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A PRIORI ESTIMATES FOR THE GLOBAL ERROR COMMITTED BY
RUNGE–KUTTA METHODS FOR A NONLINEAR OSCILLATOR

JITSE NIESEN

Abstract

The Alekseev–Gröbner lemma is combined with the theory of mod-
ified equations to obtain ana priori estimate for the global error
of numerical integrators. This estimate is correct up to a remainder
term of orderh2p, whereh denotes the step size andp the order of
the method. It is applied to nonlinear oscillators whose behaviour is
described by the Emden–Fowler equationy′′ + tνyn = 0. The result
shows explicitly that later terms sometimes blow up faster than the
leading term of orderhp, necessitating the whole computation. This
is supported by numerical experiments.

1. Introduction

A numerical procedure for solving a given ordinary differential equation will induce an
error; that is, the numerical solution differs from the exact solution. The goal of this paper
is to givea priori estimates for this error. This is usually done by expanding the error in
powers of the step size. Here, we are especially interested in terms beyond the leading term
in this expansion. We shall discuss how to compute these terms, and we shall show by
means of an example that these terms may in fact dominate the leading term. This example
is the Emden–Fowler equationy′′ + tνyn = 0. For the parameter range considered here,
the solutions of this equation are oscillatory. It is a nonlinear variant of the Airy equation
y′′ + ty = 0, studied by Iserles in [10], which indeed formed the inspiration for the research
described in this paper. Other research in this area is described in [2,3, 6, 7].

Our approach is based on the Alekseev–Gröbner lemma, which describes the effect of
perturbing a differential equation on its solution, and the theory of modified equations, which
quantifies the idea that the numerical procedure can be considered as a perturbation of the
original equation. It should be noted that computing the estimates for the global error derived
below requires a good analytical approximation to the exact solution (which is available
for the Emden–Fowler equation). In this case, calculating a numerical approximation to the
solution might be of limited use. Of course, this does not imply that the work described
here is worthless; compare it, for example, with the analysis of the trivial equationy′ = λy,
which leads to the concept of A-stability.

The remainder of this paper is organized as follows. The next section derives a formula
for estimating the global error. The resultinga priori estimates are exact up to a term of
orderh2p, whereh is the step size andp is the order of the method. The Emden–Fowler
equation is introduced in Section3, where we also describe its asymptotic solution. Section4
contains the actual calculation of global error estimates. The estimates are supported by
numerical experiments, as described in Section5. The last section contains a short discussion
of the results.
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A priori estimates for the global error committed by RK-methods

2. Theory

In this section, we fix the notation, and we derive the basic formula (5) for estimating
the global error.

Suppose that we are solving the ordinary differential equation

y′(t) = f (t, y(t)), y(t0) = y0, (1)

wherey(t) ∈ R
d is a vector. We assume thatf isC∞ to avoid technicalities that are irrelevant

to our argument. Associated to this differential equation is theflow map8t
s : R

d → R
d ,

defined by8t
t (y) = y andd/dt 8t

s(y) = f
(
t, 8t

s(y)
)
. Its Jacobian matrix will be denoted

by D8t
s , and is called thevariational flow.

Now suppose that one uses a numerical one-step method with fixed step sizeh to solve the
differential equation (1). Lettingy0 = y(t0), we denote the subsequent results of the method
byy1, y2, y3, . . . , and we settk = t0+kh. We define theglobal errorbyEh(tk) = yk−y(tk).
We say that a method isof orderp if Eh(t) = O(hp).

As mentioned in the introduction, the general idea is to view the numerical ‘flow’ as a
perturbation of the actual flow of the equation. This idea is made exact by the theory of
modified equations. The same approach has been taken by Calvo and Hairer [2], and by
Hairer and Lubich [7].

The theory of modified equations, analogous to Wilkinson’s backward error analysis in
numerical linear algebra, tries to find a differential equationz′ = f̂h(t, z) whose solution is
close to the numerical results. In fact, for any integerN , one can explicitly construct an̂fh
such that the solution of the modified equation isO(hN)-close to the numerical solution
(see, for example, [1] or [8]).

