [ / O i£ is open in K for every compact 
subset K of X . I t is clear t h a t k(r) is a topology on X which is larger than r. 
A topological space (X, r) is called a k-space if r = fe(r) [5, p . 79]. Locally 
compact spaces and spaces satisfying the first countabil i ty axiom are familiar 
examples of ^-spaces. 

Let X, Y be topological spaces. A f u n c t i o n / : X —> F is called k-continuous 
if its restriction to each compact subset of X is continuous [4, p . 275]. Hence
forth, the set of all ^-continuous functions on X to F will be denoted Ck(X, F ) . 
I t can be shown tha t a topological space X is a &-space if and only if Ck(X, F) 
= C(X, Y) for every topological space F [16, Theorem 3.2]. 

A topological space X is a ft3-space if Ck(X, Y) = C(X, Y) for every regular 
space F [19, p. 195]. T h u s a &-space is a &3-space bu t not conversely. In fact, 
the product of uncountably many copies of the real line, which is not a &-space, 
is a &3-space [19, Theorem 5.6 ( i)] . 

3.3. LEMMA. If X is compact, Y is a k?,-space and Z is regular, then 

Sk{X X Y,Z) = V(XX Y,Z). 

Proof. For topological spaces Uy V, W let *%\xk(U X V, W) denote the set 
of a l l / £ (Wm{UXV))o such that, whenever K, K' are compact subsets of U, V, 
respectively,/|X X K' is continuous. Then <^( F X X, Z) C ^ , x , ( F X X, Z) ; 
we will prove the inverse inclusion. 

L e t / G ^ -x* (F X X, Z). Let y G F. Let j O ) = (y, x) be the homeomor-
phism of X onto {3/} X X. Since X is compact, f(y) = ( / |{;y} X X) oj is 
continuous, so /maps F into ^ ( X , Z). Let X be a compact subset of F, so that 
g = / |i£ X X is continuous. Then, by Lemma 3.1, g : K —•> ( ^ ( X , Z), rc) is 
continuous. But g = f\K, so / is ^-continuous, and we have shown that 
VkXk(YX X, Z) C ^(Ck(Y, ( ^ ( X , Z), r c))) . Since F is a *3-space and 
( ^ ( X , Z) , r c ) is regular [20, p. 48], C,(F, ( ^ ( X , Z), rc)) = C(Y, (V(X, Z), 
r c)) . By Lemma 3.2, 

M-U^CF, ( ^ ( X , Z ) , r c ) ) ) QSk(YXX,Z). 

Because X is compact, Sk(Y X X}Z) = ^ ( F X X, Z). We have shown that 
^ , X , ( F X X , Z ) = ^ ( F X X , Z ) . 

Because (x, y) —> (3;, x) is a homeomorphism of X X F onto F X X, this 
last equation may be written ^kXk{X X F, Z) = ^ (X X F, Z). Then, by 
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the definition of Sk(X X Y,Z), we have V (X X Y, Z) Q Sk(X X F, Z) C 
^ ( I X F,Z) = ^ ( I X F , Z ) . 

The main result of this section now follows from Lemmas 3.1, 3.2 and 3.3: 

3.4. THEOREM. If X is compact, Y is a kz-space and Z is regular, then 
(X, Y, Z,TC) satisfies the exponential law. 

4. Even continuity. Let X, Y be topological spaces and let F C FmX. 
We say that F is evenly continuous if, whenever x Ç X, K is a compact subset 
of F and F is a neighbourhood of K, there exist neighbourhoods U, W of 
x, K, respectively, such that 

( a ) / e F and fxHW 5* 0 imply [ / C / - ( F ) , and 
( b ) / € F a n d / x Ç IF imply E / C / + ( 7 ) . 

This is an extension to multifunction context of the original Kelley-Morse 
definition [11, p. 235], where points of F have been generalized to compact 
subsets of F. It is easily verified that this definition extends also the multi
function extension of even continuity due to Y. F. Lin and D. A. Rose [14, 
p. 742]. If F is evenly continuous, then every member of F is lower semi-
continuous; if, further, every member of F is point-compact, then every 
member of F is also upper semi-continuous, hence continuous. 

4.1. LEMMA. Let F be a set of point-compact multifunction s on a topological 
space X to a regular space F, and let F denote the rp-closure of F in ( YmX)0. If F 
is evenly continuous, then Fis evenly continuous and rv on F is jointly continuous. 

