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A NON-HAUSDORFF MULTIFUNCTION ASCOLI 
THEOREM FOR ^-SPACES 

PEDRO MORALES 

1. I n t r o d u c t i o n . A non-Hausdorff Ascoli theorem for continuous func­
tions was established in [6]. The present purpose is to extend this result to 
point-compact continuous mul t i funct ion , using Levine's generalization for 
closed subsets [12]. The paper is organized as follows: the object of section 2 
is to establish the necessary multifunction lemmas and to introduce the notion 
of a Tychonoff set; section 3 generalizes to multifunction context the partial 
exponential law of R. H. Fox [9, p . 430], and establishes a special exponential 
law for multifunctions; section 4 concerns the crucial properties of even con­
t inui ty for multifunctions, introduced in [8] ; the main theorem of the paper is 
established in section 5. In this section we show tha t the main theorem of the 
paper contains all known Ascoli theorems for continuous functions or point-
compact continuous mutifunctions. 

Unexplained terminology is tha t of Kelley [11]. 

2. M u l t i f u n c t i o n s . We review the established definitions for multifunc­
tions [3; 15; 22]. Let X, Y be non-empty sets. A multifunction is a point to set 
correspondence / : X —•> F such tha t , for all x £ X, fx is a non-empty subset 
of F. For i Ç I , B Ç F it is customary to write f(A) = UxeAfx, f -(B) = 
{x : x e X a n d / x H ^ ^ 0} a n d / + ( £ ) = ( x : x G l a n d / x Ç B). If F is 
a topological space, a multifunction / : X —•> F is point-compact (point-closed) 
iîfx is compact (closed) for all x £ X. If X, Y are topological spaces, a multi­
f u n c t i o n / : X —» F is lower semi-continuous (upper semi-continuous) if f~(U) 
(f + (U)) is open in X whenever U is open in F A mul t i func t ion / : X —•> F on 
a topological space X to a topological space F is continuous if it is both lower 
semi-continuous and upper semi-continuous. Henceforth, the set of all point-
compact continuous multifunctions, continuous functions, on a topological 
space X to a topological space F will be denoted &(X, F ) , C(X, F ) , respec­
tively. 

2.1. LEMMA. Let f be a continuous multifunction on a topological X to a regular 
space Y and let U be an open subset of F. 

(i) If x (z f~(U) there exists a closed neighbourhood V of x such that V Ç 

-(to. 
(ii) If x £ f+(U) and f is point-compact, there exists a closed neighbourhood V 

of x such that V Qf+(U). 
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Proof, (i) Let y £ fx P U. There exists an open neighbourhood W of y 
such t ha t W Q U. Then x €f~(W) Qf~(W) C / - ( [ / ) , and since / is con­
tinuous, V = f~(W) is the required closed neighbourhood of x. 

(ii) Since fx C [7, / x is compact and F is regular, there exists an open 
neighbourhood W of fx such tha t fxQWQ WQ U. Then x ^ / + ( l f ) Ç 
f + (W) Ç^f + (U). T h u s F = / + (JF) is the required closed neighbourhood 
of x. 

Let { Yx}xex be a family of non-empty sets. The m-product P{ Yx : x Ç X] of 
the Fa; is the set of all multifunctions / : X —» U ^ x F ^ such t h a t / x C F^ for 
all x Ç I . In the case Yx = F for all x f I , the m-product of the F^, denoted 
F m X , is the set of all multifunctions on X to F. For x Ç X , the x-projection 
prx : P{YX : x £ X} —> Yx is the multifunction defined by £ r x / = / x . If the Yx 

are topological spaces, the pointwise topology rp on P{ F x : x G X} is defined 
to be the topology having as open subbase the sets of the forms prx~(Ux), 
prx

+(Ux), where Ux is open in Yx, x G X [13; 20]. 

For F Ç YmX, x Ç X, we write F[x] = \J f(zFfx. Let F be a topological space. 
We say tha t a subset F of F m X is pointwise bounded if F[x] has compact closure 
in F for all x £ X. We say tha t a subset T of YmX is Tychonoff if, for every 
pointwise bounded subset F oî T,T C\ P{F[x] : x £ X} is -^-compact. We cite 
four examples: 

(1) Yx is Tychonoff, by the classical Tychonoff theorem. 
(2) YmX is Tychonoff, by the theorem of Lin [13, p. 400]. 
(3) The set of all point-closed members of YmX is Tychonoff, by [7, Corol­

lary 2]. 
(4) (YmX)0, the set of all point-compact members of YmX, is Tychonoff, 

by [7, Corollary 3]. 