Theorem 1. Let y(t) be the solution of the differential equation(1), and letD8t
s denote

its variational flow. Suppose that a numerical method of orderp produces the values{yk}.
If the solutionz(t) of the modified equationz′ = f̂h(t, z) satisfiesz(tk) − yk = O(h2p) for
all k, then

Eh(t) =
∫ t

t0

D8t
s

(
y(s)

)
δh

(
s, y(s)

)
ds + O

(
h2p

)
, (2)

whereδh(t, y) = f̂h(t, y) − f (t, y).

Proof. The Alekseev–Gröbner lemma (see, for example, [9]) shows that

z(t) − y(t) =
∫ t

t0

D8t
s

(
z(s)

)
δh

(
s, z(s)

)
ds.

This can be proven immediately by differentiating both sides of the above equation. Now,
the left-hand side isEh(t) + O(h2p). Furthermore, since the method is of orderp, we
havey(t) − z(t) = O(hp). Finally, it follows from the theory of modified equations that
δh(t, y) = O(hp) (see, for example, [8, Section IX.1]). Together, these prove (2).

Note that the constant implied by theO(h2p) term in equation (2) depends ont . Hence
the above result is valid only on bounded time intervals. The same goes for the results that
we shall obtain later (Theorems2 and3).

From now on, we restrict our attention toRunge–Kutta methods. We assume that the
reader is familiar with the theory of Runge–Kutta methods and B-series, as explained in the
text books [9] and [11], amongst others.
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A priori estimates for the global error committed by RK-methods

A B-series is a formal power series of the form

B(a, y) = a(∅)y +
∑
τ∈T

hρ(τ)

ρ(τ )! α(τ) a(τ ) F(τ )(y). (3)

HereT denotes the set of rooted trees,a : T → R is a coefficient function,ρ(τ) is the
order of the treeτ , α(τ) denotes the number of monotone labellings ofτ , andF(τ )(y) is
the elementary differential of the functionf associated withτ . The result of any Runge–
Kutta method can be written as a B-series, and the coefficient functiona depends on the
coefficients of the method.

Hairer, Lubich and Wanner [8] use the concept of a B-series to derive a formula for the
modified equation. Suppose that the outcome of the RK-method is described by the B-series
with coefficient functiona. Then the modified equation is given byz′ = (1/h)B(b,z), where
the coefficients are recursively defined by:

b(∅) = 0;
b( r) = 1; (4)

b(τ) = a(τ) −
ρ(τ)∑
j=2

1

j !∂
j−1
b b(τ ), for ρ(τ) > 2.

In this formula,∂bc refers to the Lie derivative ofB(c, y) with respect to the vector
field B(b, y), expressed as a B–series. An explicit formula is given in [8].

We now use this expression for the modified equation to rewrite thea priori estimate
given in Theorem1.

Theorem 2. Lety(t) be the solution of the differential equationy′ = f (t, y), and letD8t
s

denote its variational flow. Suppose that this equation is solved by a Runge–Kutta method
with B-series coefficient functiona. Letb be defined as in(4). If the numerical method has
orderp, then the global error satisfies:

Eh(t) =
∑

τ∈T[2,2p]

hρ(τ)−1b(τ)
α(τ)

ρ(τ)!Iτ (t) + O(h2p),

whereIτ (t) =
∫ t

t0

D8t
s(y(s)) F(τ )(y(s)) ds. (5)

Here,T[2,2p] denotes the set of trees with order at least2, and at most2p.

Proof. As mentioned above, the right-hand side of the modified equation is(1/h)B(b,z),
with b as in (4). NowF( r) = f , so the first term in this B-series is the right-hand side of
the original equation (1). Hence their differenceδh(t, y) equals∑

τ∈T[2,∞)

hρ(τ)−1

ρ(τ)! α(τ) b(τ ) F(τ )(y).

We now substitute this expression in (2) and move the scalar factors out of the integral
(remember that the variational flowD8t

s is a linear operator). This results in (5).

