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1. Introduction. The martingale convergence theorem was first proved by 
Doob (3) who considered a sequence of real-valued random variables. Since 
various collections of real-valued random variables can be regarded as vector 
lattices, it seems of interest to prove the martingale convergence theorem in an 
arbitrary vector lattice. In doing so we use the concept of order convergence 
that is related to convergence almost everywhere, the type of convergence 
used in Doob's theorem. 

Unfortunately, our general theorem does not contain Doob's theorem as a 
special case. However, it does enable us to give a new proof of his theorem; 
this is done in §5. Recall that Doob's proof uses an ingenious lemma concerning 
the number of up-crossings of sample functions ; the proof given here does not 
use this fact. 

The reader will find the basic facts concerning martingales in the books of 
Doob (3) and Loève (5). The author is indebted to Professor Doob for his 
helpful comments. 

2. Basic definitions. As usual, a vector lattice is a linear space over the 
reals which is partially ordered in such a way that each pair of elements has a 
least upper bound (supremum) and a greatest lower bound (infimum). In 
this paper we shall also assume that the vector lattices under consideration 
are countably complete, i.e., each bounded countable set has a supremum 
and an infimum. Examples of such spaces are plentiful, but the one of greatest 
interest here is the space of all real-valued bounded random variables defined 
on some probability measure space. 

If X is a countably complete vector lattice, then it is possible to define a 
notion of limit for bounded sequences. Thus let {xn) be a bounded sequence of 
elements from X (the sequence is said to be bounded if there exists u Ç X 
such that — u < xn < u for all n). Define 

lim sup xn = inf sup {xk: k > n] 
n k 

and 
lim inf xn = sup inf {xk: k > n\. 

n k 

We always have lim inf xn < lim sup xn\ if equality holds, then we write 
lim xn = lim inf xn = lim sup xn. 
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As usual, we define x+ — sup {x, 0} and \x\ = x+ + (—x)+. The following 
lemma will be used in the proof of the convergence theorem. 

LEMMA 1. Let \xn) be a sequence of elements from X which is bounded below. 
If mi {xn\ = y, then 

inf {(xn — z)+} = (y — z)+ for any z Ç X. 

The proof of this lemma and many other details concerning vector lattices 
may be found in Birkhofï (1; see also 4 and 6). 

DEFINITION 1. A positive projection P on the vector lattice X is a positive 
linear mapping of X into itself such that P(P(x)) = P (x) for all x £ X. 

DEFINITION 2. A martingale is a double sequence \xni Pn), where xn 6 X and 
Pn is a positive projection, such that Pn(xk) — xnfor n < k and Pn Pk = PkPn — 
Pnfor n < k. If Pn(xn) = xn < Pn(xk) for n < ky then the above double sequence 
is called a submartingale. Thus, a martingale is a special case of a submartingale. 
A submartingale \xny Pn) is said to be bounded if the sequence {xn} is bounded. 

LEMMA 2. Let {Pn\ be a sequence of positive projections on the vector lattice X 
such that Pn Pk = PkPn = Pnfor n < k. Then if \yn] is any sequence of elements 
from X such that y\ < y2 < . . . and if we define xn = Pw(^w), then the double 
sequence {xn, Pn] is a submartingale. In particular, if yi = y2 = . . . , then 
{xni Pn] is a martingale. 

LEMMA 3. / / {xn, Pn) is a martingale and a is any real number, then {axn, Pn\ 
is a martingale. 

LEMMA 4. If \xn} Pn] and {yn, Pn) are (sub) martin gales, then {xn + yn, Pn\ 
is a (sub)marUngate. 

LEMMA 5. If {yn, Pn) is a submartingale and if xn = Pn(yn
+), then {xn, Pn) 

is a submartingale. 

Proof of Lemma 5. If n < k, we have 

yn < Pn(y*) < Pn(y,+) = PnP*{yk
+) = Pn(xk). 

