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A PRIORI ESTIMATES FOR THE GLOBAL ERROR COMMITTED BY
RUNGE-KUTTA METHODS FOR A NONLINEAR OSCILLATOR

JITSE NIESEN

Abstract

The Alekseev—Grébner lemma is combined with the theory of mod-
ified equations to obtain aa priori estimate for the global error

of numerical integrators. This estimate is correct up to a remainder
term of orderh2?, whereh denotes the step size apche order of

the method. It is applied to nonlinear oscillators whose behaviour is
described by the Emden—Fowler equatidnt ¥ y" = 0. The result
shows explicitly that later terms sometimes blow up faster than the
leading term of ordek”, necessitating the whole computation. This
is supported by numerical experiments.

1. Introduction

A numerical procedure for solving a given ordinary differential equation will induce an
error; that is, the numerical solution differs from the exact solution. The goal of this pape
is to givea priori estimates for this error. This is usually done by expanding the error ir
powers of the step size. Here, we are especially interested in terms beyond the leading t
in this expansion. We shall discuss how to compute these terms, and we shall show
means of an example that these terms may in fact dominate the leading term. This exam
is the Emden—Fowler equatiorf + *y" = 0. For the parameter range considered here,
the solutions of this equation are oscillatory. It is a nonlinear variant of the Airy equatiol
y"+ty = 0, studied by Iserles irlP], which indeed formed the inspiration for the research
described in this paper. Other research in this area is described3g[2].

Our approach is based on the Alekseev—Grdbner lemma, which describes the effect
perturbing a differential equation on its solution, and the theory of modified equations, whic
quantifies the idea that the numerical procedure can be considered as a perturbation of
original equation. It should be noted that computing the estimates for the global error deriv
below requires a good analytical approximation to the exact solution (which is availabl
for the Emden—Fowler equation). In this case, calculating a numerical approximation to
solution might be of limited use. Of course, this does not imply that the work describe
here is worthless; compare it, for example, with the analysis of the trivial equdtieriy,
which leads to the concept of A-stability.

The remainder of this paper is organized as follows. The next section derives a formt
for estimating the global error. The resultingpriori estimates are exact up to a term of
orderi??, whereh is the step size and is the order of the method. The Emden—Fowler
equationisintroduced in Secti@hwhere we also describe its asymptotic solution. Sedtion
contains the actual calculation of global error estimates. The estimates are supported
numerical experiments, as described in Sediidrhe last section contains a short discussion
of the results.
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A priori estimates for the global error committed by RK-methods

2. Theory

In this section, we fix the notation, and we derive the basic formiildof estimating
the global error.
Suppose that we are solving the ordinary differential equation

y' (1) =f(1,y@)), y(to) = Yo, 1)

wherey(r) € R? is avector. We assume tHds C to avoid technicalities that are irrelevant
to our argument. Associated to this differential equation isfitve mapd’ : R — R,
defined byd!(y) = y andd/dt ®’(y) = f (¢, D.(y)). Its Jacobian matrix will be denoted
by D®!, and is called theariational flow.

Now suppose that one uses a numerical one-step method with fixed ste possodve the
differential equationX). Lettingyo = y(t0), we denote the subsequent results of the method
byy1, Y2, V3, ...,andwe set, = to+kh. We define thglobal errorby Ej, (1) = yr —Y(t).

We say that a method & order p if E;, (1) = O (hP).

As mentioned in the introduction, the general idea is to view the numerical ‘flow’ as ¢
perturbation of the actual flow of the equation. This idea is made exact by the theory
modified equations. The same approach has been taken by Calvo and Plaieed[ by
Hairer and Lubich [7].

The theory of modified equations, analogous to Wilkinson’s backward error analysis |
numerical linear algebra, tries to find a differential equatioa fAh (z, z) whose solution is
close to the numerical results. In fact, for any intefyerone can explicitly construct n
such that the solution of the modified equatiorvig:™)-close to the numerical solution
(see, for example, [1] 0]).

THEOREM 1. Lety(r) be the solution of the differential equati¢h), and letD®’ denote
its variational flow. Suppose that a numerical method of ord@roduces the valuelyy}.

If the solutionz(r) of the modified equatiori = f, (¢, z) satisfiesz(ty) — yx = O (h?P) for

all k, then

t
En () =/ DOL(y(s)) 1 (s, y(s)) ds + O(h?F), )
I

0
wheres, (¢, y) = fn(r,y) — (1, y).

