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Abstract

Background. Converging evidence suggests that a subgroup of bipolar disorder (BD) with an
early age at onset (AAO) may develop from aberrant neurodevelopment. However, the defin-
ition of early AAO remains unprecise. We thus tested which age cut-off for early AAO best
corresponds to distinguishable neurodevelopmental pathways.
Methods. We analyzed data from the FondaMental Advanced Center of Expertise-Bipolar
Disorder cohort, a naturalistic sample of 4421 patients. First, a supervised learning framework
was applied in binary classification experiments using neurodevelopmental history to predict
early AAO, defined either with Gaussian mixture models (GMM) clustering or with each of
the different cut-offs in the range 14 to 25 years. Second, an unsupervised learning approach
was used to find clusters based on neurodevelopmental factors and to examine the overlap
between such data-driven groups and definitions of early AAO used for supervised learning.
Results. A young cut-off, i.e. 14 up to 16 years, induced higher separability [mean nested
cross-validation test AUROC = 0.7327 (± 0.0169) for ⩽16 years]. Predictive performance dete-
riorated increasing the cut-off or setting early AAO with GMM. Similarly, defining early AAO
below 17 years was associated with a higher degree of overlap with data-driven clusters
(Normalized Mutual Information = 0.41 for ⩽17 years) relatively to other definitions.
Conclusions. Early AAO best captures distinctive neurodevelopmental patterns when defined
as ⩽17 years. GMM-based definition of early AAO falls short of mapping to highly distin-
guishable neurodevelopmental pathways. These results should be used to improve patients’
stratification in future studies of BD pathophysiology and biomarkers.

Introduction

Bipolar disorder (BD) is a severe, relapsing-remitting mental illness, taking its name from the
severe fluctuations in mood, behaviors, and energy that patients experience. It is a complex
and heterogenous condition, comprising multiple phenotypes, further to the type I/type II
subcategories. Consequently, efforts have been made to further dissect BD into clinically
meaningful subgroups underlying distinct pathophysiological pathways which would enable
better stratification for diagnosis, prognosis and treatment (Coombes et al., 2020). Several clin-
ically measurable neurodevelopmental liabilities likely contribute to the pathophysiology and
etiology of a subset of patients suffering from early onset BD. However, in some instances the
evidence is sparse and replication is needed (Kloiber et al., 2020). In particular, several peri-
natal factors, including obstetric complications, cesarean section, older paternal age, and
exposure to substances and infections during pregnancy were associated with a higher risk
of developing BD, supposedly through a disruption in neurodevelopment (Chudal et al.,
2014; Martelon, Wilens, Anderson, Morrison, & Wozniak, 2012; Parboosing, Bao, Shen,
Schaefer, & Brown, 2013), even though evidence from previous studies is inconsistent.
Comorbidity with Autism spectrum disorder (ASD) and attention deficit hyperactivity dis-
order (ADHD) is further indication of a neurodevelopmental component to BD (Schiweck
et al., 2021). Another neurodevelopmental marker is the familiar co-aggregation of BD and
schizophrenia (SCZ) as well as shared genetic, and brain imaging markers (Valli, Fabbri, &
Young, 2019). All this evidence suggests that a subset of patients with BD may have neurode-
velopment impairment which would seem to clinically correlate with an early age at onset
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(AAO) and/or the presence of psychotic symptoms. The presence
of psychotic features specifically would indicate a pathophysio-
logical proximity to SCZ and suggest a continuum between SCZ
and a subset of patients with BD (Arango, Fraguas, & Parellada,
2014). A case in point is the over-representation of premorbid
cognitive, motor and language impairment in SCZ as well as
BD with psychotic symptoms (Murray et al., 2004).
Furthermore, childhood traumatic events and cannabis misuse
prior to BD onset, both well-characterized neurodevelopmental
disruptors, were associated with an early onset in BD
(Daruy-Filho, Brietzke, Lafer, & Grassi-Oliveira, 2011; Lagerberg
et al., 2011).

