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Abstract. We study the ,-ray emission from an outer-gap accelerator
around a rotating neutron star. Assuming the existence of global currents
in the magnetosphere, the charge depletion causes a large electric field
along the magnetic field lines. This electric field accelerates migratory
electrons and positrons which radiate gamma-rays via curvature radia-
tion. These gamma-rays, in turn, produce yet more radiating particles
by colliding with the X-rays, leading to a pair-production cascade. Im-
posing a gap-closure condition that a single pair produces one pair in
the gap, on average, we explicitly solve the strength of the acceleration
field and demonstrate how the peak energy and the luminosity of the
curvature-radiated GeV photons and the cutoff energy and luminosity of
Compton-scattered TeV photons depend on such parameters as the sur-
face temperature, the rotational frequency, and the magnetic moment. It
is demonstrated that both the GeV and TeV emissions of Geminga will
be harder than those ofB1055-52, B0656+14, and Vela, and that the TeV
fluxes are too small to be observed by current ground-based telescopes.

1. Introduction

The EGRET experiment on the Compton Gamma Ray Observatory has detected
pulsed signals from at least six rotation-powered pulsars, which are known tra-
ditionally as radio pulsars. Interpreting ,-rays should be less ambiguous than
interpreting nonthermal X-rays. Therefore, ,-rays are particularly important as
a direct signature of basic nonthermal processes in pulsar magnetospheres and
potentially should help to discriminate among different emission models.

Attempts to model the ,-ray emission have concentrated on two scenar-
ios: polar-cap models with emission altitudes within several neutron-star radii
over a polar-cap surface (Harding, Tademaru, & Esposito 1978; Daugherty &
Harding 1982, 1996; Sturner, Dermer, & Michel 1995) and outer-gap models
with acceleration occurring in the open-field zone located near the light cylin-
der (Cheng, Ho, & Ruderman 1986a,b, hereafter CHR; Chiang & Romani 1992,
1994). Recently, Romani (1996) described an emission model for ,-ray pulsars
based on curvature-radiation-reaction-limited charges and estimated the effi-
ciency of GeV photon production as a function of pulsar age, magnetic field
strength, and magnetic inclination OJ.

However, in order to understand the ,-ray emission mechanism, the accel-
eration field, Ell' in the gap is crucial. It was Hirotani & Shibata (1999a,b,
hereafter Papers I, II) who first solved the spatial distribution of Ell together
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with particle and ,-ray distribution functions. They explicitly demonstrated
that the outer gap is formed around the null surface where the local Goldreich-
Julian charge density PGJ = OBz/(21rc) vanishes, where B z is the component of
the magnetic field along the rotation axis. If the transfield thickness of the gap,
D 1.., is comparable with or greater than the longitudinal half-width, H, then Ell
is distributed quadratically, having the peak at the null surface.

In this paper, instead of solving the spatial distribution of Ell' we represent
its value near the center of the gap. By imposing a gap-closure condition that
a single pair produces one pair in the gap on average, we demonstrate how the
peak energy and the luminosity of ,-rays depend on the parameters such as the
rotation, magnetic moment, and surface temperature.

In the next section, we consider the gap-closure problem and derive the
equation that describes H. Using the solutions of H, we investigate general ,-
ray emission properties in §3. We apply the theory to three middle-aged pulsars
in §4. In the final section, we discuss the validity of assumptions and consider
the difference from the model of Zhang & Cheng (1997), who considered another
gap-closure condition where H is regulated so that the curvature-radiated ,-ray
energy is adjusted just above the threshold for pair production.

2. Structure of the Gap

2.1. Vacuum Acceleration Field

It is demonstrated in Paper I that the structure of the gap along the magnetic
field lines is symmetric with respect to the null surface if the transfield thickness
of the gap is large in the sense of D 1.. > H. In this paper, we consider such a
one-dimensional gap by introducing rectilinear coordinates: x is an outwardly
increasing coordinate along the magnetic field lines, while z is parallel to the
rotational axis. We define x = 0 to be the intersection between the last open
field line and the null surface where B; = 0 (Figure 1). Supposing the magnetic
fields to be straight lines along x, and approximating the null surface to be at the
z-axis, we can Taylor-expand PGJ around x = 0 to obtain the following Poisson
equation for the non-corotational potential, q>:

d2q,
-- = -41rAx

dx2 '
(1)

