
426  Microsc. Microanal. 28 (Suppl 1), 2022 
doi:10.1017/S1431927622002409  © Microscopy Society of America 2022 

 

 

Parallelizing py4DSTEM: 4D-STEM Analysis from Hours to Minutes 
 

Alexander Rakowski
*,1

, Benjamin H Savitzky
1
, Steven E Zeltmann

2
, Matthew Henderson

1
, and Colin 

Ophus
1  

 
1.

 NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 
2.

 Department of Materials Science and Engineering, University of California, Berkeley, CA, USA. 

* Corresponding author: arakowski@lbl.gov 

 

Developments in pixelated cameras have enabled capturing the full 2D diffraction pattern at each probe 

position at scan speeds comparable to traditional integrating detectors. [1] Furthermore, improvements 

in microscope instrumentation have enabled scanning over larger sample areas. These developments 

have enabled a broader range of materials to be integrated and a wide range of physical phenomena to be 

studied.[2] However, the increased capabilities come with the burden of large dataset sizes; for example, 

the 4D camera can collect 200 TB hr
-1

 [3]. These large datasets, which may consist of millions of probe 

positions, are computationally challenging to analyze in two regards: (i) the datasets are often too large 

to store in system memory, and (ii) operating over a large number of probes can be slow. Overcoming 

these two challenges is imperative to extract the full potential from the new detector and microscope 

technologies. 

 

py4DSTEM is an open-source python-based software package for analyzing 4D-STEM datasets and 

contains a broad set of analysis modalities, including strain and orientation mapping, virtual imaging, 

and differential phase-contrast imaging. [4] As currently architected, py4DSTEM primarily operates 

serially, analyzing a single probe position at a time, and typically utilizes only a single central 

processing unit (CPU) core. However, modern computers have multiple CPU cores and may also 

contain dedicated graphic processing units (GPUs), which are currently not used in py4DSTEM. Much 

of the analysis of 4D-STEM datasets is embarrassingly parallel, as the study of each probe position is 

often independent of the others. There is substantial scope for increasing the speed of analyzing these 

datasets by utilizing multiple CPU cores and GPU-powered compute. 

 

In this work, we extend the functionality of py4DSTEM by parallelizing portions of the codebase with 

Dask [5]. The use of Dask allows a compute platform-agnostic parallelism which seamlessly scales from 

a single laptop to hundreds of nodes at high-performance computing (HPC) facilities with minimal 

syntactical changes to the code—particularly compared to alternative parallel and scaling programming 

paradigms such as OpenMP. The implementation is compatible with analyzing data in an interactive 

python notebook or via a python script. Crucially, Dask operates ‘lazily,’ only loading the data as 

required. Operating ‘lazily’ enables working on large datasets that cannot fit into system memory, which 

is a likely scenario when handling 4D-STEM datasets. 

 

We exemplify the new functionality by performing Bragg disk detection, a substantial bottleneck to 

many 4D-STEM analysis methodologies, on a small (201x50x420x422, ~6.7 GB) and a large 

(83x558x1792x1920, ~300 GB) 4D-STEM dataset on multiple compute platforms: (i) single 

workstation (24 CPU cores, 256 GB RAM), (ii) single HPC node (32 CPU cores, 128 GB RAM), and 

(iii) 4 HPC nodes (128 CPU cores, 512 GB RAM). We show a 5X speed up on the small dataset using 

the parallelized function compared to the serial equivalent function (2 vs. 10 minutes) on a single HPC 

node. While the larger dataset, we saw a dramatic improvement from multiple hours when using the 

https://doi.org/10.1017/S1431927622002409 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1431927622002409&domain=pdf
https://doi.org/10.1017/S1431927622002409


Microsc. Microanal. 28 (Suppl 1), 2022 427 

 

 

serial function to ~15 minutes when processing on 4 HPC nodes. The processing time for the large 

dataset could likely be reduced further by increasing the number of nodes. We also show that naive 

implementations of Dask can result in significant performance penalties. This reduction in computation 

time allows users to iterate parameters while examining their data or analyze other datasets more 

efficiently. Ultimately we demonstrate that the parallelized py4DSTEM functions are vital for studying 

the increasingly large datasets produced by the new electron detectors [6]. 

 

References: 

 

[1] J Ciston et al., Microscopy and Microanalysis 25(S2) (2019), p.1930. 

[2] C Ophus, Microscopy and Microanalysis 25(3) (2019), p. 563. 

[3] SR Spurgeon et al., Nature materials 20(3) (2021), p. 274. 

[4] BH Savitzky et al., Microscopy and Microanalysis 25(S2) (2019), p. 124. 

[5] Dask: Library for dynamic task scheduling, https://dask.org 

[6] Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy 

Sciences, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. Use of the 

Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. 

Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-

AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing 

Center; a DOE Office of Science User Facility supported by the Office of Science of the U.S. 

Department of Energy under Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry was 

supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy 

under Contract No. DE-AC02-05CH11231. The development of py4DSTEM was supported by the 

Toyota Research Institute 

https://doi.org/10.1017/S1431927622002409 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927622002409