While early AAO is often used as an easily measurable clinical
criteria to identify a clinically homogenous BD subgroup, stand-
ing out in terms of pathogenetic pathways and disease outcomes,
it remains unclear which AAO cut-off best identifies patients with
BD in terms of neurodevelopmental load. Indeed, one of the rea-
sons behind the limited replication of some of the studies inves-
tigating the link between early AAO and neurodevelopmental
factors is probably the lack of consensus around the definition
of early AAO. The very first studies used cut-offs for early AAO
that were arbitrarily chosen, usually in the 18–25 years old
(y.o.) range [e.g. (Post et al., 2010; Strober, 1992)]. A more prin-
cipled and data-driven approach adopted to overcome this limita-
tion was to find clusters of patients based on AAO by fitting the
age of onset distribution using a mixture of Gaussians. A system-
atic review (Bolton, Warner, Harriss, Geddes, & Saunders, 2021)
of studies adopting this latter approach found that the best fit was
provided by three sub-groups: early [mean 17.3 years (S.D. =
1.19)], intermediate [mean 26.0 years (S.D. = 1.72)], and late
[mean 41.9 years (S.D. = 6.16)] AAO group. Most BD cases,
around 45%, belong to early AAO group, with 35 and 20% of
patients with BD displaying intermediate and late AAO respect-
ively. Such a distribution indicates that the early AAO group as
defined above represents the majority group. Thus, some authors
suggested that the term ‘early onset’, when used for designating an
unusually low AAO (∼3 S.D. from the mean of the corresponding
Gaussian), should be limited to onsets under 14 years of age
considering onset in the 14–21 age band is the norm in BD
and therefore does not correspond to a minority subgroup of
patients. Overall, the proportion of patients developing BD by
the age of 14 is 5.1% based on a meta-analytical literature review
(Solmi et al., 2022). However, while statistically principled and
allegedly more robust than arbitrarily setting a cut-off, Gaussian
mixture models (GMM) clustering only relies on the AAO
distribution and, therefore, it is not guaranteed to converge to a
solution where cluster membership is informative of any under-
lying pathophysiological process, such as the neurodevelopmental
contribution to BD development. As a result, the clinical
validity of an early AAO label assigned in this manner may be
limited.

Existing studies investigating neurodevelopmental pathways in
BD examined relatively small sample sizes, ranging from few doz-
ens to few hundreds of patients at best (Kloiber et al., 2020); fur-
thermore, neurodevelopmental disruptors and their correlates
were mostly considered individually. In this study we capitalized
on a large France-based national cohort of patients suffering
from BD. Using a supervised learning approach, we aimed to
determine which early AAO definition would maximize patients’
separability in terms of neurodevelopmental load. Secondarily, we
adopted an unsupervised learning approach and assuming, based

on previous literature, that a subset of patients suffering from BD
stand out from the rest in terms of neurodevelopmental load
therefore constituting a separate cluster, we assessed how a data-
driven two-clusters fit would stack up against each of the different
early v. non-early AAO definitions.

Methods

Study population

The present study is based on the cross-sectional data set from
Fonda-Mental Advanced Centres of Expertise for Bipolar
Disorders (FACE-BD) cohort (Henry et al., 2015). This data set
was collected from 2009 to 2020 through a French-based network
of 12 BD Expert Centers (Besancon, Bordeaux, Clermont-
Ferrand, Creteil, Colombes, Grenoble, Marseille, Monaco,
Montpellier, Nancy, Paris and Versailles). This network was insti-
tuted by the French nonprofit foundation ‘ FondaMental
Foundation’. Patients were referred by their psychiatrist or general
practitioner for assistance in the diagnosis and management of
BD. Outpatients aged 16 years or above and meeting a DSM-IV
diagnosis of type I, type II, or not otherwise specified (NOS)
BD met the FACE-BD cohort inclusion criteria. The same evalu-
ation package was used by all centers and the entire assessment
was performed by members of a specialized multidisciplinary
team. The study was conducted in compliance with the ethical
principles of medical research involving human (WMA,
Declaration of Helsinki). The assessment protocol was approved
by the relevant ethical review board (CPP-Ile de France IX,
18th January 2010). All data were collected anonymously. A
more detailed description of the FACE-BD cohort is provided
elsewhere (Henry et al., 2015).

