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Abstract

A classical result of Honsberger states that the number of incongruent triangles with integer sides and
perimeter n is the nearest integer to n2/48 (n even) or (n + 3)2/48 (n odd). We solve the analogous
problem for m-gons (for arbitrary but fixed m ≥ 3) and for polygons (with arbitrary number of sides).
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1. Introduction and statement of the main results

This article concerns integer polygons—polygons whose side lengths are all integers.
The study of such polygons dates back at least a few millennia, as the Babylonians
and Egyptians were interested in right-angled integer triangles. A comparatively recent
1904 result attributed to Whitworth and Biddle (see [4, page 199]) states that there are
exactly five (incongruent) integer triangles with perimeter equal to area. Phelps and
Fine [12] showed that there is only one with perimeter equal to twice the area, namely
the (3, 4, 5) triangle. Subbarao [14] and Marsden [11] considered analogous problems
for other multiples. Related to these, the following question appears to have been first
asked (and answered) by Jordan et al. [9] in 1979.

Question 1.1. How many incongruent integer triangles have perimeter n?

Several formulations of the answer exist [1, 7, 9, 10, 13] and we believe the most
elegant is the following.

Theorem 1.2 (Honsberger [7]). The number of incongruent integer triangles with
perimeter n is [n2/48] if n is even or [(n + 3)2/48] if n is odd.

Here, [x] denotes the nearest integer to the real number x (if such exists). A number
of proofs of Theorem 1.2 have been given (see [5–8]), most of which use recurrence
relations and/or generating functions, sometimes ingeniously.

If the word ‘triangles’ is simply replaced with ‘quadrilaterals’ in Question 1.1, then
the answer is not very interesting: for example, there are infinitely many incongruent
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Figure 1. Several quadrilaterals with edge lengths 1, 1, 2, 2.

rhombuses with edges (1, 1, 1, 1). The same is true for pentagons, hexagons and so on.
Thus, rather than congruence, we consider a different form of polygon equivalence,
defined as follows. Let P and Q be m-gons for some m ≥ 3, with side lengths
a1, . . . , am and b1, . . . , bm, respectively, beginning from any side and reading clockwise
or anti-clockwise. We say that P and Q are equivalent if we may obtain the m-tuple
(b1, . . . , bm) from (a1, . . . , am) by cyclically re-ordering and/or reversing the entries. In
Figure 1, for example, the first and second quadrilaterals are equivalent, the third and
fourth are equivalent but the first and third are inequivalent.

Thus, we would like to answer the following two questions.

Question 1.3. How many inequivalent integer m-gons have perimeter n?

Question 1.4. How many inequivalent integer polygons have perimeter n?

As far as we are aware, neither question has been answered previously, apart from
the m = 3 case of Question 1.3 (Theorem 1.2 above); see also [2], which considers
integer m-gons up to arbitrary re-orderings of the sides, a different problem for m ≥ 4.
The main purpose of the current article is to answer both Questions 1.3 and 1.4 and
we now state the results that do so.

If d and m are integers, we write d | m to indicate that d divides m. We write bxc for
the floor of the real number x, that is, the greatest integer not exceeding x. A binomial
coefficient

(
n
k

)
has its usual meaning if n, k are nonnegative integers with k ≤ n and is

zero otherwise. Finally, ϕ is Euler’s totient function; so, for a positive integer n, ϕ(n)
is the size of the set {d ∈ {1, . . . , n} : gcd(d, n) = 1}.

Theorem 1.5. If 3 ≤ m ≤ n, then the number pm,n of inequivalent integer m-gons with
perimeter n is given by

pm,n =
∑

d|gcd(m,n)

ϕ(d)
2n

( n
d
m
d

)
+
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2
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)
−
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4
⌋⌊m

2
⌋) − (⌊ n+2

4
⌋

m
2

) .
Theorem 1.6. If n ≥ 3, then the number pn of inequivalent integer polygons with
perimeter n is given by

pn =
∑
d|n

ϕ(d) · 2n/d−1

n
+ 2b(n−3)/2c −

3 · 2b(n−4)/4c if n ≡ 0 or 1 (mod 4),
2b(n+2)/4c if n ≡ 2 or 3 (mod 4).

Although Theorems 1.5 and 1.6 are not as striking as Honsberger’s n2/48 result, we
may nevertheless use these theorems to obtain elegant asymptotic formulae.
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[3] Integer polygons of given perimeter 133

Theorem 1.7. The number of inequivalent integer polygons with perimeter n is
asymptotic to 2n−1/n.

