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A NON-HAUSDORFF MULTIFUNCTION ASCOLI
THEOREM FOR £;-SPACES

PEDRO MORALES

1. Introduction. A non-Hausdorff Ascoli theorem for continuous func-
tions was established in [6]. The present purpose is to extend this result to
point-compact continuous multifunctions, using Levine’s generalization for
closed subsets [12]. The paper is organized as follows: the object of section 2
is to establish the necessary multifunction lemmas and to introduce the notion
of a Tychonoff set; section 3 generalizes to multifunction context the partial
exponential law of R. H. Fox [9, p. 430], and establishes a special exponential
law for multifunctions; section 4 concerns the crucial properties of even con-
tinuity for multifunctions, introduced in [8]; the main theorem of the paper is
established in section 5. In this section we show that the main theorem of the
paper contains all known Ascoli theorems for continuous functions or point-
compact continuous mutifunctions.

Unexplained terminology is that of Kelley [11].

2. Multifunctions. We review the established definitions for multifunc-
tions [3; 15; 22]. Let X, ¥ be non-empty sets. A multifunction is a point to set
correspondence f: X — Y such that, for all x € X, fx is a non-empty subset
of Y. For 4 € X, B C Y it is customary to write f(4) = U,eafx, f ~(B) =
{x:x € X and fx "B # P} and f+(B) = {x:x € X and fx C B}. If YV is
a topological space, a multifunction f : X — Y is point-compact (point-closed)
if fx is compact (closed) for all x € X. If X, ¥ are topological spaces, a multi-
function f : X — Y is lower semi-continuous (upper semi-continuous) if f —(U)
(f*(U)) is open in X whenever U is open in V. A multifunction f : X — Y on
a topological space X to a topological space Y is continuous if it is both lower
semi-continuous and upper semi-continuous. Henceforth, the set of all point-
compact continuous multifunctions, continuous functions, on a topological
space X to a topological space ¥ will be denoted % (X, Y), C(X, Y), respec-
tively.

2.1. LEMMA. Let f be a continuous multifunction on a topological X to a regular
space Y and let U be an open subset of V.

(1) If x € f=(U) there exists a closed neighbourhood V of x such that V C

—-(0).

(ii) If x € f*(U) and f is poini-compact, there exists a closed neighbourhood V
of x such that V < f+(U).
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Proof. (i) Let y € fx M U. There exists an open neighbourhood W of y
such that W C U. Then x € f—(W) C f—(W) C f—(U), and since f is con-
tinuous, V = f—(W) is the required closed neighbourhood of x.

(ii) Since fx € U, fx is compact and Y is regular, there exists an open
neighbourhood W of fx such that fx C W C W C U. Then x € f+(W) C
fH(W) C f+(U). Thus V = f+(W) is the required closed neighbourhood
of x.

Let { Y.}.,ex be a family of non-empty sets. The m-product P{Y, : x € X} of
the Y, is the set of all multifunctions f : X — U,¢x ¥, such that fx € Y, for
allx € X. In the case ¥, = Vforall x € X, the m-product of the V,, denoted
V"X, is the set of all multifunctions on X to Y. For x € X, the x-projection
pr.: P{Y,:x € X} — Y, is the multifunction defined by pr.f = fx. If the ¥,
are topological spaces, the pointwise topology v, on P{Y,:x € X} is defined
to be the topology having as open subbase the sets of the forms pr,~(U,),
pr.7(U,), where U, is open in ¥, x € X [13; 20].

For FC V"X x € X, we write Flx] = U rfx. Let ¥ be a topological space.
We say that a subset FFof Y™¥ is pointwise bounded if F[x] has compact closure
in Y for all x € X. We say that a subset 1" of Y™ is T'ychonoff if, for every
pointwise bounded subset F of T, TN P{F[x] : x € X} is r,-compact. We cite
four examples:

(1) Y¥ is Tychonoff, by the classical Tychonoff theorem.

(2) Y™¥ is Tychonoff, by the theorem of Lin [13, p. 400].

(3) The set of all point-closed members of ¥ is Tychonoff, by [7, Corol-
lary 2].