Assessment

The Structured Clinical Interview for the Diagnostic and Statistical
Manual of Mental Disorders–Fourth Edition (DSM-IV) Axis I
Disorders (SCID) (Kübler, 2013) was used to record AAO, i.e.
age at first mood episode. Variables related to neurodevelopmental
impairment recorded in the FACE-BD cohort and considered for
this study included cannabis misuse (along with age of first canna-
bis misuse when applicable) and a family history of BD in
first degree relatives, which were both identified as part of the
SCID. Childhood trauma was recorded with the Childhood
Trauma Questionnaire (CTQ) (Bernstein, Ahluvalia, Pogge, &
Handelsman, 1997) and childhood symptomatology of ADHD
using the Wender Utah Rating Scale (WURS) (Gift, Reimherr,
Marchant, Steans, & Reimherr, 2021). Childhood history of dys-
lexia, dysorthographia, dyscalculia, dysphasia, dyspraxia, language
delay, stuttering, gait delay, and febrile seizures was recorded by a
psychiatrist and a neuropsychologist. Variables related to gestation
and perinatality included new-born length, weight, and skull cir-
cumference, gestational age, cesarean section, maternal and paren-
tal age at birth, Apgar score at minute 1 and at minute 5 after birth
(Apgar, 1966), and neonatal hospitalization were collected by psy-
chiatrists based on medical interview and medical file. A complete
account of all variables recorded as part of the FACE-BD cohort is
presented elsewhere (Henry et al., 2015). All available variables
from the FACE-BD cohort that have been previously associated
with an aberrant neurodevelopment were included in this study,
including variables with a known neurodevelopmental role but
for which an association with BD has not been previously

Psychological Medicine 6725

https://doi.org/10.1017/S003329172300020X Published online by Cambridge University Press

https://doi.org/10.1017/S003329172300020X


investigated to the best of our knowledge [e.g. febrile seizures
(Nilsson et al., 2019)].

Machine learning strategies and data analysis

Early age at onset definitions
We set out to develop predictive models for early AAO, where the
cut-off for binarizing early v. non-early AOO was set either by fit-
ting a GMM to the AAO distribution or by systematically moving
it between 14 and 25 y.o. We took a complete case approach,
including only observations with no missing values under AAO.

We used both Bayesian information criterion (BIC) and Akaike
information criterion (AIK) to compare different GMMs and to
identify the optimum number of clusters in the range 2 to 10
(Raftery & Dean, 2006). The best fitting model was then used to
assign each observation to the Gaussian for which the posterior
probability of belonging is highest. The level of uncertainty of clus-
ter allocation for an observation can be derived by subtracting the
maximal posterior probability under a Gaussian from one. This
value can be interpreted as the posterior probability of not belong-
ing to the Gaussian maximizing the posterior. To the best of our
knowledge, only one previous study (Hamshere et al., 2009) filtered
out individuals based on cluster allocation uncertainty, using a
threshold of 0.4. As the optimal cluster allocation uncertainty
threshold cannot be determined a priori, we considered the effect
of either enforcing no uncertainty threshold on GMM clustering
or adopting progressively more stringent thresholds, namely
>0.40, >0.20, and >0.10. The latter approach results in removing
patients not meeting the required cluster allocation uncertainty
level from further analyses, thereby expectedly creating purer and
more separate clusters at the expense of decreasing the sample size.

As regards the interval 14 to 25 y.o., within which possible cut-
offs were systematically explored, 14 was chosen as the lower
bound since it has been previously suggested to single out ‘earlier
than normally expected AAO’ (Bolton et al., 2021). Furthermore
only 5.1% of patients with BD have an earlier onset (Solmi et al.,
2022). The upper bound was informed by evidence showing that
neurodevelopment ends at 25 years (Arain et al., 2013).

Supervised learning experiments
For each different early AAO definition, we trained classifiers to
predict whether patients had either an ‘early’ or a ‘non-early’
AAO based on their neurodevelopmental variables. Two different
classification algorithms were trained and evaluated: Elastic Net
(ENET) and Extreme Gradient Boosting (XGBoost). Stratified
nested cross-validation was used as re-sampling strategy. This
was preferred over a single train/test data split to obtain more
robust and less unbiased estimates of classification performance
(Cawley & Talbot, 2010). Specifically, in the outer resampling
loop, ten pairs of training/test tests were produced. In each of
these outer training sets the optimum configuration of hyperpara-
meters of the classification algorithms were selected through a
random search while optimizing the area under the Receiver
Operator Curve (AUROC) in a 5-fold cross-validation. The
so-tuned classification algorithms were then fitted on each outer
training set and their performance was evaluated on the outer
test sets. AUROC was selected as performance metric due to
class imbalance and to favor comparisons in future investigations
since it is the typical choice in studies applying machine learning
to BD. Lastly, severe class imbalance, i.e. 1:99 ratio classes ratio, in
which case AUROC could be overly optimistic with respect to
other metrics prioritizing identification of the minority class,

e.g. precision and recall curves (Cook & Ramadas, 2020), was
excluded during exploratory data analysis (EDA).

An illustration of the supervised learning experiments’ aim is
reported in Fig. 1. A sketch of the analysis workflow and a fuller
description of the supervised learning experiments pipeline are
provided in online Supplementary Fig. S1 and Appendix.