(3)

where A denotes the expansion coefficient of PGJ at the null surface (x = 0). It
is of the order of pcslruc, where rLC refers to the light-cylinder radius, and is
explicitly defined as

A == 3njL4 [~sin 200 cos 2(00 - (Xi) + cos 200sin(Oo - (Xi)] , (2)
21rcro 2 .

where J.t refers to the magnetic dipole .moment of the neutron star and c is the
velocity of light. The position (ro,90 ) in polar coordinates indicates the center
of the gap (x = 0). They are given by

ro 4 2tan2 (}:i + 3 + -)9 + 8tan2 (}:i

rLC = 4 + tan2 90 (4/3) tan2 (}:i + 3 + -)9 + 8 tan2 (}:i'
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Figure 1. A side view of a hypothetical outer magnetospheric gap.
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O
- 3 tan a i + V9tan2 ai + 8

tan 0 = 2· (4)

As a typical inclination, we adopt ai = 30° in this paper. We then obtain A =
2.8 x 10-12025/-L30, ro = 0.40rLc, and 00 = 68°, where O2 == 0/102 rad s-l and
/-L30 == /-L/I03o G em". In terms of O2 , rLC can be given by rLC = 3.0 x 1080

2-1 em.
Integrating Equation (1), we obtain the acceleration field Ell == -d<P / dx =

Ell (0) - 27rAx2 , where Ell (0) refers to the value of Ell at x = O. Defining the
boundaries of the gap to be the places where Ell vanishes, we obtain EII(O) =
27rAH2 . We can evaluate the typical strength of Ell by averaging its values
throughout the gap as follows:

1 rH
( 2) 4 2Ell = H 10 dx EII(O) - 21rAx = 31rAH

10 3 ( H )2 V3.1 x 10 O2 /-L30 - -.
rLC m

(5)

In the last line, we substitute A = 2.8 x 10-12025/-L30esu, assuming ai = 30°.

2.2. Pair-Production Mean Free Path

The most effective assumption for the particle motion in the gap arises from
the fact that the velocity saturates immediately after their birth in the balance
between the radiation-reaction force and the electric force. The reaction force
is mainly due to curvature radiation if the gap is embedded in a moderate,
surface X-ray field. (For younger pulsars such as Crab, the inverse-Compton
process becomes the dominant process.) Equating the electric force eEII and the
radiation-reaction force, we obtain the saturated Lorentz factor at each point,

(
3R c2Ell) 1/4 7 2 1/4 ( H ) 1/2

r = 2e = 9.2 x 10 (ROo5 02J.L30) TLC ' (6)
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where Ro.s is the curvature radius Re divided by 0.5rLc and e refers to the
magnitude of the charge on the electron. In the second line, we assumed Qi =
30°. Using this I', we obtain the central energy of curvature radiation,

(7)

(8)

where h is the Planck constant. In the second line, we assumed Qi = 30°. In
this paper, we adopt the gray approximation in the sense that all the I-rays are
radiated at energy Ee.

Let us next consider how the X-ray field determines the pair-production
mean free path. First, equation (7) gives the threshold energy for soft photons
to materialize as pairs by colliding with the I-rays having energy mec

2 E"( = Ee ,

E
_ 2 mec

2

th-----,
1 - Ile E"(

where Ile refers to the cosine of the three-dimensional collisional angle between
the I-rays and the X-rays.

To evaluate Ile, we first consider the I-rays' toroidal momenta due to aberra-
tion. At the gap center, the aberration angle <Pabb is given by tan-1(ro sinOo/rLc).
In the case of Qi = 30°, we obtain <Pabb = 20.4°. In this case, the colli-
sional angle on the poloidal plane becomes Oe = 90° - 00 = 21.6° (or Oe =
90° + 00 = 158.4°) for outwardly (or inwardly) propagating I-rays. We thus
obtain Ile = cos <PabbsinOe = ±0.345, where the upper and the lower sign cor-
respond to the outwardly and inwardly propagating I-rays, respectively. The
value of Ile does not change very much from this value for Qi > 30°, because the
effect of aberration due to the toroidal motion prevents Ilc from becoming very
large even if the collision angles on the poloidal plane become very small. On
these grounds, we adopt Ilc = ±O.345 as a representative value for Qi = 30°.