(4) (Y™X),, the set of all point-compact members of ¥Y”*, is Tychonoff,
by ({7, Corollary 3].

2.2 LeMmA. If F is a pointwise bounded subset of a Tychonoff set T, then the
1,-closure of Fin T is compact.

Proof. Let F denote the r,-closure of F in 7. Since TN\ P{Flx] : x € X}
is a r,-compact subset of 7' it suffices to show that ¥ € P{F[x] : x € X}. Let
f € F. We must show that, forx € X, y € fx and an open neighbourhood V of
vy, Flx] NV # @. Since M = {h: h € T and hx N V £ @} is a 7,-neighbour-
hood of f in 7T, there exists & € M M F. Then x M V # @ and h'x C Flx],

so Flx] NV # 0.

Let X, Y be topological spaces. The multifunction ( f, x) — fx on ¥"¥ X X
to Y, or any restriction, will be denoted by the sumbol w. Let F C Y™X, A
topology 7 on F is said to be jointly continuous if w: (F, ) X X — Y is con-
tinuous [20, p. 48]. The compact open topology v. on ¥Y™¥ is defined to be the
topology having as open subbase the sets of the forms {f:f(K) C U},
{f:fxN\ U3 @forall x € K}, where K is a compact subset of X and U is
open in Y [14, p. 742; 20, p. 47]. Obviously 7. is larger than r,.
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3. Exponential law. Let X, ¥, Z be topological spaces. An element f ¢
ZMEXY) determines the function f: x — f(x, ) on X to Z™¥. The function
u:f~F, called the exponential map, is a bijection of Z"*XY) onto (Z™¥)X,
When 7 is a topology on % (X, Y), we say that (X, ¥, Z, 7) satisfies the
partial exponential low if

w(€(X XY, 2) CCX,(FY,2Z),1)).

If, further, equality holds, (X, ¥, Z, 7) is said to satisfy the exponential law.
We extend Lemma 1 of R. H. Fox [9, p. 430] to multifunctions:

3.1. LemmaA. (X, Y, Z, 7.) satisfies the partial exponential law.

Proof. Let f € €(X X V, Z). Let x € X. Since f(x, -) = foj, where
i(y) = (x,9), f(x, -) is continuous [22, p. 35]. Thus f maps X into € (Y, Z).
It remains to show that f : X — (% (Y, Z), 7.) is continuous.

Let M = {h:h ¢ (Y, Z) and h(K) C U}, where K is a compact subset
of Y and U is open in Z. Let xo € f=2(M). Then f(xo, -) € M, so {xy} X
K C f+(U). By the theorem of Wallace, there is a neighbourhood T of x,
such that V X K C f+(U). Letx € V. Then, forally € K, f(x)y = f(x,vy) C
U,sof(x)(K) € U. Thus x € f~}(M), and we have shown that f~1(M) is open
in X.

Let M ={h:h€ B (Y,Z) and hy N\ U # B for all y € K}, where K is a
compact subset of ¥ and U is open in Z. Let x, € f=1(M). Then f(x,, - ) € M,
so {xg} X K C f—(U). There is a neighbourhood V of x( such that V' X K &
f=(U). Let x € V. Then, for all y € K, f(x)y N\ U # 0, so f(x) € M. Thus
x € f~Y(M), and we have shown that f/~1(}) is open in X.

Let X, ¥, Z be topological spaces. The symbol S;(X X Y, Z) denotes the
set of all multifunctions f € (Z™EX¥)); such that, for each x € X and each
compact subset K of ¥, the restrictions f |{x} X ¥, f|X X K are continuous.

3.2. LEMMA. If Z is regular, then uw= (C(X, (G (Y, Z),1,)) C Si(X X ¥, Z).

Proof. Letf € uw'(C(X,(¥(Y,Z),r.)). Since f(x, - ) is point-compact for all
x € X, f is point-compact.

Let x € X be fixed. Consider j(v) = (x, y) as the homeomorphism of V
onto {x} X V; then f|{x} X ¥ = f(x) oj! is continuous.