Unsupervised learning
We tested the overlap between a data-driven grouping of the
patients based on neurodevelopmental factors and the different
early AAO definitions used in our supervised learning experiments.
To this end, we adopted Deep Embeddings Clustering (DEC) (Xie,
Girshick, & Farhadi, 2015). DEC is a deep neural network (DNN)
powered approach to cluster analysis, capitalizing on DNNs’ ability
to learn a more clustering-friendly representation of the original
data matrix due to their inherent universal function approximation
properties and iteratively optimizing a clustering objective in the
learned lower-dimensional feature space until a stopping criterion
is met. DEC was shown to outperform vanilla k-means as well as
extensions of k-means designed to operate in kernel feature space
or directly on the representations learned by a DNN (Aljalbout,
Golkov, Siddiqui, Strobel, & Cremers, 2018). Based on previous lit-
erature, we postulated the existence of two BD clusters (k = 2) with
respect to neurodevelopmental load. Once cluster membership was
assigned with DEC, data-driven grouping was matched against the
different early AAO definitions using normalized mutual informa-
tion (NMI) (McDaid, Greene, & Hurley, 2013). NMI can take
values between 0 (no mutual information) and 1 (perfect correl-
ation). In our case, when comparing data-driven clustering
obtained from DEC to clinical annotations, if the two groupings
substantially overlap, higher values (closer to 1) should be expected.
On the flip side, lower values (closer to 0) would be indicative of
little overlap between the two groupings.

Results

Study population

4421 patients have been recruited in the FACE-BD cohort since
the inception of expert centers in France. 423 cases were missing
values for AAO and were subsequently removed from analyses,
reducing the sample size for this study to 3998. Patients had a
mean age of 40.45 (S.D. = 13.06). Females constituted 60.05% (n
= 2401) of the sample. Type I BD was diagnosed in 45.37% of
patients (n = 1814), type II BD in 43.27% (n = 1730), while
11.35% (n = 454) had a diagnosis of BD NOS. Variables from
the FACE-BD cohort considered for this study are shown in
online Supplementary Table S1.

Supervised learning experiments

In order to define clinical subgroups based on AAO (a numerical
variable), two different approaches were adopted: GMM clustering
and dichotomization varying the cut-off in the range 14 to 25 y.o.

GMM based definition
Based on AIC and BIC model section, we identified a
three-cluster solution as the best fitting admixture model
(Fig. 2). In line with previous reports (Joslyn, Hawes, Hunt, &
Mitchell, 2016), patients assigned to cluster 1, that is the
Gaussian with the lowest mean value of AAO, were considered
as ‘early AAO’ while patients from either cluster 2 or 3 were
both labeled as ‘non-early AAO’. Results from GMM clustering
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and subsequently filtering cases on cluster allocation uncertainty
at different thresholds are reported in Table 1. Following this
approach, GMM clustering reduces to dichotomizing patients
into early and non-early AAO where the cut-off between such
two groups is set in a data-driven fashion based on the fit of an
admixture model. As a more stringent threshold is used for filter-
ing cases based on cluster allocation uncertainty, early and
non-early AAO groups are progressively pulled apart and patients
close to the boundaries are progressively dropped.

Nested cross-validation performance across learners is
reported in Fig. 3, illustrating to what degree classifiers could

differentiate early v. non-early AAO based on the patients’ neu-
rodevelopmental variables. The highest average test AUROC
resulted from adopting the most conservative uncertainty
threshold (⩾0.1): XGBoost achieved an average 0.6970 (S.D. =
0.0195) test AUROC with ENET close behind at 0.6935 (S.D. =
0.0151). Enforcing this threshold was equivalent to setting the
maximum AAO value in the early AAO group to 20 y.o. and
the minimum AAO value in the non-early AAO group to 29
y.o. Using less conservative uncertainty thresholds up to the
point of no filtering drew the two AAO groups closer together
increasing the maximum value allowed for defining early

Fig. 1. Illustration of the supervised learning experiments’ aim. The histogram on the left-hand side shows a sketch distribution of age at onset in the study popu-
lation. It is convenient in the clinical practice to binarize patients based on a cut-off value for age at onset since accumulating evidence suggests that low age at
onset is an indicator of distinctive neurodevelopmental pathways in bipolar disorder. However, the optimal cut-off value of age at onset towards mapping patients
to distinctive neurodevelopmental pathways is unknown to this day. Thus, we were looking to determine the age at onset cut-off value which, upon accordingly
assigning labels to patients, would maximize a classifier’s ability to differentiate between the two classes, i.e. early v. non-early age at onset, using neurodevelop-
mental factors as predictors. For illustration purposes only two neurodevelopmental factors are depicted in the figure on the right-hand side. A complete account
of neurodevelopmental variables included in this study as predictors is reported in Table 1.