Proof. The Alekseev—Grébner lemma (see, for example, [9]) shows that

1
z2(t) —y(t) = / DD (z(s)) 8i(s. 2(s)) ds.
fo

This can be proven immediately by differentiating both sides of the above equation. No
the left-hand side i€, (r) + @ (h?P). Furthermore, since the method is of orgerwe
havey(r) — z(t) = @ (h”). Finally, it follows from the theory of modified equations that
3y(t,y) = O(hP) (see, for example, [8, Section IX.1]). Together, these prove (2). [

Note that the constant implied by tid&%#27) term in equationZ) depends on. Hence
the above result is valid only on bounded time intervals. The same goes for the results tl
we shall obtain later (Theoren2sand3).

From now on, we restrict our attention Runge—Kutta methods. We assume that the
reader is familiar with the theory of Runge—Kutta methods and B-series, as explained in t
text books [9] and [11], amongst others.
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A B-series is a formal power series of the form
hP@©

a(t) a(t) F(D)(y). 3)

B(a,y) =a@y+)
€T p()!

HereT denotes the set of rooted trees; T — R is a coefficient functionp(z) is the
order of the tree, a(t) denotes the number of monotone labellings pdndF(7)(y) is
the elementary differential of the functidrassociated with. The result of any Runge—
Kutta method can be written as a B-series, and the coefficient functiéepends on the
coefficients of the method.

Hairer, Lubich and WanneBJ use the concept of a B-series to derive a formula for the
modified equation. Suppose that the outcome of the RK-method is described by the B-sel
with coefficient functior. Then the modified equationis givenBy= (1/h) B(b, z), where
the coefficients are recursively defined by:

b)) = 0,

b(e) =1; ()
p(t) )

b(r) =a(t)— ) Fa,j‘lb(r), for p(t) > 2.
=2/

In this formula, 9,¢ refers to the Lie derivative oB(c,y) with respect to the vector
field B(b, y), expressed as a B—series. An explicit formula is given in [8].

We now use this expression for the modified equation to rewrit@athgori estimate
given in Theorent.

THEOREM 2. Lety(r) be the solution of the differential equatigh= f(z, y), and letD®’,
denote its variational flow. Suppose that this equation is solved by a Runge—Kutta meth
with B-series coefficient functian Letb be defined as if4). If the numerical method has
order p, then the global error satisfies:

0= Y %02 04 on),

7)!
TET[Z,Z/)] p( )

t
wherel, (1) = [ DY) FOy6) ds. (5)
fo
Here, T} 2, denotes the set of trees with order at leasand at mos2p.

Proof. As mentioned above, the right-hand side of the modified equaticty is) B(b, z),
with b as in (4). NowF(e) = f, so the first term in this B-series is the right-hand side of
the original equation (1). Hence their differengz, y) equals
pP@-1
> a(T) b(x) F(T)(y).
p(T)!

TET[Z,OO)

We now substitute this expression iB) (@nd move the scalar factors out of the integral
(remember that the variational flo@®’, is a linear operator). This results in (5). O

Note that the error estimate (5) nicely separates the problem and the method. The met|
enters the estimate only via the coefficien{s). On the other hand, the value of the
integralsl; is completely determined by the particular equation that one is solving. As thei
role inthe global error estimatB)is similar to the role of the elementary differentar ) (y)
in the local error, we shall call, theelementary integrahssociated withr.
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3. The Emden—Fowler equation

For the rest of the paper, we consider nonautonomous, nonlinear oscillators whose |
haviour is described by the Emden—Fowler equation:

y”-i—lvyn:(), t>o’

y(0) = yo; (6)

y'(0) = yp.
This equation withv = 1 — n (in which case it is commonly called the Lane—-Emden
equation) was originally proposed by Chandrasekfiptd model stars: considering a star
as a radially symmetric gaseous polytrope of indeix thermodynamic and hydrostatic
equilibrium, the relation between the density and the distance to the centre satisfies the Lal
Emden equation. The Emden—Fowler equation also arises in the fields of gas dynamics, fl
mechanics, relativistic mechanics, nuclear physics, and the study of chemically reacti
systems (see [13] and the references therein). Note that the chaice af = 1 reduces
the Emden—Fowler equation to the Airy equatidh+ ry = 0, studied by Iserles [10].