Therefore, since 0 < Pn(xk), we have yn
+ = sup {yn, 0} < Pn(xk). Hence, 

Xn = Pn(yn+) < Pn(xk). 

LEMMA 6. If {zn, Pn) is a submartingale, then it is possible to write zn = xn + y m 
where \xm Pn} is a martingale and 0 = 3 > i < ; y 2 < . . . . 

Proof. Define yi = 0 and X\ = Z\. Then by induction define 

Xn+i = Xn + Zn+i — Pn(Zn+i). 
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Therefore, 

n 

i=l 

n n 

= Z ) (Zi+i - zi) + *i ~ H [Pi(?i+i) - Zi] = zn+i - yn+1 

where 
n 

yn+i = Z ) [Pi(?i+ù - «J . 

Since z* < P j ( 2 i + i ) , we see t h a t 0 = j \ < y2 < . . . . I t is easy to show tha t 
{xn, Pn) is a mart ingale. 

Lemmas 2-6 m a y be found in (3 or 5 ) b u t in a slightly different form in 
certain cases. For example, Lemma 5 is slightly more general than the corres
ponding assertion in (3 or 5) and therefore its proof is given here. Lemma 6 is 
due to Doob, b u t its proof is given here because some of the computa t ions 
involved will appear later. 

T h e definition of a mart ingale given above includes t h a t given by Doob. 
W e shall give some examples to show t h a t i t includes more. 

Example 1. Let X be the collection of all real-valued functions defined on 
some non-empty set 12. If X is part ial ly ordered pointwise, then X is a countably 
complete vector lat t ice. Now let M\ C M2 C . . • be a sequence of subsets 
of 12. Each subset Mn determines a positive projection Pn defined on X as 
follows: for each x G X , Pn(x) = y, where y(t) = x(t) for t Ç Mn and y{t) = 0 
for / G 12 — Mn. I t is easy to show t h a t Pn Pk = PkPn = Pn for n < k. Hence, 
if wre take any z G X and define xn = Pn(z)y then {xn, Pn) is a mart ingale by 
Lemma 2. 

Example 2. Let X be as in Example 1. Now let <j> = M0 C M± C M2 C • . • 
be a sequence of subsets of 0 and tn a sequence of points from 12 such t h a t 
tn G Mn — M n_i (note t h a t this requires t h a t 12 be infinite). Each pair Mn, tn 

determines a positive projection Pv defined on X as follows: for each x f l , 
Pn{x) = y, where y(t) = x ( 0 for t G M"w and y it) = x (4 ) for / G 12 — Afn. 
I t is easy to show t h a t Pn Pk = Pk Pn = Pn for n < k. Hence, if we take any 
z G X and define xn = PW(V), then {xTC, Pw} is a mart ingale. 

Example 3. Let X be the collection of all real-valued functions defined on the 
closed interval [ — 1, 1]. If X is part ial ly ordered pointwise, then X is a count-
ably complete vector lat t ice. Now let {— 1, 1} C M\ C M2 C • • • be a 
sequence of finite subsets of 12. We shall write 

Mn = {C tn\ . . . , CM, where - 1 = tn° < tn
l < . . . < tn

n = 1. 
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Each set Mn determines a positive projection Pn denned on X as follows: for 
each x £ X, Pn(x) = y, where 

In In 

for tn~ < t < tn and k = 1, . . . , n. 
It is easy to show that Pn Pk = PkPn = Pn for n < k. Hence, if we take any 
z £ X and define xn = Pn(z), then {xn, Pn\ is a martingale. 

In particular, let us define Mn = {—1, l/n} l/(n — 1), . . . , 1} and then 
define z £ X as follows: z(f) = 0 unless t = 1/j, where j is a positive even 
integer, in which case z(t) = 1. If we define xn = PW(JS), then {xn, Pn} is a 
martingale. We note that liminfxw(0) = 0 and Km sup xw (0) = 1; hence, 
lim xn does not exist even though the sequence {xn} is bounded. 