Fig. 2. Gaussian Mixture Models Clustering of age at onset. (a) Akaike information criterion and Bayesian information criterion model selection; (b) best fit; (c)
posteriors under each Gaussian. AAO, age at onset.
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AAO. In this manner, as the maximum AAO value in the early
AAO group increased as a result of less stringent filtering, the
average test AUROC across both XGBoost and ENET
deteriorated.

Cut-offs in the range 14 to 25 years old
As an alternative to GMM clustering, we investigated how defin-
ing early v. non-early AAO patients by dichotomization with dif-
ferent cut-offs in the range 14 to 25 y.o. would affect separability
in neurodevelopmental feature space. The proportions of early v.
non-early AAO cases in our cohort across different age cut-offs
ranged from 9.05% to 90.5% for 14 y.o. cut-off to 68.63% to
31.37% for 25 y.o. Average AUROC across outer test sets and
one standard deviation are illustrated in Fig. 4. The highest aver-
age test AUROC was attained by XGBoost for the 16 y.o. cut-off
(0.7327, S.D. = 0.0169). Overall, both classification algorithms
reached higher (>0.70) average test AUROC values as the cut-off
was kept in the range 14 to16 y.o., while for age >16 the perform-
ance showed a downward trend.

Unsupervised learning experiments

The use of an unsupervised learning approach was motivated
by the lack of a ground-truth in terms of which early AAO defin-
ition best picks out distinctive neurodevelopmental pathways.
Assuming the existence of two clusters in the neurodevelopmental
feature space, DEC separated our cohort into 1314 (29.72%) and
3107 (70.28%) patients. NMI between DEC cluster assignments
and the early AAO definitions explored in the supervised learning
experiments was highest for early AAO as defined with a 17 y.o.
cut-off (NMI = 0.41). NMI values for the different early v.
non-early AAO definitions are reported in Fig. 4. Overall, NMI
values across different definitions mirrored results from super-
vised learning experiments, showing that the use of an AAO cut-
off up to 17 y.o. led to a greater overlap with the data-driven
grouping by DEC. Similarly, a more conservative uncertainty
threshold in GMM clustering, hence a lower maximum AAO
value in the early AAO group, was associated with greater overlap
with DEC clustering.

Discussion

BD may be considered as a clinical construct comprising manifold
phenotypes probably underlying heterogeneous pathophysio-
logical pathways. In this respect breaking it down into more
homogeneous and biologically-grounded entities would not only
improve our understanding of the disorder but also help identify
clinical subgroups that might benefit from bespoke treatment and
management. Based on the existing literature, one such subgroup
of patients with BD is characterized by a distinctive neurodevelop-
mental load, relatively to other patients, and would have an early
AAO as clinical trademark (Kloiber et al., 2020). In the present
study, we addressed the question of which AAO cut-off would
be more appropriate for differentiating BD patients based on
their neurodevelopmental load using both a supervised and an
unsupervised learning approach.

In the supervised learning experiments, to test the usefulness of dif-
ferent cut-offs towards revealing distinguishable neurodevelopmental
loads, we binarized patients into early v. non-early AAO groups by
systematically moving the cut-off in the range 14 to 25 y.o. Our results
demonstrated that setting the cut-off at 16 y.o. led to the highest
average AUROC value (0.7327, S.D. = 0.0169), suggesting that such Ta
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definition of early AAO maximizes patients’ separability from
neurodevelopmental features. Interestingly, on the one hand, 16 y.o.
was lower than any of cut-off derived with GMM analysis, even after
accounting for cluster allocation uncertainty. On the other hand, this
cut-off is higher than the one (i.e. 14 y.o.) previously posited as ‘earlier
than expected’AAOby Bolton et al. (Bolton et al. 2021).Moreover, we
demonstrated that the early AAOcut-off induced byGMMresulted in
lower separability based on neurodevelopmental factors. The best
GMM fit in our cohort was in line with those from previous reports
(Joslyn et al., 2016), placing most patients under the Gaussian
with the lowest mean, therefore considering early AAO as the most
common condition. Admixture analysis on AAO ultimately amounts
to setting a cut-off between early v. non-early AAO in a data-driven
fashion (where the cut-offs depend solely on the AAO distribution).
The shortcomings in admixture analysis ability to find biologically
meaningful, in terms of neurodevelopmental pathways, AAO cut-offs
may be explained with two arguments. First, our results showed that a
stronger signal, in terms of early v. non-early AAO cases separability
from neurodevelopmental history, emerged as a result of a more