On these grounds, assuming Qi = 30°, we can rewrite equation (8) into

(9)

Let us consider the pair-production mean free path, As, for a I-ray photon
to materialize in a collision with one of the soft blackbody X-rays. If only
outwardly propagating I-rays were to contribute to As, it would be given by

where Ile = 0.345 and the pair-production cross-section is given by

_3 2[" 4 l+v 2]
Up(E"(,Ex'lle)= 16UT(I-v) (3-v )ln~-2v(2-v) ,

V(f-y,fx,J.Lc) == ./1 - _2__1_;y 1 - Ilc E"(Ex

(10)

(11)

(12)
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aT is the Thomson cross section, and €x == E x / mec2 refers to the nondimen-
sional energy of an X-ray photon. We may notice here that the nondimensional
threshold energy (Eth/mec2) appears in the lower bound of the integral. The
spectrum of the soft blackbody component is given by the Planck law

(
2)3 2dNs _ 21r mec ~ €x

dEx - ch ( 41l"r5) exp(Ex / .6.8 } - 1 '
(13)

where As indicates the observed radius of the blackbody emitting region; ~s is
defined by

ia.
~s == --2'

mec
(14)

where kTs refers to the soft blackbody temperature measured by a distant ob-
server. Since the outer gap is located outside of the deep gravitational potential
well of the neutron star, the photon energy there is essentially the same as what
the distant observer measures.

In a realistic outer gap, not only the outwardly propagating ,-rays but also
the inwardly propagating ones contribute to As. Therefore, we compute As by
taking an arithmetic average as follows:

(15)

(16)

The first (or second) term represents the contribution from the outwardly (or
inwardly) propagating ,-rays; we thus adopt J.Lc == 0.345 (or -0.345) for Qj == 30°.
The weight K. reflects the ratio of fluxes between the outwardly and inwardly
propagating ,-rays. For example, if ~ were to be 1.0, only outward ,-rays would
contribute to pair production. Since we know that the flux of the outward ,-
rays is typically about ten times larger than that of inward ones (Paper III), we
adopt ~ == 0.9 in this paper.

In the present paper, we are mainly concerned with cooling neutron stars.
Thus, the background radiation field is considered to be dominated by the surface
blackbody component. However, to take account of the effect of the hard X-ray
components such as the heated polar-cap emission, we compute the mean free
path, Ap , for the pair production as follows (Beskin, Istomin, & Par'ev 1992):

1 1 1
-==-+-
Ap As Ah'

where Ah is obtained in the same manner as As by replacing kTs with the tem-
perature of the heated polar cap, kTh , and As with the observed area of the hard
component, Ah .

2.3. Gap Closure

The gap width 2H is adjusted so that a single pair produces copious ,-ray pho-
tons (of number N'Y)' one of which materializes as a pair, on average. Therefore,
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the probability of a "'I-ray photon materializing within the gap, N'Y -1, must coin-
cide with the optical depth for absorption, 2H/ Ap . The gap closure is, therefore,
realized if

(17)

(19)

is satisfied, where

N ~ 2H 41re
2r = 6.0 x 105 (n2JL30 ) 1/4 ( H ) 3/2 . (18)

'Y c 9hRc RO.S2 rLC

It follows that the optical depth for pair production, N'Y' is much greater than
unity. Substituting Equations (18) and (16) into (17), we finally obtain the
equation which describes H/rLc as a function of Bs, O2 , kTs, As, kTh, and Ah.

2.4. Gamma-ray Luminosity

Let us consider the luminosities of curvature-radiated and inverse-Compton-
scattered "'I-rays. First, the former luminosity, LGeV, can be estimated by mul-
tiplying the total number of positrons and electrons in the gap, Ni, the number
of "'I-rays emitted per particle per unit time, N'Y/(2H/c) , and "'I-ray energy, E c .

That is, we have
N'Y

LGeV = N; x --/- x Bc .
2H c

Evaluating the conserved current density by XCPGJ = X(OB /21re), we obtain

(20)

The distance of the gap center from the rotation axis, TO sin 60 , becomes O.37TLC

for OJ = 30°. Substituting Equations (7), (18), and (20) into (19), we obtain

39 ( D .1.) 4 2 ( H ) 3 1LGeV ~ 2.0 x 10 X - O2 JL30 - erg s" .
rLC rLC

(21)

In Papers I, II, and III, it is demonstrated that stationary solutions exist even
when D.l. becomes comparable with rLC. We thus assume a transversely thick
outer gap with D.l. = TLC· If D.l. is much less than this value, like CHR assumed,
the "'I-ray luminosity becomes much less than that which would be obtained
under D.l. = rLC. As for X, its maximum values will be about 0.2 for a wide
range of the parameters kTs , 0, and JL (Papers I, II, III), provided that no
particles enter from the boundaries. We thus assume X rv 0.1 in this paper.