The above examples will be referred to later. For the moment, though, they 
illustrate that the martingale concept extends beyond its original confines in 
probability (i.e., measure) theory. 

3. The martingale convergence theorem in a vector lattice. From 
Example 3 of the previous section we see that it is not possible to prove a 
theorem to the effect that every bounded martingale {xny Pn\ converges. 
Additional conditions must be imposed on the positive projections Pn. The 
following three conditions are selected because they can easily be verified in 
the case when each Pn is a conditional expectation operator and X is a vector 
lattice of real-valued, bounded (almost everywhere) random variables denned 
on some probability measure space. 

C\\ If x G X and Pn{x) = x, then Pn(x
+) = x+. 

C2: If Zi > %2 > . . . > 0 and inf zn = 0, then 

inf sup Pn(zk) = 0. 
k n 

We are implicitly assuming here that if z\ > 0, then the sequence {Pn(z\)\ 
is bounded. 

C%\ If {zny Pn] is any bounded submartingale such that zn > 0 for all n and 
lim inf zn = 0, then zn = 0 for all n. 

Referring to the three examples given in §2, we see that C\ is satisfied in 
Examples 1 and 2 but not in 3. Ci is satisfied in Example 1 but not in 3; it is 
satisfied in Example 2 only if 

oo 

U Mn = 12. 

C% is satisfied in all three examples. 
The three conditions given above may not be necessary to prove that every 

bounded martingale converges; they are only sufficient. Furthermore, they may 
not be independent conditions, but the author is unable to establish this. 
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In the proof of the main theorem we shall need the following lemma. 

LEMMA 7. Let P\, P^ . . . be a sequence of positive projections on the vector 
lattice X such that Pn Pk = PkPn = Pn for n < k and such that conditions C\ 
and Ci are satisfied. Then if Xo is the collection of all x Ç X such that 
x = lim Pn(x), then Xo is a countably complete vector sublattice of X (this means 
that supremums and infimums computed in X0 are the same as if they were 
computed in X). 

Proof. Since 0 G X0l X0 is non-empty. It is easy to show that X0 is a linear 
subspace of X. We shall now show that if {yn} is a sequence of elements from 
Xo and lim yn = y, then y G X0. We note that 

\Pn(y) -y\< b* - y\ + \Pn(y*) - y*\ + \Pn(yk - y)\. 

Since each yu G Xo, we have 

lim sup \Pn(yk) — yk\ = 0 for each k. 
n 

If we define zk = supw \Pn(yk — y)\, then 

lim sup \Pn(y) - y\ < \yk - y\ + zk for all k. 
n 

But by using condition C2, we obtain lim zk = 0. Hence, lim Pn(y) = yr which 
means that y Ç X0. 

We shall now show that if y 6 X0l then y+ 6 X0. Thus, we are assuming that 
lim Pn(y) = y. Hence, lim Pn(y)+ = y+. Using the fact that Pn Pk = PkPn = Pn 

for n < k, we see that Pn(x) G ̂ o for all n and all x Ç X. Therefore, by using 
condition C\ and the fact that Pn(Pn(y)) = Pn(y), we see that Pn(y)+ Ç X0 

for all n. Hence, by the results of the previous paragraph we have 

limP„(3>)+ = >'+ e Xo. 

The results of the previous two paragraphs can be used in a standard 
fashion to show that Xo is a countably complete vector sublattice of X. 

We are now ready to prove the main theorem. 

THEOREM. If {xny Pn) is a bounded submartingale and conditions C\, C2, and 
Cz are satisfied, then lim xn = y exists. Furthermore, xn < Pn(y) for all n. If 
{xn, Pn) is actually a bounded martingale, then xn — Pn(y) for all n. 

Proof. Define yn = inf {xk: k > n\ and then y = sup yn = lim yn. Note 
that yn < xn for all n. If we define un = Pn(y), then {un, Pn) is, by condition 
C2, a bounded martingale. 