Note that the error estimate (5) nicely separates the problem and the method. The method
enters the estimate only via the coefficientsb(τ). On the other hand, the value of the
integralsIτ is completely determined by the particular equation that one is solving. As their
role in the global error estimate (5) is similar to the role of the elementary differentialF(τ )(y)

in the local error, we shall callIτ theelementary integralassociated withτ .

20https://doi.org/10.1112/S1461157000000358 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000358


A priori estimates for the global error committed by RK-methods

3. The Emden–Fowler equation

For the rest of the paper, we consider nonautonomous, nonlinear oscillators whose be-
haviour is described by the Emden–Fowler equation:

y′′ + tνyn = 0, t > 0;
y(0) = y0; (6)

y′(0) = y′
0.

This equation withν = 1 − n (in which case it is commonly called the Lane–Emden
equation) was originally proposed by Chandrasekhar [4] to model stars: considering a star
as a radially symmetric gaseous polytrope of indexn in thermodynamic and hydrostatic
equilibrium, the relation between the density and the distance to the centre satisfies the Lane–
Emden equation. The Emden–Fowler equation also arises in the fields of gas dynamics, fluid
mechanics, relativistic mechanics, nuclear physics, and the study of chemically reacting
systems (see [13] and the references therein). Note that the choice ofν = n = 1 reduces
the Emden–Fowler equation to the Airy equationy ′′ + ty = 0, studied by Iserles [10].

From now on, we shall assume thatn is an odd integer above 1, and thatν > −1
2(n+3).

These conditions ensure that oscillatory solutions exists, as explained in the survey by
Wong [13]. We remark incidentally that this remains true for any realn > 1, if we replace
the equation (6) by y′′ + tν sgn(y) |y|n = 0, where sgn(y) denotes the sign ofy. However,
we then lose analyticity aty = 0.

The equation (6) has an obvious scaling symmetry, which can be used to reduce the
order. Here we shall use a different approach, though, because the asymptotic solution as
t → ∞ will suffice for our purposes. From now on, we set

γ = ν

n + 3
.

The conditions onn andν imply thatγ > −1
2. Now consider the transformation given by

y(t) = (1 + 2γ )2/(n−1)t−γ u(t1+2γ ). (7)

If we apply (7) to the differential equation (6), we get

(1 + 2γ )2n/(n−1)t3γ
(
u′′(t1+2γ ) + un(t1+2γ )

) + γ (1 + γ )(1 + 2γ )2/(n−1)t−γ−2u(t1+2γ )

= 0.

For larget , we can (hopefully) neglect the last term asγ > −1
2, and the above equation

reduces tou′′ + un = 0. The expression(1/(n+ 1))un+1 + 1
2(u′)2 is an invariant of this

equation; it is only an adiabatic invariant of the original equation. We shall denote the
solution ofu′′ + un = 0 which satisfies the initial conditionsu(0) = 0 andu′(0) = 1
by wn(t), and we note for further reference that this is an odd and periodic function. The
general solution ofu′′ + un = 0 is then given byu(t) = c

2/(n+1)

1 wn(c1t + c2). Note that
c1 determines the amplitude of the oscillation, whilec2 determines the phase. In other,
more sophisticated words,(c1, c2) are action-angle coordinates of the Hamiltonian system
corresponding to the Emden–Fowler oscillator.

It follows that the solution of the Emden–Fowler equation (6) is asymptotically (as
t → ∞) given by

y(t) ≈ (1 + 2γ )2/(n−1)c
2/(n−1)

1 t−γ wn(c1t
1+2γ + c2). (8)
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We repeat our assumptions:n > 1 is an odd integer andν > −1
2(n + 3).

4. Global error of Runge–Kutta methods

In this section, we use Theorem2to estimate the global error committed by RK-methods.
We shall assume that the asymptotic solution (8) is in fact exact. The numerical experiments
reported in Section5 will show that this is a valid approximation.