Theorem 1.8. For fixed m ≥ 3, the number of inequivalent integer m-gons with
perimeter n is asymptotic to

2m−1 − m
2mm!

nm−1.

From Theorem 1.5, we may deduce Honsberger’s Theorem 1.2 as a special case.
As an additional application, we also give an analogous ‘nearest integer formula’ for
quadrilaterals; again, we are not aware of any previous proof of such a formula.

Theorem 1.9. For any positive integer n, the number of inequivalent integer
quadrilaterals with perimeter n is [(n3 − 3n2 + 20n)/96] if n is even or [(n3 − 7n)/96]
if n is odd.

Similar formulae could be obtained for pentagons, hexagons and so on, although
these quickly become unwieldy. However, Theorem 1.8 easily leads to the asymptotic
formulae: p5,n ∼ 11n4/3840, p6,n ∼ 13n5/23040, p7,n ∼ 19n6/215040 and so on.

The proofs of Theorems 1.5 and 1.6 follow the same pattern. In both cases, we
(i) identify an action of the dihedral group Dn (defined below) on a certain set of
n-tuples, (ii) show that the polygons in question are in one–one correspondence with
the orbits of the action and (iii) enumerate the orbits using Burnside’s lemma (stated
below). We carry out the first two tasks in Section 2, where we also show how the
third reduces to the calculation of certain parameters associated to the elements ofDn.
We calculate these parameters (the bulk of the work) in Section 3 and then complete
the proofs in Section 4. Section 5 gives the above-mentioned applications to triangles
and quadrilaterals, and Section 6 contains tables of calculated values, a discussion
of relevant entries in the Online Encyclopedia of Integer Sequences [15] and some
concluding remarks.

2. Dihedral group actions

An action of a group G on a set X is a map G × X → X : (g, x) 7→ g · x such that
idG ·x = x and (gh) · x = g · (h · x) for all x ∈ X and g, h ∈ G. An action induces an
equivalence relation on X, namely {(x, y) ∈ X × X : x = g · y (∃g ∈G)}, the equivalence
classes of which are the orbits of the action. The set of orbits is denoted by X/G and
the number of orbits is given by Burnside’s lemma (see [3, page 246] for a proof).

Lemma 2.1 (Burnside’s lemma). If a finite group G acts on a set X, then the number of
orbits of the action is given by

|X/G| =
1
|G|

∑
g∈G

fixX(g),

where fixX(g) is the cardinality of the set FixX(g) = {x ∈ X : g · x = x} for g ∈ G.
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Figure 2. Top: the subset A = {1, 3, 4, 8} of {1, . . . , 10} corresponds to a quadrilateral with side lengths
1, 2, 3, 4. Bottom: the subset B = {3, 4, 8} of {1, . . . , 10} does not correspond to a polygon.

In what follows, n generally denotes the perimeter of an integer polygon. Since
a polygon has at least three sides, we will always assume that n ≥ 3. We denote by
Sn the symmetric group on the set {1, . . . , n}, which consists of all permutations of
this set. We call a permutation σ ∈ Sn a rotation if there exists q ∈ {0, 1, . . . , n − 1}
such that σ(x) ≡ q + x (mod n) for all x; when q = 0, we obtain the identity map, idn.
Similarly, σ is a reflection if there exists q such that σ(x) ≡ q − x (mod n) for all x. We
write Dn for the set of all rotations and reflections and Cn for the set of all rotations.
These are subgroups of Sn: the dihedral group of order 2n and the cyclic group of
order n, respectively. Note that Dn contains n rotations (including the identity) and n
reflections. When n is odd, all n reflections fix a single point from {1, . . . , n}; when n
is even, n/2 of the reflections have two fixed points and n/2 have none.

Now consider a circular rope of length n units, with n equally spaced points labelled
1, . . . , n, read clockwise. For any subset A of {1, . . . , n}, we may attempt to create
a polygon out of the rope, with corners at the points from A, by pulling the strings
taut between these selected points. With n = 10, for example, this is possible for
A = {1, 3, 4, 8}, but not for B = {3, 4, 8} (see Figure 2). Obviously, to create a polygon
for such a subset A of {1, . . . , n}, we would need |A| ≥ 3, but there is an additional
restriction coming from the fact that the sides of a polygon must all be less than half
the perimeter. Namely, if A = {x1, . . . , xm}, where m ≥ 3 and x1 < · · · < xm, then we
require