2.2 LEMMA. / / F is a pointwise bounded subset of a Tychonoff set T, then the 
Tp-closure of F in T is compact. 

Proof. Let F denote the rp-closure of F in T. Since T C\ P{F[x] : x Ç X) 
is a Tp-compact subset of T, it suffices to show tha t F C P{F[x] : x £ X}. Let 
/ £ F. We mus t show tha t , for x G X, y £ fx and an open neighbourhood V of 
3/, F[#] H 7 ^ 0 . Since M = {h : h ^ T and hx P F F^ 0} is a ^ -ne ighbour­
hood of / in r , there exists h' ^ M C\ F. Then ^ x H F ^ 0 and fc'x C F[x]} 

so F M P V y£ 0. 

Let X , F be topological spaces. The multifunction ( / , x) —>fx on YmX X X 
to F, or any restriction, will be denoted by the sumbol co. Let F Ç F m X . A 
topology r on F is said to be jointly continuous if co : (F, r) X X —> F is con­
tinuous [20, p . 48]. The compact open topology rc on YmX is defined to be the 
topology having as open subbase the sets of the forms {f:f(K) C U}, 
{ f : fx Pi t / ^ 0 for all x Ç X } , where i£ is a compact subset of X and U is 
open in F [14, p . 742; 20, p . 47]. Obviously r c is larger than TV. 
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3. Exponential law. Let X, F, Z be topological spaces. An element / G 
£m(xxY) determines the function / : x —»/(x, • ) on X to ZmY. The function 
JLC i / ^ / , called the exponential map, is a bijection of Zm ( X x F ) onto (ZmY)x. 
When r is a topology on ^ {X, F), we say that (X, F, Z, r) satisfies the 
partial exponential law if 

t(<g{X X F, Z)) ç C{X, ( ^ ( F , Z), r ) ) . 

If, further, equality holds, (X, F, Z, T) is said to satisfy the exponential law. 
We extend Lemma 1 of R. H. Fox [9, p. 430] to mul tif unctions: 

3.1. LEMMA. (X, F, Z, rc) satisfies the partial exponential law. 

Proof. Let / 6 ^ ( X X F, Z). Let x £ X. Since /(x, • ) = foj, where 
i(y) = (x> y)if(xi ' ) is continuous [22, p. 35]. T h u s / maps X into ^ ( F , Z). 
It remains to show t h a t / : X —> (&(Y, Z), rc) is continuous. 

Let M = {h : h £ të(Y, Z) and /*(X) £ f/}, where Z is a compact subset 
of F and f/ is open in Z. Let x0 G f~l(M). Then /(x0, • ) G M, so |x0} X 
-K" Qf+(U). By the theorem of Wallace, there is a neighbourhood F of x0 

such that VX K C / + ( [ / ) . Let x G F. Then, for all y € K, f{x)y = f(x,y) ç 
£7, so/(x) (K) C [/. Thus x G /_ 1(^0> a n d we have shown that/_1(ikf) is open 
i n Z . 

Let M = {h:he &(Y, Z) and hy H [7 ^ 0 for all y G # } , where 2£ is a 
compact subset of F and U is open in Z. Let x0 G f~l{M). Then/(x0 , • ) G M, 
so {x0} X i ^ Ç f~(U). There is a neighbourhood F of x0 such that V X K C 
/ - ( £ / ) . Let x 6 F. Then, for all y G K,f{x)yr\ U j* 0, so /(x) G M. Thus 
x G / _ 1 ( M ) , and we have shown tha t / _ 1 (M) is open in X. 

Let X, F, Z be topological spaces. The symbol Sk(X X F, Z) denotes the 
set of all mul tif unctions / G (Zm(XXF))0 such that, for each x £ X and each 
compact subset K of F, the restrictions/ |{x} X Y, f \X X K are continuous. 

3.2. LEMMA. If Z is regular, then fx-l(C(X, (<i£(F, Z), rc)) C 5, (Z X F, Z). 

Proof. Le t / G M _ 1 ( C P C ( ^ ( F, Z) , r c ) ) . Since/(x, • ) is point-compact for all 
x G X, / is point-compact. 

Let x G X be fixed. Consider j(y) = (x, y) as the homeomorphism of F 
onto {x} X F; t h e n / |{x} X F = /(x) o j _ 1 is continuous. 