Second, let us consider the luminosity of Compton-scattered "'I-rays, LTeV.

We should notice here that it is the infrared photons with energy rv 0.1 eV
that contribute most effectively as the target photons of IC scatterings. Neither
the higher energy photons, like surface blackbody X-rays, nor the lower energy
photons, like polar radio emission, contribute as much as the target photons
because they have either too small cross-sections or too small energy transfer
when they are scattered. The collisional frequency for a particle to inversely
scatter the infrared photons of number density NO.lev is given by cNO.1ev aT .
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Considering the fact that the maximum energy of the scattered photons is rmec2
,

we can evaluate the upper limit of the TeV emission as

LTeY < 2Ne x cNO.1eY O'T X rmec
2

2.4 x 10s X (D.l) n213/4J.L30s/4Ro.s1/2Lo.1eY ( H)3/2 erg/s,(22)
TLC TLC

where Lo.1ey refers to the luminosity of infrared photons that can be scattered
up to TeV energy range. The ratio between LTeY and LGeY then becomes

(23)

where L30 == LO.1eY /1030erg s-l. It follows that TeV luminosities are much less
than GeV ones for moderate values of the parameters. The effect of pair pro-
duction due to TeV-eV photon collisions is, therefore, self-consistently negligible
compared with that due to GeV-keV collisions.

3. Gamma-ray Radiation vs, Surface Blackbody Temperature

Once H/TLC is obtained from Equation (17), we can compute all other quantities
by using Equations (5)-(18) and (21)-(22). To this aim, we first show the
results of H/TLC as a function of kTs , n, and J.L in §3.1. We then study the
voltage drop in §3.2 and the ')'-rays emission in §3.3. Throughout this section,
we assume that the X-rays illuminating the gap are emitted from the whole
neutron-star surface. Therefore, we neglect the presence of the hard component
and put Ah == 00 in Equation (16) and As == A* == 41rT; in Equation (13) in this
section, where r * refers to the neutron-star radius and is supposed to be 10 km
in this paper.

3.1. Gap Half-width

Solving Equation (17) for H/TLC, we obtain the gap half-width as a function of
kTs . The results are presented in Figure 2. The thick solid, dashed, and dotted
lines correspond to J.L30 == 1.0, 3.0, and 0.3 with O2 == 0.5, respectively, while the
thin dashed and dotted ones correspond to O2 == 0.75 and 0.25 with J.L == 1.0.
The curvature radius is fixed as Ro.s == 1.0.

First of all, it follows from the figure that H / TLC is a decreasing function
of kTs . The reason is as follows. If kTs increases, the number density of target
soft photons Ns(E > Eth) increases for a fixed value of Eth. The increased
Ns(E > Eth ) results in the decrease of Ap , which reduces H (Equation (17)).
For more accurate discussion, we must take account of the fact that the resultant
increase of Eth and the decrease of N'Y partially cancel the reduction of H. For
example, the reduced H results in a decrease of Ell and, hence, Ec . This, in
turn, increases Eth to decrease Ns(E > Eth); as a result, Ap partially increases.
In addition, the reduction of H implies a reduction in the emitting length for
a particle, thereby decreasing N'Y. Nevertheless, both of the effects are passive;
therefore, the nature of the decrease of H with increasing kTs is unchanged.
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Figure 2. Examples of the gap half-width, H, divided by light-
cylinder radius, rLC, as a function of kTs , 0, and B. Both the abscissa
and the ordinate are in logarithmic scales. The thick solid, dashed, and
dotted lines correspond to (02,J.t30)=(1.0,1.0), (1.0,3.0), and (1.0,0.3),
while the thin dashed and dotted ones correspond to (0.75,1.0) and
(0.25,1.0), respectively.

From the numerical results, a useful approximated solution can be obtained:

H = 0 04570 -0.88II. -0.34(~) -0.82 (24)
rLC . 2 ,-30 100eV .

The error is within 5% in the parameter ranges 0.25 < O2 < 1.0, 0.3 < J.t30 < 3.0,
and 20 < n; < 100eV.