max{x2 − x1, x3 − x2, . . . , xm − xm−1, n + x1 − xm} < n/2

to ensure that the length of any side is less than the combined lengths of the other
m − 1 sides.
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The above ideas are easier to work with when formulated in slightly different terms.
We define the set T = {0, 1} and denote by Tn the set of all n-tuples over T . We identify
a subset A of {1, . . . , n} with an n-tuple a = (a1, . . . , an) ∈ Tn in the usual way: we have
ax = 1⇔ x ∈ A. Thus, given a ∈ Tn, we may attempt to form a polygon of perimeter n
as above. It turns out that the n-tuples corresponding to polygons in this way may be
described very easily.

By a block of 0’s of length l of an n-tuple a ∈ Tn, we mean a sequence of l
consecutive entries of a (possibly ‘wrapping around n’), all of which are 0, and not
contained in any larger such sequence of consecutive 0’s. Thus, for example, the
subsets A and B of {1, . . . , 10} defined above (see Figure 2) correspond to the 10-tuples
a = (1, 0, 1, 1, 0, 0, 0, 1, 0, 0) and b = (0, 0, 1, 1, 0, 0, 0, 1, 0, 0); here, a has three blocks
of 0’s, of lengths 1, 2 and 3, while b has blocks of lengths 3 and 4; one block of b
wraps around.

Writing k = bn/2c, so that n = 2k or 2k + 1, we will call a block of 0’s of an n-tuple
a ∈ Tn bad if its length is at least k − 1 (n even) or k (n odd). If an n-tuple a ∈ Tn had
a bad block of 0’s, then it would be impossible to form a polygon from a, as the bad
block would lead to an edge of length at least n/2. Conversely, if a ∈ Tn has no bad
blocks, then we can form a polygon from a; for this, note that having no bad blocks
forces a to have at least three 1’s, since n ≥ 3. Accordingly, we call an n-tuple bad if it
has at least one bad block or good if it has none, and we write

Gn = {a ∈ Tn : a is good} and Bn = {a ∈ Tn : a is bad}.

So, Gn consists of the n-tuples that correspond to polygons in the manner described
above.

For a = (a1, . . . , an) ∈ Tn, we denote by Σa the integer a1 + · · · + an, which is just
the number of 1’s in a. For 0 ≤ m ≤ n, we write

Tm,n = {a ∈ Tn : Σa = m}

for the set of all n-tuples with exactly m 1’s and we also write

Gm,n = Gn ∩ Tm,n and Bm,n = Bn ∩ Tm,n

for the sets of all good and bad such n-tuples, respectively. So Gm,n consists of the
n-tuples that correspond to m-gons in the manner described above. Note that Gm,n = ∅
if m ≤ 2.

There is a natural action of the dihedral group Dn on Tn given by permuting the
coordinates:

σ · (a1, . . . , an) = (aσ−1(1), . . . , aσ−1(n)) for (a1, . . . , an) ∈ Tn and σ ∈ Dn. (2.1)

It is easy to see that for any a ∈ Tn and σ ∈ Dn,

(i) Σa = Σ(σ · a), (ii) a ∈ Gn ⇔ σ · a ∈ Gn, (iii) a ∈ Bn ⇔ σ · a ∈ Bn.
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It follows from (i) that Tm,n is closed under the action of Dn; by (ii) and (iii), so too
are the sets Gn and Bn; by combinations of these facts, it follows that the sets Gm,n
and Bm,n are closed as well. Thus, (2.1) defines actions ofDn on all of the sets Tn, Gn,
Bn, Tm,n, Gm,n and Bm,n.

Clearly, two good n-tuples are in the same orbit of the action if and only if
they determine equivalent polygons. Together with Lemma 2.1, and writing pn
(respectively, pm,n) for the number of inequivalent integer polygons (respectively,
m-gons) of perimeter n,

pn = |Gn/Dn| =
1
2n

∑
σ∈Dn

fixGn (σ) and pm,n = |Gm,n/Dn| =
1
2n

∑
σ∈Dn

fixGm,n (σ). (2.2)

Also, for any σ ∈ Dn, FixTn (σ) = FixGn (σ) ∪ FixBn (σ), with a similar statement for
FixTm,n (σ). Since Gn and Bn are disjoint,

fixGn (σ) = fixTn (σ) − fixBn (σ) and fixGm,n (σ) = fixTm,n (σ) − fixBm,n (σ) (2.3)

for any σ ∈ Dn. Equations (2.2) and (2.3) form the basis of our calculation of pn
and pm,n. We use (2.3) to calculate the values of fixGn (σ) and fixGm,n (σ) in Section 3,
before showing in Section 4 that these, together with (2.2), yield the formulae for pn
and pm,n stated in Theorems 1.5 and 1.6.