Let (xo, yQ) € ( / |X X # ) - (£ / ) = / - ( £ / ) C\ (X X K), where K is a com­
pact subset of F and C7 is open in Z. Then y0 G (f(x0))~(U) C\ K. By Lemma 
2.1, there is a closed neighbourhood F of yo such that F C (/(x0) )"(£/). Then 
i£' = F Pi K is a compact neighbourhood of yQ in X, and 

M = {h: h G ^ ( F , Z) and /ry Pi f/ ^ 0 for ail y G # '} 

is a neighbourhood of/(x0) in ( ^ ( F , Z), rc). Since/ is continuous,/ - 1 (M) X 
K' is a neighbourhood of (x0, yo) in X X K, which is contained in f~(U) P 
(XXiO.Nowlet(x 0 , ;yo) G ( / |X X K)+(U) = /+([/) n (X X # ) , wherein is 
a compact subset of F and [7 is open in Z. Then y0 G (/(xo) )+( £/) P K. There 
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exists a closed neighbourhood V of y0 contained in (](xo))+(U). Then K' = 

V H K is a compact neighbourhood of yQ in K, and 

M = {ft : ft G ^ ( F , Z) and ft(iT) C [/} 

is a neighbourhood o f / (# 0 ) in ( ^ ( F , Z ) , rc). S i n c e / is continuous, f~~l(M) X 

Kf is a neighbourhood of (x0, 3>o) in X X i£, which is contained in f+(U) Pi 

(X X 2 0 . 

Let X = (X, T) be a topological space. T h e k-extension of r is the family 
fe(r) of all subsets U of X such t ha t [ / O i£ is open in K for every compact 
subset K of X . I t is clear t h a t k(r) is a topology on X which is larger than r. 
A topological space (X, r) is called a k-space if r = fe(r) [5, p . 79]. Locally 
compact spaces and spaces satisfying the first countabil i ty axiom are familiar 
examples of ^-spaces. 

Let X, Y be topological spaces. A f u n c t i o n / : X —> F is called k-continuous 
if its restriction to each compact subset of X is continuous [4, p . 275]. Hence­
forth, the set of all ^-continuous functions on X to F will be denoted Ck(X, F ) . 
I t can be shown tha t a topological space X is a &-space if and only if Ck(X, F) 
= C(X, Y) for every topological space F [16, Theorem 3.2]. 

A topological space X is a ft3-space if Ck(X, Y) = C(X, Y) for every regular 
space F [19, p. 195]. T h u s a &-space is a &3-space bu t not conversely. In fact, 
the product of uncountably many copies of the real line, which is not a &-space, 
is a &3-space [19, Theorem 5.6 ( i)] . 

3.3. LEMMA. If X is compact, Y is a k?,-space and Z is regular, then 

Sk{X X Y,Z) = V(XX Y,Z). 

Proof. For topological spaces Uy V, W let *%\xk(U X V, W) denote the set 
of a l l / £ (Wm{UXV))o such that, whenever K, K' are compact subsets of U, V, 
respectively,/|X X K' is continuous. Then <^( F X X, Z) C ^ , x , ( F X X, Z) ; 
we will prove the inverse inclusion. 

L e t / G ^ -x* (F X X, Z). Let y G F. Let j O ) = (y, x) be the homeomor-
phism of X onto {3/} X X. Since X is compact, f(y) = ( / |{;y} X X) oj is 
continuous, so /maps F into ^ ( X , Z). Let X be a compact subset of F, so that 
g = / |i£ X X is continuous. Then, by Lemma 3.1, g : K —•> ( ^ ( X , Z), rc) is 
continuous. But g = f\K, so / is ^-continuous, and we have shown that 
VkXk(YX X, Z) C ^(Ck(Y, ( ^ ( X , Z), r c))) . Since F is a *3-space and 
( ^ ( X , Z) , r c ) is regular [20, p. 48], C,(F, ( ^ ( X , Z), rc)) = C(Y, (V(X, Z), 
r c)) . By Lemma 3.2, 

M-U^CF, ( ^ ( X , Z ) , r c ) ) ) QSk(YXX,Z). 

Because X is compact, Sk(Y X X}Z) = ^ ( F X X, Z). We have shown that 
^ , X , ( F X X , Z ) = ^ ( F X X , Z ) . 

Because (x, y) —> (3;, x) is a homeomorphism of X X F onto F X X, this 
last equation may be written ^kXk{X X F, Z) = ^ (X X F, Z). Then, by 
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the definition of Sk(X X Y,Z), we have V (X X Y, Z) Q Sk(X X F, Z) C 
^ ( I X F,Z) = ^ ( I X F , Z ) . 