The first task is the computation of elementary differentials. For this, we need to convert
the differential equation to a system of autonomous first-order equations:

y ′
1 = y2;

y′
2 = −yν

3yn
1;

y′
3 = 1.

(9)

Herey1, y2, andy3 correspond toy, y′, andt , respectively, in the original equation (6).
It follows that the first component of the elementary differentialF(τ )(y) satisfies the

following recurrence relations (where the argumenty is deleted):

F1( r) = y2;
F1

(
r

τ ) = F2(τ );
F1

(
r@

τ1 ...

�
τk
)

= 0 (k > 2).

The second component satisfies

F2( r) = −yn
1yν

3;
F2

(
r@

τ1 ...

�
τk
)

= − n!
(n − k)!y

n−k
1 yν

3F1(τ1) . . . F1(τk) (if k 6 n);

F2

(
r@

τ1 ...

�
τk
)

= 0 (if k > n + 1),

where the derivatives with respect toy3 are neglected, because they lead to terms that are
smaller by a factort1+2γ . Finally, the third componentF3 always vanishes, except forF3( r),
which equals one. Hence we shall drop this component from now on.

By unwinding these recurrence relations, we find that the elementary differentials are
given by:

F1(τ )(y) = C1,τy
(n+1)d−ρ+1
1 y

ρ−2d
2 ydν

3 ;
F2(τ )(y) = C2,τ y

nρ−(n+1)d
1 y

2d−ρ+1
2 y

(ρ−d)ν
3 .

Hereρ denotes the order of the treeτ (that is, the number of vertices), andd is the number
of vertices with odd height (the height of a vertex is the distance to the root). Note that the
constantsC1,τ andC2,τ may be zero. In fact, the only trees for which both constants are
nonzero are the trees without branches.

If we substitute the approximate solution (8), we find that the elementary differentials
are

F(τ )(y(t)) ≈
[

C3,τ t
γ (2ρ−1)w

(n+1)d−ρ+1
n (t̃) w′

n
ρ−2d

(t̃)

C4,τ t
γ (2ρ+1)w

nρ−(n+1)d
n (t̃) w′

n
2d−ρ+1

(t̃)

]
, (10)

wheret̃ = c1t
1+2γ + c2. The growth rate of the elementary differential is determined by

the exponent oft . Note that the variabled does not enter in this exponent. The surprising
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conclusion is that all trees of the same order contribute a term with the same growth rate,
independent of their shape. This is in stark contrast to the linear Airy equation, where the
differential corresponding to the branchless tree dominates (see [10]).

The next step is to calculate the elementary integralIτ . For this, we need to multiply the
above differential with the variational flow matrix, and integrate the resulting expression.
To compute the variational flow, we introduce the mapXt : R

2 → R
2, defined by

Xt(c) =
[

(1 + 2γ )2/(n−1)c
2/(n−1)

1 t−γ wn(c1t
1+2γ + c2)

(1 + 2γ )1+2/(n−1)c
1+2/(n−1)

1 tγ w′
n(c1t

1+2γ + c2)

]
. (11)

So Xt maps the parameter space to the solution space at timet . Neglecting lower-order
terms, it follows that the flow map satisfies8t

s = Xt ◦ X−1
s . Hence we can write the

elementary integral (5) as:

Iτ (t) ≈ DXt(c)
∫ t

0
DX−1

s (y(s)) F(τ )(y(s)) ds. (12)

To find the integrand in the above expression, we multiply the inverse of the Jacobian matrix
of (11) with (10). The result is

 s2γρ
(
C5,τw

(n+1)(d+1)−ρ
n (w′

n)
ρ−2d + C6,τw

nρ−(n+1)d
n (w′

n)
2d−ρ+2

)
s2γρ+2γ+1

(
C7,τw

(n+1)(d+1)−ρ
n (w′

n)
ρ−2d + C8,τw

nρ−(n+1)d
n (w′

n)
2d−ρ+2

)

 , (13)

where the functionswn andw′
n are evaluated at̃s = c1s

1+2γ + c2.
In the calculation, we used the fact that

w′′
n(t) = −wn

n(t) and w′
n

2
(t) = 1 − 1

n + 1
wn+1

n (t).