3. Fix sets

The previous section reduced the enumeration of integer polygons of given
perimeter to the calculation of sizes of fix sets under the action (2.1). Each result
of this section gives values for fixGn (σ) and fixGm,n (σ) for various elements σ ∈ Dn. In
principle, it would be possible to derive the former from the latter by summing over m.
However, this is easier said than done in most cases; in any event, both values may be
calculated with essentially the same argument, so this is the approach we take.

In all the proofs that follow, if a ∈ Tr for some r, we generally assume that
a = (a1, . . . , ar). We also remind the reader of the convention regarding binomial
coefficients being zero if the arguments fall outside of the usual ranges. We begin
with the identity element.

Lemma 3.1. If n ≥ 3, then:

(i) fixGn (idn) = 2n − 1 − n · 2bn/2c +

n/2 if n is even,
0 if n is odd;

(ii) fixGm,n (idn) =

(
n
m

)
− n

( ⌊ n
2
⌋

m − 1

)
for any m with 3 ≤ m ≤ n.

Proof. We write k = bn/2c throughout the proof, so that n = 2k or 2k + 1.

(i) Clearly, fixGn (idn) = |Gn| = |Tn| − |Bn|. Since |Tn| = 2n, it suffices to show that

|Bn| = 1 + n · 2k +

−k if n = 2k is even,
0 if n = 2k + 1 is odd.
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Certainly, (0, . . . , 0) ∈ Bn, so it remains to count the nonzero n-tuples from Bn. By
definition, every n-tuple from Bn has at least one bad block of 0’s. In fact, it is only
possible for an n-tuple to have two bad blocks if n is even, in which case there are
exactly n/2 such n-tuples (these have two 1’s equally spaced around the circle). For
i ∈ {1, . . . , n}, write πi for the number of nonzero n-tuples a from Tn that have a bad
block beginning at position i: that is, reading subscripts modulo n,

ai−1 = 1 and ai = ai+1 = · · · = ai+l−1 = 0, where l = k − 1 (n even) or l = k (n odd).

Since the remaining n − (l + 1) = k entries ai+l, . . . , ai−2 of such an n-tuple may be
chosen arbitrarily from T , it follows that πi = 2k for all i. Then π1 + · · · + πn = n · 2k

counts the nonzero n-tuples with one bad block once, but double-counts the nonzero
n-tuples with two bad blocks. We have already noted that there are none of the latter if
n is odd or n/2 = k of them if n is even. The result quickly follows.

(ii) This time, fixGm,n (idn) = |Gm,n| = |Tm,n| − |Bm,n| =
(

n
m

)
− |Bm,n|. Every element of Bm,n

has exactly one bad block of 0’s (since m ≥ 3). As in the proof of (i), one may show
that there are

(
k

m−1

)
=

(
bn/2c
m−1

)
elements of Bm,n with a bad block beginning at position i

and the result quickly follows. �

Next we consider the nontrivial rotations. Recall that the order of an element
σ ∈ Dn is the least positive integer d such that σd = idn; the order of a rotation is a
divisor of n and, conversely, any such divisor can occur as the order of a rotation.

Lemma 3.2. If n ≥ 3 and if σ ∈ Dn is a rotation of order d, where 1 , d | n, then:

(i) fixGn (σ) = 2n/d − 1 +

−n/2 if d = 2,
0 if d ≥ 3;

(ii) fixGm,n (σ) =

(
n/d
m/d

)
for any m with 3 ≤ m ≤ n.

Proof. Let e = n/d. Since all rotations of order d are powers of each other, each
such rotation fixes the same n-tuples from Gn and Gm,n. Thus, we may assume that
σ(x) ≡ x + e (mod n) for all x (see Figure 3). For use in both parts of the proof, we
define a map f : Te → Tn by f (a1, . . . , ae) = (a1, . . . , ae, a1, . . . , ae, . . . , a1, . . . , ae).

(i) It is easy to see that the set FixTn (σ) is precisely the image of f (see Figure 3). Since
f is clearly injective, it immediately follows that fixTn (σ) = |Te| = 2e = 2n/d. By (2.3),
it remains to show that

fixBn (σ) = 1 +

n/2 if d = 2,
0 if d ≥ 3.