From now on, we shall assume thas an odd integer above 1, and that —%(n +3).
These conditions ensure that oscillatory solutions exists, as explained in the survey
Wong [13]. We remark incidentally that this remains true for any real 1, if we replace
the equation (6) by’y+ ¥ sgn(y) |y|"* = 0, where sgty) denotes the sign of. However,
we then lose analyticity at = 0.

The equation (6) has an obvious scaling symmetry, which can be used to reduce f
order. Here we shall use a different approach, though, because the asymptotic solutior
t — oo will suffice for our purposes. From now on, we set

v

T a+3

14

The conditions om andv imply thaty > —%. Now consider the transformation given by
Y1) = (L4202 DT w2, 7
If we apply (7) to the differential equation (6), we get

(1+ 2,}/)2n/(n71)t3y(u//(t1+2y) + Mn(t1+2)/)) 4 V(1+ )/)(1+ 2y)2/(n71)t7}/7214(t1+2)/)
=0.

For larger, we can (hopefully) neglect the last termjas> —%, and the above equation
reduces ta.” + u” = 0. The expressiofl/(n + 1))u"+1 + %(u’)2 is an invariant of this
equation; it is only an adiabatic invariant of the original equation. We shall denote th
solution ofu” + u" = 0 which satisfies the initial conditions(0) = 0 andu«’(0) = 1
by w, (¢), and we note for further reference that this is an odd and periodic function. Th
general solution ofi” + u" = 0 is then given by () = ci/(nJrl)wn (c1t + ¢2). Note that
c1 determines the amplitude of the oscillation, whiledetermines the phase. In other,
more sophisticated wordg&;s, c2) are action-angle coordinates of the Hamiltonian system
corresponding to the Emden—Fowler oscillator.

It follows that the solution of the Emden—Fowler equati@) s asymptotically (as
t — 00) given by

y(i)~ 1+ 2y)2/("7l)ci/("_1)f”wn (c1t™? + ¢p). (8)
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We repeat our assumptions> 1 is an odd integer and > —%(n + 3).

4. Global error of Runge—Kutta methods

In this section, we use Theoréhto estimate the global error committed by RK-methods.
We shall assume that the asymptotic soluti®yig in fact exact. The numerical experiments
reported in Sectiob will show that this is a valid approximation.

The first task is the computation of elementary differentials. For this, we need to conve
the differential equation to a system of autonomous first-order equations:

Yy =2
Yo = —V3)is 9)
yz=1.

Herey1, y2, andys correspond to, y’, andz, respectively, in the original equation (6).
It follows that the first component of the elementary differenfiét)(y) satisfies the
following recurrence relations (where the argumeig deleted):

The second component satisfies
Fa(e) = —y1y3:

T1 . T ! -
Fz( 1\./k) = (n i k)!yf_kyé)Fl(fl) P (w) (if k < n);

F2<1\/k) —0 (f k >n+1),

where the derivatives with respect tg are neglected, because they lead to terms that are
smaller by afactor! 2" . Finally, the third componerit; always vanishes, except fBg(s),
which equals one. Hence we shall drop this component from now on.

By unwinding these recurrence relations, we find that the elementary differentials a
given by:

Vd—p+1 _p—2d
F1(1)(y) = Cp oy Do 02y,
—(n+1)d _2d—p+1_(p—d
Fa(r)(y) = Ca.ryy?~ " 20ty
Herep denotes the order of the tredthat is, the number of vertices), atids the number
of vertices with odd height (the height of a vertex is the distance to the root). Note that tf
constanty ; andCz , may be zero. In fact, the only trees for which both constants are
nonzero are the trees without branches.
If we substitute the approximate solutiod)(we find that the elementary differentials

are
C3 Tty(zpfl)wr(ln+l)d7p+l(t~) u),//)_Zd(f) j|

; i (10)
Caet? @ Dw =D Gy 20 )

F(o)(y(®) ~ |:

wherei = ¢1t11% + ¢,. The growth rate of the elementary differential is determined by
the exponent of. Note that the variablé does not enter in this exponent. The surprising
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conclusion is that all trees of the same order contribute a term with the same growth ra
independent of their shape. This is in stark contrast to the linear Airy equation, where tl
differential corresponding to the branchless tree dominates (see [10]).