The first equality is indeed the definition ofwn, and the second one follows by multiplying
the first one byw′

n(t) and integrating, using the initial conditionswn(0) = 0 andw′
n(0) = 1.

The next step is to integrate (13). But consider the exponents ofwn andw′
n. If ρ is even,

these exponents are also even, and hence the integrand is nonnegative. Now recall thatwn

is odd and periodic. So in the case whenρ is odd, the functionswn andw′
n are raised to

an odd power, which means that the integrand oscillates around zero. Thus we can expect
cancellations in the latter case, but not ifρ is even. We stress that this phenomenon does
not occur in the linear case, analysed by Iserles in [10].

In fact, we have∫ t

0
w`

n(s) w′
n
m
(s) ds =

{
C̃`mn(t), if either` or m is odd,

C`mnt + C̃`mn(t), if both ` andm are even,

whereC̃`mn(t) denotes an oscillatory function with the same period aswn(t), andC`mn is
a constant. It follows that∫ t

0
skw`

n(s̃) w′
n
m
(s̃) ds =

{
C̃k`mn(t̃) tk−2γ + O(tk−4γ−1), if ` or m is odd,

Ck`mnt
k+1 + O(tk−2γ ), if ` andm are even,

where againC̃k`mn andCk`mn denote a periodic function and a constant, respectively.
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We can use this result to integrate (13), and we find that

∫ t

0
DX−1

s F(τ )(y) ds =




[
C̃9,τ(t̃) t2γρ−2γ + O(t2γρ−4γ−1)

C̃10,τ (t̃) t2γρ+1 + O(t2γρ−2γ )

]
, if ρ is odd,

[
C9,τ t

2γρ+1 + O(t2γρ−2γ )

C10,τ t
2γρ+2γ+2 + O(t2γρ+1)

]
, if ρ is even.

(14)

To compute the elementary integralIτ , we need to premultiply the integral (14) withDXt ;
see (12). But the expression (14) has an interpretation by itself. Remember thatXt maps
the parameter space to the solution space. So the integral (14) represents the error in the
parameter space. We conclude that the energy error associated with the treeτ grows ast2γρ+1

if ρ is even, and ast2γρ−2γ if ρ is odd. The second component gives the phase error.
Multiplying the Jacobian matrix of the mapXt with the integral (14) gives us the ele-

mentary integrals

Iτ (t) =




[
C̃11,τ(t̃) t2γρ−γ+1 + O(t2γρ−3γ )

C̃12,τ (t̃) t2γρ+γ+1 + O(t2γρ−γ )

]
, if ρ is odd,

[
C̃11,τ(t̃) t2γρ+γ+2 + O(t2γρ−γ+1)

C̃12,τ (t̃) t2γρ+3γ+2 + O(t2γρ+γ+1)

]
, if ρ is even.

Finally, we can find an estimate for the global error by adding the contributions of all the
trees according to (5). For the first component, we find that

Eh(t) ≈ C̃1(t̃)ht5γ+2 + C̃2(t̃)h
2t5γ+1 + C̃3(t̃)h

3t9γ+2 + C̃4(t̃)h
4t9γ+1 + · · · + O(h2p).

More formally, we have the following result.

Theorem 3. Suppose that one is solving the Emden–Fowler equationy′′ + tνyn = 0, with
ν > −1

2(n + 3) andn an odd integer greater than1, with a numerical method of orderp
that can be expressed as a B-series. Then the global error has the form

Eh(t) =
∑

p62r<2p

h2r

[
C̃1

2r (t̃) t4γ r+γ+1 + O(t4γ r−γ )

C̃2
2r (t̃) t4γ r+3γ+1 + O(t4γ r+γ )

]

+
∑

p62r+1<2p

h2r+1

[
C̃1

2r+1(t̃) t4γ r+5γ+2 + O(t4γ r+3γ+1)

C̃2
2r+1(t̃) t4γ r+7γ+2 + O(t4γ r+5γ+1)

]
+ O(h2p).