Proof. Let x £ X, let K be a compact subset of F, and let F be a closed 
neighbourhood of K. There exist open neighbourhoods U, W of x, K, respec
tively, such that, for all / G F,fxC\W ^ 0 implies U Ç f~(V) and fx Q W 
implies U Qf+(V). Let g G F be such that gx C\ W ^ 0. Let {ga} be a net 
in F which is r^-convergent to g. Since {h : h £ (Fm X)0 and hx C\ W ^ 0} is 
a Tp-neighbourhood of g, gax r\ W ^ 0 eventually, so £/ £ ga~(F) eventually. 
Suppose that £/ <2 g~~(F). Then, for some wG U, guQ Y — F, so g«w £ F — F 
eventually, which is a contradiction. Now let g £ ^be such thatgx Ç W. Let {ga\ 
be a net in F which is ^-convergent to g. Since {h : h £ (Fm X)0 and hx Ç 117} 
is a Tp-neighbourhood of g, gax Ç W eventually, so U C g«+(F) eventually. 
Suppose that £7 $£ g+ (F) . Then, for some u G £/, g^ H ( F — F) ^ 0, so 
gau Pi ( F — V) T£ 0 eventually, which is a contradiction. This completes the 
proof of the even continuity of F. 

Let co : (F, TP) X X —> F. Suppose the (/, x) Ç w~(G), where G is open in F. 
Choose y £ fx C\ G. Since F is evenly continuous, there exist neighbourhoods 
U, Woî x, y, respectively, such that g Ç F and gx C\ W 9^ 0 imply U Q g -(G). 
Then {h : h £ F and hx C\ W ?^ 0} X £/ is a neighbourhood of (/, x), which 
is contained in co~(G). Now suppose that (/, x) G w+(G), where G is open in F. 
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Since F is evenly continuous and fx is compact , there exist neighbourhoods 
U, W of x, fx, respectively, such t ha t g G F and gx Cl W imply C7 C g+(G). 
Then {fe : h G ^ and k Ç I f j X [/ is a neighbourhood of (/, x ) , which is 
contained in co+(G). 

4.2. L E M M A . Let f : X X Y —> Z be a continuous multifunction. If X is com
pact and Z is regular, then the set F = { f(x, • ) : x G X} is evenly continuous. 

Proof. Let 7 G F, let K be a compact subset of Z, and let F be an open 
neighbourhood of K. Let W be a closed neighbourhood of K which is contained 
in V. S i n c e / ( • , y) is continuous, ifx = / ( • , ;y)~(W0 and K2 = f( - , y)+(W) 

are closed in X , therefore compact . T h u s the second projections pr2 : i f i X 
F - > Y,pr2 :K2XY-+ F a r e closed, so tha t Ui = Y - pr2[(K1 X Y) - f~(V)], 

U2= Y - pr2[(K2 X Y) -f + {V)} are open in F. Since i f i Ç / ( - , y)~(V), 

K2Qf( • , y)+(V), we have i f i X {y} Çf'(V), K2 X {̂ } ^f+(V). Hence 
3> g N ( « i X F) - / " ( F ) ] , 3; g £ r 2 [ ( i f 2 X F) - / + ( 7 ) ] , t h a t i s , y G tA H 
£/2 = C/. 

Let g G F be such t ha t gy Pi I f ^ 0, so tha t g = / ( x , • ) for some x G if 1. 

L e t w G U, so that u i pr2[(K1X Y) - f~(V)}. Then (x, u) G / " ( F ) , t h a t is, 
gu C\ V 9^ 0. Now let g G i7 be such t ha t gy CI 1 /̂, so t ha t g = / ( x , • ) for 
some x G if2. Let u G £/, so t ha t w G pr2[(K2 X Y) - f+(V)]. Then (x, u) G 
/ + ( F ) , t ha t is, gw C F . 

5. Ascol i t h e o r e m . Let Z b e a topological space and let A Ç X . Following 
[12], we say t ha t 4̂ is g-closed iî Â Q U whenever U is an open set containing A. 

We are in position to establish the non-Hausdorff Ascoli theorem of the paper: 

5.1. T H E O R E M . Let X, Y be topological spaces. Let T be a Tychonoff subset of 
(YmX)0 and let f Ç (T H ^(X, F ) , rc). If Y is regular, then the following 
conditions are sufficient for the compactness of F: 

(a) Fis g-closed in T C\ <é(X, F ) , 
(b) F is pointwise bounded, and 
(c) F is evenly continuous. 

If, further, X is a k^-space, then the conditions (a) , (b) and (c) are necessary for 
the compactness of F. 

Proof. Sufficiency. Let F be the r^-closure of F in T. Since r ç (YmX)0, 
(c) implies, by Lemma 4.1, t ha t w : (F, TP) X X —» F is continuous and F 
is evenly cont inuous; in part icular F ÇZ ^(X, Y). Then , by Lemma 3.1, 
œ : F —> ( ^ ( X , F ) , r c ) is continuous. Since T is a Tychonoff set, (b) implies, 
by Lemma 2.2, t ha t F is r^-compact, so cô(F) = F is a r c -compact subset of 
m ^(X, Y). Bu t (a) implies, by Theorem 2.9 of [12], t ha t F is g-closed in 
(F, rc). Since (F , r c ) is compact , Theorem 3.1 of [12] implies t ha t F is rc-
compact . 
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Necessity. Since {T C\ ^ {X, Y), r c) is regular, Theorem 3.5 of [12] implies 

t h a t F is g-closed in T Pi ^ {X, Y). Let x £ X. Since .F is r^-compact, F[x] = 

prx(F) is compact [3, p. 116], so F[x] has compact closure in Y. Since the in
clusions : F-> (^(X, F),TC) is continuous, Theorem 3.4 implies that/i_1W = 

co : F X X —> F is continuous. Then, by Lemma 4.2, F = {w(f, • ) : f £ F} 
is evenly continuous. 