The next step is to calculate the elementary intefyrafor this, we need to multiply the
above differential with the variational flow matrix, and integrate the resulting expressior
To compute the variational flow, we introduce the n¥p R? — R?, defined by

142 2/(n—1)C2/("*l)t—yw c tl+2y Ny
Xt(C)=|: ( V) 1 n(c1 2) . (11)

(1+ 2 W2 O-DeI 2O Dy (e 4 ¢y)
So X; maps the parameter space to the solution space atrtildeglecting lower-order

terms, it follows that the flow map satisfidsl, = X, o X; 1. Hence we can write the
elementary integral (5) as:

t
I (1) = DX; (C)/O DX;H(y(5)) F(1)(y(s)) ds. 12)

To find the integrand in the above expression, we multiply the inverse of the Jacobian mati
of (11) with (10). The result is

SZyp (CS,‘[wlsn+l)(d+l)7p(w;//,)p_Zd + Ce’rwzp*(n+1)d(w;l)2d—p+2)

. (13)
szyp+27+1(C7,rw,(1n+1)(d+1)_p(w,’1)p_Zd + Cs,rw:;p_(’l+l)d(w,/l)zd_p—'—z)
where the functions), andw), are evaluated &at= c1s1% 4 ¢o.
In the calculation, we used the fact that

1
w/(t) = —w'(t) and w2t =1- mw;'“(t).

The first equality is indeed the definition @f,, and the second one follows by multiplying
the first one byw,, (r) and integrating, using the initial conditiong (0) = 0 andw,,(0) = 1.

The next step is to integratéJ). But consider the exponentswof andw),. If p is even,
these exponents are also even, and hence the integrand is nonnegative. Now reggll tha
is odd and periodic. So in the case wheiis odd, the functionsy, andw),, are raised to
an odd power, which means that the integrand oscillates around zero. Thus we can exf
cancellations in the latter case, but nopifs even. We stress that this phenomenon does
not occur in the linear case, analysed by Iserles in [10].

In fact, we have

L Comn (1), if either ¢ or m is odd,
w,(s)w, (s)ds = ~ .
Comnt + Comn(t), if both £ andm are even,

whereCy,,, (1) denotes an oscillatory function with the same periotag), andCy,, is
a constant. It follows that

Lok e Cremn (1) t*727 + O*=*=1), if £ orm is odd,
stw, (S) w, (5)ds = 4l ‘2 .
Cromnt "™+ O 4Y), if £ andm are even,

where agairCi,,, andCyg,,, denote a periodic function and a constant, respectively.
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We can use this result to integrate (13), and we find that

[C’g,f(f) 12P=2 | @ (2rr—4r -1y

IR . if pis odd,

! Croc (D 1P+ O 27P~%) } ’
/Dg%m@wz (14)
0

Co Tt2yp+1 4 @(tZVP—ZJ/)
’ , if piseven.
C10 Tt2y,o+2y+2 4 (Q(IZyp+l) p

To compute the elementary integiial we need to premultiply the integrdl4) with D X/;

see (12). But the expressioh4) has an interpretation by itself. Remember tkiainaps

the parameter space to the solution space. So the intdgrptépresents the error in the

parameter space. We conclude that the energy error associated with thgrorers ag?»+1

if p is even, and ag’?~2" if p is odd. The second component gives the phase error.
Multiplying the Jacobian matrix of the may, with the integral (14) gives us the ele-

mentary integrals

{Cn,f@ 2=+l L 9(12rr=3r)

- ; if p is odd,
Cro.o (D) 270471 4 O (127077 }

I (1) =

C1,o(D) 1777 T2 4 O (12rP-r
éth(f) t2yp+3)/+2 + (9(t2yp+)/+l)

} , If piseven.

Finally, we can find an estimate for the global error by adding the contributions of all th
trees according to (5). For the first component, we find that

En(t) ~ Cr(Dht> 12 4+ CoHh%> L + Ca3(h3 2 + CaDh* L + . + O(h?P).
More formally, we have the following result.