Recalling the definition of the subspace Xo and its properties, we see that 
since xn G Xo, we must have yn G Xo and y G Xo. Hence, lim un = y. To prove 
the theorem we need only show that xn < un for all n. 

We now note that \(xn — un)
+, Pn) is a bounded non-negative submartin-

gale; to prove this, we combine Lemmas 3, 4, and 5 and also condition C\. 
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We shall now make use of condition C3. Define wn = inf {uk: k > n}. Thus, 
lim wn = lim un = y. Now if n < k, then wn < wk < uk. Therefore, when 
n < k we have 

Xk — uk < xk — wk < xk — wn. 

If we define an = inf {(#* — z^)+ : & > n}, then 

lim aw = lim inf (xn — un)
+. 

However, by Lemma 1, 

an < inf {(xk — wn)+ : k > n) = (yn — ? 0 + . 

Since lim ;yw = lim 7#w = y, we have lim aw < lim (yn — z£;w)+ = 0. Therefore, 

lim an = lim inf (xn — un)
+ = 0. 

Using condition C3, we see that (xn — un)
+ = 0 and, hence, xn < un = Pn(y) 

for all w. 
If {xw, Pw} is actually a bounded martingale, then the above results can be 

applied to the bounded submartingales {xn, Pn] and {—xn, Pn). Therefore, 
lim xn = y and lim — xn — —y and xn < Pn(y) and — xn < P n ( — y) for all n. 
Hence, xn = Pn(y) for all w. This completes the proof of the theorem. 

4. Proof of Doob's theorem (special case). In this section, X will denote 
the vector lattice of all real-valued, bounded (almost everywhere) random 
variables defined on a probability measure space (Î2, $, /x). Let fji C §2 C . . • 
be a sequence of Borel subfields of %. The conditional expectations E\ -\%n) 
are the positive projections Pn in the special case under consideration. We may 
easily verify that they have all the properties of positive projections that were 
assumed in §2. 

In order to prove Doob's theorem in the special case of a submartingale 
{xni Pn}, where the sequence {xn\ of random variables is bounded above and 
below by constant random variables, we need only verify that the conditions 
Ci, C2, and C% are satisfied and then apply the main theorem proved in §3. 
It should be noted here that in the main theorem the limit was obtained in the 
sense of order convergence and, therefore, in applying the main theorem in this 
special case the limit is computed in the sense of convergence almost every
where. This is because order convergence in the vector lattice X under con
sideration in this section implies convergence almost everywhere. 

Condition C\ is easily verified. 
To verify condition C2, we select any sequence \zn) of random variables from. 

X such that 0 < . . . < z2 < z\ < u, where u is a constant random variable 
and inf zn = 0. Define ynk = E{zk\%n} ; hence, 0 < . . . < yn2 < yni < u for 
all n. Note that ynk is measurable %n for all k and n. 

We must now prove that Km* ynk = 0 uniformly in n for almost all co G Œ. 
For any e > 0 define Fnk = {œ : ynk(œ) > e}. Define 

fk(A) =jAzkdn for any A G 3-
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We now note the following facts. If A C B, then fk(A) < fk(B). The sequence 
|/B(1Î)) converges monotonically to zero. If A £ $n, then 

fk(A) = jAyn1cdfjL. 

For all k and n, we have Fnk Ç gn and Fni D FW2 D • • • . 
We now define 

oo 

Hk = {J Fnk\ 

hence, i ï i D Hi Z) . • . • Then define 

5 t t = H (12 - F**). 

We now put 7\fc = Fi* and then by induction Tt+hk = 5 t t H ^i+i,*. We note 
that if t 7* j , then 7^* C\ Tjk = 0. Also note that 

oo 

Hk = U JH# 

and 7 ^ G §w for all & and n. Now 
oo oo n oo 

/* (#*) = E /* (r,t) = Z y i t 4 > Z ^ (Tjk) = « • M (Ht). 