Let (xo, y0) € (f|X X K)=(U) = f=(U) N\ (X X K), where K is a com-
pact subset of ¥ and U is open in Z. Then y, € (f(x0))~(U) N K. By Lemma
2.1, there is a closed neighbourhood V7 of y, such that ¥V C (f(x0))~(U). Then
K' = VN K is a compact neighbourhood of y, in K, and

M=1{h:hé €(V,Z)and by \ U # @ for all y ¢ K’}
is a neighbourhood of f(x,) in (¥ (Y, Z), 7.). Since f is continuous, f~1(M) X
K’ is a neighbourhood of (x4, yo) in X X K, which is contained in f~(U) M

(X X K). Now let (xq, y0) € (f1X X K)*(U) = f+(U) N (X X K), where K is
a compact subset of ¥ and Uis open in Z. Then y, € (f(x0))*t(U) M K. There
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exists a closed neighbourhood V of y, contained in (f(x,))*(U). Then K’ =
V' M K is a compact neighbourhood of y, in K, and

M={h:hec €(Y,Z)and h(K') C U}

is a neighbourhood of f(x,) in (€ (Y, Z), r.). Since [ is continuous, f~1(M) X
K’ is a neighbourhood of (xq, yo) in X X K, which is contained in f+(U) M
(X X K).

Let X = (X, 7) be a topological space. The k-extension of r is the family
k(r) of all subsets U of X such that UM K is open in K for every compact
subset K of X. It is clear that k(r) is a topology on X which is larger than 7.
A topological space (X, 7) is called a k-space if + = k() [5, p. 79]. Locally
compact spaces and spaces satisfying the first countability axiom are familiar
examples of k-spaces.

Let X, Y be topological spaces. A function f : X — V is called k-continuous
if its restriction to each compact subset of X is continuous [4, p. 275]. Hence-
forth, the set of all k-continuous functions on X to Y will be denoted C, (X, V).
It can be shown that a topological space X is a k-space if and only if C,(X, V)
= C(X, V) for every topological space Y [16, Theorem 3.2].

A topological space X is a ks-space if C,(X, V) = C(X, V) for every regular
space Y [19, p. 195]. Thus a k-space is a ks-space but not conversely. In fact,
the product of uncountably many copies of the real line, which is not a k-space,
is a kj-space [19, Theorem 5.6 (i)].

3.3. LEmMmaA. If X is compact, YV is a ks-space and Z s regular, then
SiX XV, 2)=F¢X XY, 2).

Proof. For topological spaces U, V, W let € (U X V, W) denote the set
of all f € (W™UXV), such that, whenever K, K’ are compact subsets of U, T/,
respectively, flK X K’ is continuous. Then € (¥ X X, Z) C € (VY X X, Z);
we will prove the inverse inclusion.

Let f € € (Y X X, Z). Let y € Y. Let j(x) = (y, x) be the homeomor-
phism of X onto {y} X X. Since X is compact, f(y) = (f|{y} X X) o] is
continuous, so f maps Vinto % (X, Z). Let K be a compact subset of ¥, so that
¢ = f|K X X is continuous. Then, by Lemma 3.1, : K — (¢ (X, Z), 7.) is
continuous. But 7 = f|K, so f is k-continuous, and we have shown that
G (Y X X, Z) CuW(C(Y, (¥ (X, Z), 7))). Since YV is a ks-space and
(¢ (X, Z), ) is regular [20, p. 48], C:(Y, (¥ (X, Z),7.)) = C(Y, (¥ (X, Z),
7.)). By Lemma 3.2,

wHC(Y, (F(X,2),70))) S S(Y X X, Z).

Because X is compact, S,(¥ X X, Z) = € (V X X, Z). We have shown that
Cox(Y X X,2Z) =6 (Y X X, 2Z).