The main result of this section now follows from Lemmas 3.1, 3.2 and 3.3: 

3.4. THEOREM. If X is compact, Y is a kz-space and Z is regular, then 
(X, Y, Z,TC) satisfies the exponential law. 

4. Even continuity. Let X, Y be topological spaces and let F C FmX. 
We say that F is evenly continuous if, whenever x Ç X, K is a compact subset 
of F and F is a neighbourhood of K, there exist neighbourhoods U, W of 
x, K, respectively, such that 

( a ) / e F and fxHW 5* 0 imply [ / C / - ( F ) , and 
( b ) / € F a n d / x Ç IF imply E / C / + ( 7 ) . 

This is an extension to multifunction context of the original Kelley-Morse 
definition [11, p. 235], where points of F have been generalized to compact 
subsets of F. It is easily verified that this definition extends also the multi­
function extension of even continuity due to Y. F. Lin and D. A. Rose [14, 
p. 742]. If F is evenly continuous, then every member of F is lower semi-
continuous; if, further, every member of F is point-compact, then every 
member of F is also upper semi-continuous, hence continuous. 

4.1. LEMMA. Let F be a set of point-compact multifunction s on a topological 
space X to a regular space F, and let F denote the rp-closure of F in ( YmX)0. If F 
is evenly continuous, then Fis evenly continuous and rv on F is jointly continuous. 

Proof. Let x £ X, let K be a compact subset of F, and let F be a closed 
neighbourhood of K. There exist open neighbourhoods U, W of x, K, respec­
tively, such that, for all / G F,fxC\W ^ 0 implies U Ç f~(V) and fx Q W 
implies U Qf+(V). Let g G F be such that gx C\ W ^ 0. Let {ga} be a net 
in F which is r^-convergent to g. Since {h : h £ (Fm X)0 and hx C\ W ^ 0} is 
a Tp-neighbourhood of g, gax r\ W ^ 0 eventually, so £/ £ ga~(F) eventually. 
Suppose that £/ <2 g~~(F). Then, for some wG U, guQ Y — F, so g«w £ F — F 
eventually, which is a contradiction. Now let g £ ^be such thatgx Ç W. Let {ga\ 
be a net in F which is ^-convergent to g. Since {h : h £ (Fm X)0 and hx Ç 117} 
is a Tp-neighbourhood of g, gax Ç W eventually, so U C g«+(F) eventually. 
Suppose that £7 $£ g+ (F) . Then, for some u G £/, g^ H ( F — F) ^ 0, so 
gau Pi ( F — V) T£ 0 eventually, which is a contradiction. This completes the 
proof of the even continuity of F. 

Let co : (F, TP) X X —> F. Suppose the (/, x) Ç w~(G), where G is open in F. 
Choose y £ fx C\ G. Since F is evenly continuous, there exist neighbourhoods 
U, Woî x, y, respectively, such that g Ç F and gx C\ W 9^ 0 imply U Q g -(G). 
Then {h : h £ F and hx C\ W ?^ 0} X £/ is a neighbourhood of (/, x), which 
is contained in co~(G). Now suppose that (/, x) G w+(G), where G is open in F. 
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Since F is evenly continuous and fx is compact , there exist neighbourhoods 
U, W of x, fx, respectively, such t ha t g G F and gx Cl W imply C7 C g+(G). 
Then {fe : h G ^ and k Ç I f j X [/ is a neighbourhood of (/, x ) , which is 
contained in co+(G). 

4.2. L E M M A . Let f : X X Y —> Z be a continuous multifunction. If X is com­
pact and Z is regular, then the set F = { f(x, • ) : x G X} is evenly continuous. 

Proof. Let 7 G F, let K be a compact subset of Z, and let F be an open 
neighbourhood of K. Let W be a closed neighbourhood of K which is contained 
in V. S i n c e / ( • , y) is continuous, ifx = / ( • , ;y)~(W0 and K2 = f( - , y)+(W) 

are closed in X , therefore compact . T h u s the second projections pr2 : i f i X 
F - > Y,pr2 :K2XY-+ F a r e closed, so tha t Ui = Y - pr2[(K1 X Y) - f~(V)], 

U2= Y - pr2[(K2 X Y) -f + {V)} are open in F. Since i f i Ç / ( - , y)~(V), 

K2Qf( • , y)+(V), we have i f i X {y} Çf'(V), K2 X {̂ } ^f+(V). Hence 
3> g N ( « i X F) - / " ( F ) ] , 3; g £ r 2 [ ( i f 2 X F) - / + ( 7 ) ] , t h a t i s , y G tA H 
£/2 = C/. 