Here, C̃i
k(t̃) denotes a function periodic iñt = c1t

4/3 + c2, and γ = ν/(n + 3). The
remainder termO(h2p) is not uniform int .

We would like to draw the reader’s attention again to the difference between the even
and the odd powers ofh. Unfortunately, we do not know what causes this phenomenon, nor
whether it also occurs for other differential equations.

5. Numerical experiments

The purpose of this section is to supplement the calculations of the previous section
with some numerical experiments. In particular, we want to see whether we were justified
in using the asymptotic solution (8). Furthermore, it could be interesting to study whether
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theO(hp) term of the global errorEh(t) dominates, or whether other terms have to be taken
into account.

All the experiments are performed with the parametersn = 3 andν = 1, so the differ-
ential equation that we are solving is

y ′′ + ty3 = 0. (15)

The reason for this particular choice is that the functionw3(t), the solution ofu′′ + u3 = 0
satisfyingu(0) = 0 andu′(0) = 1 (see Section3), can be expressed in terms of Jacobi elliptic
functions (see, for example, [12]). In fact, we havew3(t) = sd(t | 1

2). The parameter12
will be dropped from now on. As a consequence, we can explicitly calculate the elementary
integral associated with any given tree.

Our example concerns Runge’s second-order method, given by

yn+1 = yn + hf
(
tn + 1

2h, yn + 1
2hf (tn, yn)

)
. (16)

To evaluate the error estimate (5), we need to express Runge’s method as a B-series, and to
compute the coefficients of the modified equation using (4). Next, we evaluate the elemen-
tary integralsIτ and plug all this into the expression (5). After some laborious calculations,
this yields

Eh(t) ≈ h2

[ 4
15

√
2c4

1χt11/6sd′(t̃)

− 8
45

√
2c5

1χt13/6sd3(t̃)

]
+ h3

[ 256
6237

√
2c6

1t
7/2 sd′(t̃)

− 512
18711

√
2c7

1t
23/6sd3(t̃)

]
. (17)

Here,χ = (1/4K)
∫ 4K

0 sd2(s) ds = 0.91389, where 4K is the period of the function sd,
andt̃ = c1t

4/3 + c2.
To check this estimate, we compute the solution of the nonlinear oscillator (15) with

Runge’s second-order method (16). The initial conditions arey(0) = 1 andy′(0) = 0,
which lead to a solution withc1 ≈ 0.7. The solution is compared to the result of the
standard fourth-order Runge–Kutta method with step sizeh = 1/10000. According to
Theorem3, this would give an error of about 10−9, so we can consider this to be the exact
solution. The global errorEh(t) is computed by subtracting the result of Runge’s method
from the ‘exact’ solution. The first component is depicted in the top three rows of Figure1.
The left-hand column shows the time interval[0, 50], and on the right the larger interval
[0, 2000] is displayed.

In the left-hand column of Figure1, one can see that the global errorEh(t) oscillates, as
is predicted by the estimate (17); this is the factor sd′(t̃). The amplitude of the oscillations,
as predicted by (17), is shown by the thick curve in the left-hand column in Figure1. We
see that the estimate (17) describes the actual error accurately.

The right-hand column of Figure1 shows a much larger time interval. Here the oscilla-
tions of the error are compressed so heavily that it appears as a grey blob. The dashed curve
shows the first, leading term of the error estimate (17), and the solid curve shows the sum
of both terms. We conclude that the leadingh2 term of the estimate does not describe the
actual error correctly, but that the error is predicted accurately if theh3 term is included. For
h = 1/1000, the latter estimate breaks down aroundt = 1200. We note that at that point,
the amplitude of the solution is approximately 0.3 and the error has about the same size,
so the numerical solution has deviated considerably from the exact solution. For smaller
values of the step size, the estimate (17) is accurate over the entire time interval[0, 2000].