THEOREM 3. Suppose that one is solving the Emden—Fowler equationt’y" = 0, with
v > —%(n + 3) andn an odd integer greater thah, with a numerical method of order
that can be expressed as a B-series. Then the global error has the form

£.) Z e C (@) rh v+l L o@tr—r)
h = ~5 o~
p<T22p Cgr (t) t4yr+3y+l 4 (9(t4yr+y)

>

h2r+1 |:C%r+1(;) t4yr+5y+2 + 0(t4yr+3}/+l)
p<2r+1<2p

é%r+l(f) t4yr+7y+2 4 (9(t4yr+5y+l)

}+0m@y

Here, Ci(7) denotes a function periodic in = c1t%/3 + ¢, andy = v/(n + 3). The
remainder term® (h2?) is not uniform in. O

We would like to draw the reader’s attention again to the difference between the eve
and the odd powers @f. Unfortunately, we do not know what causes this phenomenon, no
whether it also occurs for other differential equations.

5. Numerical experiments

The purpose of this section is to supplement the calculations of the previous secti
with some numerical experiments. In particular, we want to see whether we were justifie
in using the asymptotic solution (8). Furthermore, it could be interesting to study wheth
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the© (h?) term of the global errdE;, () dominates, or whether other terms have to be taken
into account.
All the experiments are performed with the parametess 3 andv = 1, so the differ-
ential equation that we are solving is
y' +1y3=0. (15)

The reason for this particular choice is that the functiesr), the solution of”” + u® = 0
satisfyingu(0) = 0 andu’(0) = 1 (see SectioB), can be expressed in terms of Jacobi elliptic
functions (see, for examplel2]). In fact, we havews(r) = sd(z | %). The parameteé
will be dropped from now on. As a consequence, we can explicitly calculate the elementa
integral associated with any given tree.

Our example concerns Runge’s second-order method, given by

Ynt1 = Yn + hf (tn + 3h,yn + 3hf @, yn)). (16)

To evaluate the error estimatg)(we need to express Runge’s method as a B-series, and t
compute the coefficients of the modified equation using (4). Next, we evaluate the eleme
tary integralg/; and plug all this into the expressios)( After some laborious calculations,

this yields
A V2351 8sd (7 256 /2c817/2sd (7
V41X ®) :| h3[ G237V 41 () :| a7)

En(0) ~ h? |: 8 5 - 512 /5.7
— B V23411365 (7) — 1352.V2c]12%/6s (1)

Here,x = (1/4K)f04K scP(s) ds = 0.91389, where & is the period of the function sd,
ands = Clt4/3 + c2.

To check this estimate, we compute the solution of the nonlinear oscillBym(ith
Runge’s second-order methotl6). The initial conditions are(0) = 1 andy’(0) = O,
which lead to a solution witlkr; ~ 0.7. The solution is compared to the result of the
standard fourth-order Runge—Kutta method with step size 1/10000. According to
Theorem3, this would give an error of about 18, so we can consider this to be the exact
solution. The global erroE;, (¢) is computed by subtracting the result of Runge’s method
from the ‘exact’ solution. The first component is depicted in the top three rows of Figure
The left-hand column shows the time intery@) 50], and on the right the larger interval
[0, 2000 is displayed.

In the left-hand column of Figurg, one can see that the global erEgi(r) oscillates, as
is predicted by the estimat&7); this is the factor s¢). The amplitude of the oscillations,
as predicted byl(7), is shown by the thick curve in the left-hand column in FigLir&Ve
see that the estimate (17) describes the actual error accurately.

The right-hand column of Figureshows a much larger time interval. Here the oscilla-
tions of the error are compressed so heavily that it appears as a grey blob. The dashed ci
shows the first, leading term of the error estimdté)( and the solid curve shows the sum
of both terms. We conclude that the leadirfgterm of the estimate does not describe the
actual error correctly, but that the error is predicted accurately fithierm is included. For
h = 1/1000, the latter estimate breaks down arouge 1200. We note that at that point,
the amplitude of the solution is approximately3@nd the error has about the same size,
so the numerical solution has deviated considerably from the exact solution. For small
values of the step size, the estimate (17) is accurate over the entire time ifbeRa@00.

It follows that for larger (which here means: in the order of 1000), Runge’s method
behaves essentially as a third-order method. To check this, we compare it with Heur
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classical third-order method, which is given by equation (18).