3.2. Acceleration Field and Voltage Drop

The representative value of the acceleration field, Ell' can be readily computed
from Equations (5) and (24). The result is

E (0) = 6 5 x 1070 1.2411. 0.32 (~)-1.64 V
II . 2 ,-30 100eV m

Thus, the terminal Lorentz factor becomes as large as

r = 2 0 X 1070 -0.19II. 0.08R 0.5 (~) -0.41
. 2 ,-30 0.5 100eV ·

The dependences on J.t are very small. To sum up, both Ell and r increase with
decreasing kTs. .

Integrating EII(x) = Ell(0) - 21rAx2 over x from -H to +H, we obtain the
voltage drop in the gap:

Vgap 5 7 10-3("") -2.6 -1.0 ( n; ) -2.5--- = . x ~ "2 J.t30 --- ,
~urface 100eV

where ~urface (rv 1015.5022J.t30 V) refers to the available voltage drop on the
spinning neutron-star surface.
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(28)

(29)

(30)

3.3. Curvature Radiation

Let us next consider the energy and luminosity of curvature radiation. Substi-
tuting Equation (24) into (7), we obtain

E == 1.50 0.43 /I. -0.57R 0.5 (~) -1.3 GeV.
c 2 ,...,30 0.5 100eV

As for the luminosity, substituting the results of H/rLc into (21), we obtain the
,-ray luminosity due to curvature radiation as

L == 2.0 X 1034 (lD.l) 0 1.36/1. 0.98 (~) -2.46 erg s-l
GeV 0.1 rLC 2 ,...,30 100eV .

We can conclude that both the peak energy and the luminosity of the GeV ,-
rays are decreasing functions of kTs. This fact is deeply related to the increase
of target X-ray photons for pair production with increasing kTs .

3.4. Inverse Compton Scatterings

The relativistic particles produce ,-rays mainly via curvature radiation as de-
scribed in the preceding sections. However, even though energetically negligible,
it is useful to draw attention to the TeV ,-rays produced via inverse-Compton
(IC) scatterings. Substituting the relation (24) into (22), we obtain the ,-ray
luminosity due to IC scatterings as

LlT'ev < 2.3 X 1032 (lD.l) 01.93/1. 0.74R 0.5 X
~I 0 1 2 ,...,30 0.5

. rLC

(
ia; ) -1.23 ( Lo.l ev ) -1

X --- ergs .
100eV 1030erg s"!

We can see that both the cutoff energy and the luminosity of TeV ,-rays are
decreasing functions of k'T; from the same reason as for GeV emission.

4. Application to Individual Pulsars

In this section, we apply the theory to six pulsars. We present in Table 1 their
observed X-ray properties in order of spin-down luminosity, Erot [ergs-I].

Table 1. Input X-ray field.

pulsar loglO Erot dist. 0 loglO JL ia; As/A. kTh Ah/A*
kpc rad/s keY keY

Vela 36.84 0.50 61.3 30.53 150 0.066
B0656+14 34.58 0.76 15.3 30.67 67 4.5 129 10-1.49

Geminga 34.51 0.16 26.5 30.21 48 0.16
B1055-52 34.48 1.53 31.9 30.03 68 7.3 320 10-3.64

Substituting the parameters presented in Table 1, we obtain the gap width
and the resultant ,-ray emission properties of each pulsar (Table 2). It follows
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Table 2. Expected properties of curvature-radiated ,-rays.
pulsar Hlru: Ec LGeV rmec2

LTeV/LGeV
GeV erg s-1 TeV

Vela
B0656+14
Geminga
B1055-52

0.048
0.16
0.29
0.13

1.6 3.1 x 1033 12.1
1.2 1.1 x 1033 17.5
3.4 6.4 x 1033 20.5
1.1 6.0 x 1032 13.2

< 7.7 X 10-1 x L30
< 1.0 X 10-5 X L30
< 3.4 X 10-5 x L30

< 1.3 X 10-5 x L30

from the results of Ec that the GeV spectrum of Geminga should be much harder
than those of Vela, B0656+14, and B1055-52. This is because the number density
of X-rays at the gap is significantly small for Geminga. From the same reason,
the GeV luminosity of Geminga is expected to be large. It is important to note
that the TeV emission produced via inverse-Compton scatterings is unobservable
from such rotation-powered pulsars. This conclusion is, in fact, general because
LTeV « LGeV is derived from the general relation (23). The properties of E; and
LGeV will be able to be checked by GLAST, which will help us to discriminate
among different models of high-energy emission from pulsar magnetospheres.
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