It follows that for larget (which here means: in the order of 1000), Runge’s method
behaves essentially as a third-order method. To check this, we compare it with Heun’s
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classical third-order method, which is given by equation (18).

k1 = f (tn, yn)

k2 = f
(
tn + 1

3h, yn + 1
3hk1

)
k3 = f

(
tn + 2

3h, yn + 1
3hk2

)
yn+1 = yn + h

(
1
3k1 + 2

3k3

)

Butcher tableau:

0
1/3 1/3
2/3 0 2/3

1/4 0 3/4

(18)
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Figure 1: The top three rows show the first component of the global error committed by
Runge’s second-order method (16), and the estimate (17), for various step sizes. On the left,
the oscillating curve is the global errorEh(t), and the thick curve shows the amplitude of
the oscillations as predicted by (17). On the right, the true error is shown in grey, the dashed
curve shows the first, leading term of the error estimate (17), and the solid curve shows the
sum of both terms. The bottom row shows the same for Heun’s third-order method (18) and
the estimate (19).
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A similar calculation as for Runge’s second-order method gives the following estimate
for the global error committed by this method:

Eh(t) ≈ h3

[− 512
35721

√
2c6

1t
7/2 sd′(t̃)

1024
107163

√
2c7

1t
23/6sd3(t̃)

]
+ h4

[ 50208
229635

√
2c6

1t
5/2 sd′(t̃)

− 60416
688905

√
2c7

1t
17/6sd3(t̃)

]

+ h5


 557056

34543665

√
2c8

1χt25/6sd′(t̃)

− 1114112
103630995

√
2c9

1χt9/2 sd3(t̃)


 . (19)

The actual error and the above estimate, for step sizeh = 1/2000, are displayed in the
bottom row of Figure1. We see that the error estimate (19) again provides an excellent
description of the actual error. Furthermore, the difference in order between Runge’s and
Heun’s methods shows clearly for small values oft (see the left-hand column in Figure1).
For large values oft , however (see the right-hand column), Runge’s method behaves essen-
tially as a third-order method, and we see that the difference between the two methods is
indeed much smaller.

Remark.It turns out that the elementary integralsIτ corresponding to trees of the same
order are scalar multiples of each other. Following an idea put forward by B. Orelin a talk
given in 2001 at the SciCADE event in Vancouver, we can use this to construct a Runge–
Kutta method in which the dominating term of the global error vanishes. This yields a
method which, for this particular equation, clearly outperforms other RK-methods of the
same order: the error is several orders of magnitude lower. A deeper investigation into the
mechanism behind this phenomenon might be useful.

6. Discussion

We have used a combination of the Alekseev–Gröbner lemma, the theory of modified
equations, and asymptotics to calculate an estimate for the global error committed by Runge–
Kutta methods for a class of nonlinear oscillators. A special feature is that we obtained some
terms after the leading term of orderhp. The Emden–Fowler equation showed that this is
sometimes necessary, as the later terms blow up faster than the leading term. Finally, some
numerical experiments have been done, and have verified the accuracy of the estimates.

A delicate issue is the validity region of the estimates derived in this paper. Ift is too
large, theO(h2p) term will probably dominate, rendering the estimates worthless. On the
other hand, the estimates of Sections4 and5 use the asymptotic solution ast → ∞, so we
needt to be sufficiently large. In any case, the step sizeh needs to be sufficiently small; but
if it is very small, only thehp term will contribute. The final thing to keep in mind is that
the expansion of the modified equation in powers ofh usually diverges. The only definitive
statement that we can make is that more research needs to be done on this issue.

The approach taken in this paper can be compared to that described by Hairer and
Lubich [6], who built upon Gragg’s asymptotic expansion [5]. They expand the global error
in powers of the step sizeh, and show how the terms can be found recursively by solving a
differential equation involving the previous term. In principle, all the terms of the asymptotic
expansion of the global error can be found in this way. Unfortunately, when we apply this
approach to the Emden–Fowler oscillator (6), we find that the expressions quickly become
too complicated to handle. Obviously, the firstp terms of Hairer and Lubich’s expansion
must equal the integral in (2). However, the connection has not, as yet, been found.
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