Let g G F be such t ha t gy Pi I f ^ 0, so tha t g = / ( x , • ) for some x G if 1. 

L e t w G U, so that u i pr2[(K1X Y) - f~(V)}. Then (x, u) G / " ( F ) , t h a t is, 
gu C\ V 9^ 0. Now let g G i7 be such t ha t gy CI 1 /̂, so t ha t g = / ( x , • ) for 
some x G if2. Let u G £/, so t ha t w G pr2[(K2 X Y) - f+(V)]. Then (x, u) G 
/ + ( F ) , t ha t is, gw C F . 

5. Ascol i t h e o r e m . Let Z b e a topological space and let A Ç X . Following 
[12], we say t ha t 4̂ is g-closed iî Â Q U whenever U is an open set containing A. 

We are in position to establish the non-Hausdorff Ascoli theorem of the paper: 

5.1. T H E O R E M . Let X, Y be topological spaces. Let T be a Tychonoff subset of 
(YmX)0 and let f Ç (T H ^(X, F ) , rc). If Y is regular, then the following 
conditions are sufficient for the compactness of F: 

(a) Fis g-closed in T C\ <é(X, F ) , 
(b) F is pointwise bounded, and 
(c) F is evenly continuous. 

If, further, X is a k^-space, then the conditions (a) , (b) and (c) are necessary for 
the compactness of F. 

Proof. Sufficiency. Let F be the r^-closure of F in T. Since r ç (YmX)0, 
(c) implies, by Lemma 4.1, t ha t w : (F, TP) X X —» F is continuous and F 
is evenly cont inuous; in part icular F ÇZ ^(X, Y). Then , by Lemma 3.1, 
œ : F —> ( ^ ( X , F ) , r c ) is continuous. Since T is a Tychonoff set, (b) implies, 
by Lemma 2.2, t ha t F is r^-compact, so cô(F) = F is a r c -compact subset of 
m ^(X, Y). Bu t (a) implies, by Theorem 2.9 of [12], t ha t F is g-closed in 
(F, rc). Since (F , r c ) is compact , Theorem 3.1 of [12] implies t ha t F is rc-
compact . 
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Necessity. Since {T C\ ^ {X, Y), r c) is regular, Theorem 3.5 of [12] implies 

t h a t F is g-closed in T Pi ^ {X, Y). Let x £ X. Since .F is r^-compact, F[x] = 

prx(F) is compact [3, p. 116], so F[x] has compact closure in Y. Since the in­
clusions : F-> (^(X, F),TC) is continuous, Theorem 3.4 implies that/i_1W = 

co : F X X —> F is continuous. Then, by Lemma 4.2, F = {w(f, • ) : f £ F} 
is evenly continuous. 

5.2. COROLLARY. Let F C {*$ {X, F ) , r c ) . / / 7 w regular, then the following 
conditions are sufficient for the compactness of F: 

(a) F is g-closed in ^ {X, F ) , 
(b) F is pointwise bounded, and 

(c) F is evenly continuous. 
If y further, X is a k^-space, then the conditions (a) , (b) and (c) are necessary for 
the compactness of F. 

5.3. COROLLARY. Let F Ç (C(X, Y), r c ) . If Y is regular, then the following 
conditions are sufficient for the compactness of F: 

(a) F is g-closed in C(X, F ) , 
(b) F is pointwise bounded, and 

(c) F is evenly continuous. 
If, further, X ix a kz-space, then the conditions (a) , (b) and (c) are necessary for 
the compactness of F. 

Remarks. (1) Let R be the equivalence relation on a regular space introduced 
in [6, p. 634]. If E* is closed then E C Ë C £*, and therefore £ is g-closed. 
If i£ is compact, then X* is closed. Consequently, Corollary 5.3 contains the 
Theorem 4.1 of [6, p. 635], which in turn contains the well known Ascoli 
theorems of Arens [1, p. 491], Myers [17, pp. 497-498], Gale [10, p. 304], 
Kelley-Morse [11, p. 236], Bagley-Yang [2, pp. 704-705] and Corollary 4.4 of 
Noble [18, p . 403]. 

(2) A non-Hausdorff Ascoli theorem for point-compact continuous multi-
functions on a &-space was established in [8]. I t was shown tha t this theorem 
contains the multifunction Ascoli theorems of Mancuso [15, p. 470] and 
Smithson [21, p . 259]. Since a &-space is also a &3-space, our Theorem 5.1 
contains this result. 
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