stringent filtering on cluster allocation uncertainty. Indeed, a low
cluster allocation uncertainty, i.e. >0.10, lowered the maximum AAO
value to 20 y.o. in the early AAO group, which corresponded to the
highest average test AUROC. However, the price for such filtering
was a sharp drop in sample size (by 37.64%), which limits the applica-
tion of this approach in clinical research. Of notice, to the best of our
knowledge, cluster allocation uncertainty filteringwas implemented in
only one previous study, by Bolton et (Bolton et al., 2021). Second, as
argued by Montlahuc et al. (Montlahuc, Curis, Jonas, Bellivier, &
Chevret, 2017), since episodes of BD are difficult to recognize in
early adolescence, especially during retrospective interviews of adult
patients, the AAO distribution gets left-truncated, which may
potentially have a major impact on the number of detected clusters
and explain the absence of an cluster in the left tail of the AAO
distribution.

The need to set up multiple supervised learning experiments
and explore different AAO cut-off definitions was motivated by
the lack of knowledge around the best definition of ‘early’ AAO,
conceptualized as a criterion that could point towards distinctive

Fig. 3. Results from the supervised learning experiments. Test AUROC mean (and one standard deviation) across different early v. non-early age at onset (AAO)
definitions is shown for the two classifiers, ENET and XGBoost. GMM, Gaussian Mixture Models Clustering, i.e. early age at onset was defined as membership
to the Gaussian with lowest mean, conversely non-early age at onset was defined as membership to any of the other Gaussians. In GMM the number appearing
within parentheses indicates the cluster allocation uncertainty threshold used for filtering observations.
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neurodevelopmental antecedents. As a complementary strategy,
we adopted an unsupervised learning approach to examine how
data-driven labels would compare against the various early
AAO definitions used in the supervised learning experiments.
The highest degree of overlap between data-driven clusters and
the grouping induced by the different early v. non-early AAO
definitions was recorded when lower cut-offs were used to define
early AAO. The highest NMI was 0.41, achieved when early AAO
was set to be ⩽17 y. o., coherently with the results from our super-
vised learning experiments. In other words, the unsupervised
learning approach lent further support to the notion, emerging
from our supervised learning experiments, that an AAO below
17 y.o. better corresponds to distinctive neurodevelopmental path-
ways than any of the grouping retrieved with GMM. Taken
together, results from supervised and unsupervised learning
experiments convergently show that the clinical label of early
AAO best captures distinctive neurodevelopmental patterns
when defined with a cut-off ⩽17 y.o. This result should be
taken into consideration to provide better patients’ stratification
in future investigations of BD.

The results in this report should be balanced against several
limitations. To the best of our knowledge, this is the first study
using a machine learning framework to predict early AAO from
neurodevelopmental antecedents. Therefore, we could not com-
pare our results against other reports pursuing the same (or a
comparable) aim. Given the post-hoc nature of this analysis, sev-
eral neurodevelopment features reported in previous works as
related to BD [for example perinatal infections, minor physical

anomalies (MPAs), dermatoglyphic anomalies, soft neurological
signs, ASD comorbidity, and family history of SCZ (Kloiber
et al., 2020)] were not available in this study. Furthermore, the
very high rate (>80%) of missing values under some neurodeve-
lopmental variables (newborn length, weight, and skull circumfer-
ence, Apgar score at minute 1 and at minute 5 after birth) forced
us to exclude these from the predictors. While our sample size was
large relatively to most previous studies, we lacked an independent
cohort for estimating out-of-sample generalization. Another
important limitation we should acknowledge is the lack of bio-
logical data, such as genomics and neuroimaging. Our results
indeed relied only on clinical variables collected during retro-
spective interviews of adult patients; these can be affected by recall
bias. Furthermore, as neurodevelopmental abnormalities in BD
were also described in terms of genomics [e.g. (Cao et al.,
2014)] and neuroimaging [e.g. (Sarrazin et al., 2018)] findings,
these modalities too should be studied for their predictive role.
On the other hand, our work may help to stratify patients with
more accuracy in future studies.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329172300020X
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