K1 =Tf(tn, Yn)
n> Y Butcher tableau:
1 1
ko =" (fn +3hYn t+ ghk1> 0
1/3]1/3 (18)
k3 =f (tn + %ha Yn + %th) / /
23| 0 2/3
1 2 1/4 O 4
Yut1 = Yo+ ($ka + 3ka) |1 y
x10" Runge, h = 1/1000 Runge, h = 1/1000
1 0.5
0.5
0 0 _ 1
-05
-1 -0.5
0 10 20 30 40 50 0 500 1000 1500 2000
x10° Runge, h = 1/2000 Runge, h = 1/2000
2 0.2
0 ob———————==" - - ===
- -0.2
0 10 20 30 40 50 0 500 1000 1500 2000
x10° Runge, h = 1/4000 0.05 Runge, h = 1/4000
5
0 0 S = s =S =SS
-5
-0.05
0 10 20 30 40 50 0 500 1000 1500 2000
x10" Heun, h = 1/2000 Heun, h = 1/2000
) 0.1
0.05
0 0
-0.05
2 -0.1
0 10 20 30 40 50 0 500 1000 1500 2000
time time

Figure 1: The top three rows show the first component of the global error committed b
Runge’s second-order methdb), and the estimaté ), for various step sizes. On the left,
the oscillating curve is the global errd, (¢), and the thick curve shows the amplitude of
the oscillations as predicted by (17). On the right, the true error is shown in grey, the dash
curve shows the first, leading term of the error estimate (17), and the solid curve shows t
sum of both terms. The bottom row shows the same for Heun’s third-order métBjpand

the estimate (19).
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A similar calculation as for Runge’s second-order method gives the following estimat
for the global error committed by this method:

-, chﬂ/st@} [ SR 2o |

1024 /5 7,23/6¢B(7 60416 /5 7,17/6 (7
Torreav' 2¢11°%/0sd(@) | — o8l /211178 s (7)

E,(t) ~ hd [

557056 8. .25/6an ;
3iea3esY 21 x1>/°sd (D)

1114112 9..9/2 (7
103630995 2 €1 X! s (@)

+h° (19)

The actual error and the above estimate, for step/sizel /2000, are displayed in the
bottom row of Figurel. We see that the error estimate (19) again provides an exceller
description of the actual error. Furthermore, the difference in order between Runge’s a
Heun’s methods shows clearly for small values (dee the left-hand column in Figuig.

For large values af, however (see the right-hand column), Runge’s method behaves esse
tially as a third-order method, and we see that the difference between the two method:
indeed much smaller.

Remark.It turns out that the elementary integrdiscorresponding to trees of the same
order are scalar multiples of each other. Following an idea put forward by B. Orelin a tal
given in 2001 at the SciCADE event in Vancouver, we can use this to construct a Rung
Kutta method in which the dominating term of the global error vanishes. This yields
method which, for this particular equation, clearly outperforms other RK-methods of th
same order: the error is several orders of magnitude lower. A deeper investigation into t
mechanism behind this phenomenon might be useful.

6. Discussion

We have used a combination of the Alekseev—Grdébner lemma, the theory of modifie
equations, and asymptotics to calculate an estimate for the global error committed by Runc
Kutta methods for a class of nonlinear oscillators. A special feature is that we obtained sor
terms after the leading term of ordief. The Emden—Fowler equation showed that this is
sometimes necessary, as the later terms blow up faster than the leading term. Finally, sc
numerical experiments have been done, and have verified the accuracy of the estimate:

A delicate issue is the validity region of the estimates derived in this papeis tioo
large, the® (h?7) term will probably dominate, rendering the estimates worthless. On the
other hand, the estimates of Sectidrend5 use the asymptotic solution as> oo, so we
need to be sufficiently large. In any case, the step gireeds to be sufficiently small; but
if it is very small, only thez? term will contribute. The final thing to keep in mind is that
the expansion of the modified equation in powers akually diverges. The only definitive
statement that we can make is that more research needs to be done on this issue.

The approach taken in this paper can be compared to that described by Hairer &
Lubich [6], who built upon Gragg’s asymptotic expansion [5]. They expand the global erro
in powers of the step size and show how the terms can be found recursively by solving a
differential equation involving the previous term. In principle, all the terms of the asymptoti
expansion of the global error can be found in this way. Unfortunately, when we apply thi
approach to the Emden—Fowler oscillatéy, (we find that the expressions quickly become
too complicated to handle. Obviously, the figsterms of Hairer and Lubich’s expansion
must equal the integral in (2). However, the connection has not, as yet, been found.
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