Because (x, y) — (v, x) is a homeomorphism of X X Y onto ¥ X X, this
last equation may be written € (X X ¥, Z) = ¥ (X X Y, Z). Then, by
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the definition of Si(X X Y,Z), we have (X X V,Z) CS.(X X ¥V, 2Z) C
(gka(X X YyZ) = %(X X Yr Z)

The main result of this section now follows from Lemmas 3.1, 3.2 and 3.3:

3.4. THEOREM. If X s compact, Y is a ks-space and Z 1is regular, then
(X, Y, Z, r.) satisfies the exponential law.

4. Even continuity. Let X, V¥ be topological spaces and let F € ¥Y™X,
We say that F is evenly continuous if, whenever x € X, K is a compact subset
of Y and V is a neighbourhood of K, there exist neighbourhoods U, W of
x, K, respectively, such that

(@) f € Fand fx N W # @ imply U C f—(V), and

(b)f€ Fand fx & W imply U C f+(V).

This is an extension to multifunction context of the original Kelley-Morse
definition [11, p. 235], where points of ¥ have been generalized to compact
subsets of Y. It is easily verified that this definition extends also the multi-
function extension of even continuity due to Y. F. Lin and D. A. Rose [14,
p.- 742]. If F is evenly continuous, then every member of F is lower semi-
continuous; if, further, every member of F is point-compact, then every
member of F is also upper semi-continuous, hence continuous.

4.1. LEMMA. Let F be a set of point-compact multifunctions on a topological
space X to a regular space Y, and let F denote the ,-closure of Fin (Y™X)o. If F
1s evenly continuous, then F is evenly continuous and v, on F is jointly continuous.

Proof. Let x € X, let K be a compact subset of ¥, and let 7 be a closed
neighbourhood of K. There exist open neighbourhoods U, W of x, K, respec-
tively, such that, for all f € F, fx N\ W 5 @ implies U C f ~(V) and fx & W
implies U C f+(V). Let g € F be such that gx N\ W # 0. Let {g.} be a net
in F which is r,-convergent to g. Since {h: h € (Y™*)and hx N\ W = @} is
a 7,-neighbourhood of g, gox M W # @ eventually, so U € g~ (V) eventually.
Suppose that U & ¢~ (V). Then, forsomeu € U,gu "V — V,soguuC ¥V — V
eventually, which isa contradiction. Now let g € F be such that gx C W. Let {g.}
be a net in F which is 7,-convergent to g. Since {k: b € (Y™X), and hx C W}
is a 7,-neighbourhood of g, g.x € W eventually, so U C g, (V) eventually.
Suppose that U & gt(V). Then, for some u € U, gu\ (Y — V) # 0, so
ot M (Y — V) # @ eventually, which is a contradiction. This completes the
proof of the even continuity of F.

Letw: (F,7,) X X — V. Suppose the (f,x) € = (G), where G is open in V.
Choose y € fx M G. Since F is evenly continuous, there exist neighbourhoods
U, W of x, y, respectively, such that g € Fand ge "\ W # @imply U C g~ (G).
Then {h:h € Fand hkx N\ W # @} X U is a neighbourhood of (f, x), which
is contained in w=(G). Now suppose that (f, x) € w*(G), where G is open in Y.
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Since F is evenly continuous and fx is compact, there exist neighbourhoods
U, W of x, fx, respectively, such that g € Fand gx £ W imply U C g+(G).
Then {h:h € F and hx C W} X U is a neighbourhood of (f, x), which is
contained in wt(G).

4.2. LEMMA. Let f : X X Y — Z be a continuous multifunction. If X is com-
pact and Z is regular, then the set F = { f(x, - ) : x € X} is evenly continuous.

Proof. Let y € Y, let K be a compact subset of Z, and let ' be an open
neighbourhood of K. Let W be a closed neighbourhood of K which is contained
in V. Since f( -, ) is continuous, K; = f( -, y)=(W) and K., = f( -, y)* (W)
are closed in X, therefore compact. Thus the second projections pre : Ky X
VoV, pre: Ko X Y— Vareclosed,sothat Uy = ¥V — pr[ (Ki X V) — f=(V)],
Us =Y — prof[ (Ko X V) — f+(V)] are open in Y. Since K; C f( -, y)=(V),
Ky Cf(-, v)H(V), we have K; X {y} C f~(V), Ko X {y} € f+(V). Hence
y & prol[ (K X Y) = f=(V)],y € prol (Ko X V) — fH(V)], thatis,y € Ui M
U2 =U

Let g € F be such that gy M\ W 5 @, so that g = f(x, - ) for some x € K;.
Letu € U,sothatu ¢ pry[(K; X Y) — f=(V)]. Then (x,u) € f~(V), thatis,
guN\ V 3 0. Now let g € F be such that gy C W, so that g = f(x, - ) for
some x € K. Letu € U, sothatu ¢ prof[(Ks X V) — fH(V)]. Then (x, u) €
F(V), that is, gu & V.