5.2. COROLLARY. Let F C {*$ {X, F ) , r c ) . / / 7 w regular, then the following 
conditions are sufficient for the compactness of F: 

(a) F is g-closed in ^ {X, F ) , 
(b) F is pointwise bounded, and 

(c) F is evenly continuous. 
If y further, X is a k^-space, then the conditions (a) , (b) and (c) are necessary for 
the compactness of F. 

5.3. COROLLARY. Let F Ç (C(X, Y), r c ) . If Y is regular, then the following 
conditions are sufficient for the compactness of F: 

(a) F is g-closed in C(X, F ) , 
(b) F is pointwise bounded, and 

(c) F is evenly continuous. 
If, further, X ix a kz-space, then the conditions (a) , (b) and (c) are necessary for 
the compactness of F. 

Remarks. (1) Let R be the equivalence relation on a regular space introduced 
in [6, p. 634]. If E* is closed then E C Ë C £*, and therefore £ is g-closed. 
If i£ is compact, then X* is closed. Consequently, Corollary 5.3 contains the 
Theorem 4.1 of [6, p. 635], which in turn contains the well known Ascoli 
theorems of Arens [1, p. 491], Myers [17, pp. 497-498], Gale [10, p. 304], 
Kelley-Morse [11, p. 236], Bagley-Yang [2, pp. 704-705] and Corollary 4.4 of 
Noble [18, p . 403]. 

(2) A non-Hausdorff Ascoli theorem for point-compact continuous multi-
functions on a &-space was established in [8]. I t was shown tha t this theorem 
contains the multifunction Ascoli theorems of Mancuso [15, p. 470] and 
Smithson [21, p . 259]. Since a &-space is also a &3-space, our Theorem 5.1 
contains this result. 

REFERENCES 

1. R. Arens, A topology for spaces of transformations, Ann. of Math. ^7 (1946), 480-495. 
2. R. W. Bagley and J. S. Yang, On k-spaces and function spaces, Proc. Amer. Math. Soc. 17 

(1966), 703-705. 
3. C. Berge, Topological spaces (MacMillan Company, New York, 1965). 
4. R. Brown, Function spaces and product topologies, Quart. J. Math. Oxford Ser. (2) 15 

(1964), 238-250. 
5. D. E. Cohen, Spaces with weak topology, Quart. J. Math. Oxford Ser. (2) 5 (1954), 77-80. 
6. G. Fox and P. Morales, A non-Hausdorff Ascoli theorem for k^-spaces, Proc. Amer. Math. 

Soc. 39 (1973), 633-636. 

https://doi.org/10.4153/CJM-1975-096-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-096-8


900 PEDRO MORALES 

7. A general Tychonoff theorem for multifunctions, Can. Math. Bull. 17 (1974), to 
appear. 

8. Non-Hausdorff multifunction generalization of the Kelley-Morse Ascoli theorem 
(submitted to Pacific J. Math.). 

9. R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429-432. 
10. D. Gale, Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 

303-308. 
11* J. Kelley, General topology (D. van Nostrand, New York, 1965). 
12. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970), 89-96. 
13. Y. F. Lin, Tychonoff's theorem for the space of multif unctions, Amer. Math. Monthly 74 

(1967), 399-400. 
14. Y. F. Lin and D. A. Rose, Ascoli1 s theorem for spaces of multif unctions, Pacific J. Math. 34 

(1970), 741-747. 
15. V. J. Mancuso, An Ascoli theorem for multi-valued functions, J. Austral. Math. Soc. 12 

(1971), 466-472. 
16. P. Morales, Pointwise compact spaces, Can. Math. Bull. 16 (1973), 545-549. 
17. S. B. Myers, Equicontinuous sets of mappings, Ann. of Math. 47 (1946), 496-502. 
18. N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969), 

393-411. 
19. The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 

(1970), 187-198. 
20. R. E. Smithson, Topologies on sets of relations, J. Natur. Sci. and Math. (Lahore) 11 

(1971), 43-50. 
21. Uniform convergence for multif unctions, Pacific J. Math. 39 (1971), 253-259. 
22. Multif unctions, Nieuw Arch. Wisk. 20 (1972). 31-53. 

Université de Montréal, 
Montréal, Québec 

https://doi.org/10.4153/CJM-1975-096-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-096-8