Since/* (0) > fk(Hk) > en(Hk) for all & and all t > 0, we see that lim ti(Hk) = 0. 
Since Hi D H2 D • . . , we have 

J Off J = 0 for all k. 
\ j=k / 

By checking the definition of Hk and Fnk1 we see that this verifies condition C2. 
Condition C3 can be verified by using (3, Chapter 7, Theorem 2.1) to show 

that jn Zn dfx = 0 for all n. Since we assume in C3 that zn > 0 for all w, this 
shows that zn = 0 for all w. 

5. Proof of Doob's theorem (general case). It is possible to prove 
Doob's theorem (3, Chapter 7, Theorem 4.1s) by using the result of the previous 
section and the following lemmas. The reader should note that in what follows 
the random variables under consideration need not be bounded by constants. 
I t should be pointed out that in (3 and 5) the term "semimartingale" is used 
instead of submartingale. In (3) Doob uses the notation {zn, $nj n > 1} for a 
submartingale. Our notation \znj Pn] has the same meaning since we are 
assuming here that Pn = E{ • \%n} for all n. 

LEMMA 8. If a submartingale {zm Pn] is bounded above by a constant, then it 
converges almost everywhere. 
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Proof. The upper bound on the sequence \zn) means that supw E{zn
+] < oo. 

Therefore, for any e > 0 there exists a real number X < 0 such that 
Prob [zn > X for all n) > 1 — e; this follows from (3, Chapter 7, Theorem 3.2). 
If we define yn = max{2M, X}, then {yn, Pn) is a submartingale bounded above 
and below by constants; hence, it converges almost everywhere to the same 
values as the sequence {zn\ on the set {zn > X for all n\. Therefore, lim zn 

exists almost everywhere. 

LEMMA 9. If a submartingale {zn, Pn] is bounded below by a constant and 
supw E j zn

+} < oo, then it converges almost everywhere. 

Proof. From Lemma 6 we see that we can write zn = xn + yn, where 
{xn, Pn] is a martingale and 0 = y\ < y2 < . . . and 

n 

Jn+l = X) [Pi(zi+1) - Zt] . 

Therefore, 

E[yn+i] = E{zn+i} - E{zi} < supn E{zn+} - E{zi}. 

Hence, lim yn = u exists with E{u) < 00. 
Since u > yn and Pn(yn) = yn, we have un = Pn(u) > yn for all n. Now 

{uni Pn\ is a martingale bounded below by 0. Also \yn — un, Pn] is a sub-
martingale bounded above by 0; by Lemma 8 it therefore converges almost 
everywhere. 

Now zn = xn + yn = (xn + tcn) + (yn — un) < xn + un for all n. By assump
tion the sequence {zn\ is bounded below by a constant; hence, { — (xn + un), Pn] 
is a martingale bounded above by a constant and, therefore, by Lemma 8 it 
converges almost everywhere. Hence, 

lim (xn + un) + lim (yn — un) = lim zn 

exists almost everywhere. 

D O O B ^ THEOREM. If {zn, Pn) is a submartingale with sup^Zi^v1"} < 00, 
then it converges almost everywhere. 

Proof. Using the definition of xn and yn as given in Lemma 9, we see that 
Zn = %n + yn > %n and, hence, zn+ > xn

+ for all n. Therefore, supn E{xn
+} < 00. 

Since {xn, Pn} is a martingale, {xn
+, Pn) is a submartingale bounded below by 

0; by Lemma 9 it therefore converges almost everywhere. By similar reasoning 
we can show^ that the submartingale {( — xn)

+, Pn] converges almost everywhere. 
In Lemma 9 wre showed that lim yn exists almost everywhere. Therefore, 

lim xw
+ — lim ( —#w)+ + lim yn = lim xn + lim yn = lim zn 

exists almost everywhere. 
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