5. Ascoli theorem. Let X be a topological space and let 4 C X. Following
[12], we say that A is g-closed if A C U whenever U is an open set containing 4.
We are in position to establish the non-Hausdorff Ascoli theorem of the paper:

5.1. THEOREM. Let X, Y be topological spaces. Let 1" be a Tychonoff subset of
(Y")o and let FC (TN EC (X, Y), 7.). If Y is regular, then the following
conditions are sufficient for the compactness of F:

(a) Fis gclosed in TN € (X, V),

(b) F 1s pointwise bounded, and

(c) F is evenly continuous.

If, further, X is a ks-space, then the conditions (a), (b) and (c) are necessary for
the compactness of F.

Proof. Sufficiency. Let F be the 7,-closure of F in T. Since T°C (¥Y™X),,
(c) implies, by Lemma 4.1, that w: (F, 7,) X X — V¥ is continuous and F~
is evenly continuous; in particular F C % (X, Y). Then, by Lemma 3.1,
@: F— (¥ (X, Y), r.) is continuous. Since T is a Tychonoff set, (b) implies,
by Lemma 2.2, that F is 7,-compact, so @(F) = Fis a r.-compact subset of
TN % (X, Y). But (a) implies, by Theorem 2.9 of [12], that F is g-closed in
(F, r.). Since (F, r.) is compact, Theorem 3.1 of [12] implies that F is 7.
compact.
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Necessity. Since (I' N\ € (X, Y), r,) is regular, Theorem 3.5 of [12] implies
that Fis g-closed in N\ € (X, Y). Let x € X. Since Fis 7,-compact, F[x] =
pr.(F) is compact [3, p. 116], so Fx] has compact closure in Y. Since the in-
clusioni : F— (% (X, Y),7.) is continuous, Theorem 3.4 implies that y~2(i) =
w: FX X — Y is continuous. Then, by Lemma 4.2, F = {w(f, -):f € F}

is evenly continuous.

5.2. COROLLARY. Let F C (¢ (X, Y), 7.). If Y 1s regular, then the following
conditions are sufficient for the compactness of F:

(a) F s g-closed in € (X, V),

(b) F is pointwise bounded, and

(c) F is evenly continuous.
If, further, X is a ks-space, then the conditions (a), (b) and (c) are necessary for
the compactness of F.

5.3. COROLLARY. Let F C (C(X, V), 7). If Y is regular, then the following
conditions are sufficient for the compactness of F:

(a) F is g-closed in C(X, Y),

(b) F s pointwise bounded, and

(c) F 1is evenly continuous.
If, further, X ix a ks-space, then the conditions (a), (b) and (c) are necessary for
the compactness of F.

Remarks. (1) Let R be the equivalence relation on a regular space introduced
in [6, p. 634]. If E* is closed then E C E C E*, and therefore E is g-closed.
If K is compact, then K* is closed. Consequently, Corollary 5.3 contains the
Theorem 4.1 of [6, p. 635], which in turn contains the well known Ascoli
theorems of Arens [1, p. 491], Myers (17, pp. 497-498], Gale [10, p. 304],
Kelley-Morse [11, p. 236], Bagley-Yang [2, pp. 704-705] and Corollary 4.4 of
Noble [18, p. 403].

(2) A non-Hausdorff Ascoli theorem for point-compact continuous multi-
functions on a k-space was established in [8]. It was shown that this theorem
contains the multifunction Ascoli theorems of Mancuso [15, p. 470] and
Smithson [21, p. 259]. Since a k-space is also a kj;-space, our Theorem 5.1
contains this result.
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