Clearly, (0, . . . , 0) ∈ FixBn (σ). If a ∈ Te is nonzero, then the longest block of 0’s in f (a)
has length at most e − 1 = n/d − 1 (see Figure 3). If d > 2, then

n
d
− 1 <

n
2
− 1 =

k − 1 if n = 2k is even,
k − 1

2 if n = 2k + 1 is odd
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138 J. East and R. Niles [8]

Figure 3. The rotation σ ∈ Dn and the n-tuple f (a) = (a1, . . . , ae, a1, . . . , ae, . . . , a1, . . . , ae) ∈ FixTn (σ),
from the proof of Lemma 3.2, in the case n = 12 and d = 3 (left) and d = 2 (right).

and so f (a) belongs to Gn for any nonzero a ∈ Te. It follows that fixBn (σ) = 1 if d > 2.
If d = 2, then n = 2k must be even; it is possible for a ∈ Te = Tk to be nonzero, but to
have f (a) ∈ Bn; this occurs when a has exactly one nonzero entry (see Figure 3, right).
It follows that fixBn (σ) = 1 + k = 1 + n/2 if d = 2.

(ii) With the above notation, FixTm,n = { f (a) : a ∈ Tm/d,n/d} and so fixTm,n (σ) =

|Tm/d,n/d | =
(

n/d
m/d

)
. In the proof of (i), we showed that any nonzero elements of FixBn (σ)

have exactly two 1’s and hence do not belong to Bm,n (since m ≥ 3). It follows that
fixBm,n (σ) = 0. Because of (2.3), this completes the proof. �

For the reflections, we need to consider separate cases according to the parity of n
and according to the number of fixed points in the case of even n. Although the details
of the proofs vary, the strategy is essentially the same in each case; we show that an
n-tuple fixed by a reflection is uniquely determined by (roughly) half of its entries and
identify the properties of these entries that separate the good n-tuples from the bad.
We begin with the case of odd n. Recall that here there are n reflections, each of which
fixes a single point of {1, . . . , n}.

Lemma 3.3. If n ≥ 3 is odd and σ ∈ Dn is a reflection, then:

(i) fixGn (σ) =

2(n+1)/2 − 3 · 2(n−1)/4 + 1 if n ≡ 1 (mod 4),
2(n+1)/2 − 2(n+5)/4 + 1 if n ≡ 3 (mod 4);

(ii) fixGm,n (σ) =

(⌊ n
2
⌋⌊m

2
⌋) − (⌊ n

4
⌋⌊m

2
⌋) − (⌊ n+2

4
⌋

m
2

)
for any m with 3 ≤ m ≤ n.

Proof. Write n = 2k + 1 and let l = bk/2c, so that k = 2l or 2l + 1. All reflections
fix the same number of n-tuples from Gn and Gm,n (and from Tn, Bn etc), so we
may assume that the fixed point of σ is n, in which case σ(x) ≡ n − x (mod n) for
all x (see Figure 4). This time, we define a map f : Tk+1 → Tn by f (a1, . . . , ak+1) =

(a1, . . . , ak, ak, . . . , a1, ak+1).
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Figure 4. The reflection σ ∈ Dn and the n-tuple f (a) = (a1, . . . , ak, ak, . . . , a1, ak+1) ∈ FixTn (σ), from the
proof of Lemma 3.3, in the cases n = 13 (left) and n = 15 (right). If condition (a) or (b) from the proof
holds, then the green (light) or blue (dark) vertices, respectively, yield a bad block of 0’s in f (a). If

neither (a) nor (b) holds, then f (a) has no bad blocks.

(i) As in the previous proof, f is injective and its image is FixTn (σ). Thus, fixTn (σ) =

2k+1 = 2(n+1)/2. By (2.3), it remains to show that

fixBn (σ) =

3 · 2(n−1)/4 − 1 if k = 2l,
2(n+5)/4 − 1 if k = 2l + 1.

(3.1)

To do so, consider some n-tuple f (a) ∈ FixTn (σ), where a ∈ Tk+1. Then f (a) ∈ Bn if
and only if at least one of the following holds (see Figure 4):

(a) (a1, . . . , al, ak+1) = (0, . . . , 0) or (b) (al+1, . . . , ak) = (0, . . . , 0).

There are 2k−l (k + 1)-tuples a satisfying (a), 2l+1 satisfying (b) and one satisfying
both (a) and (b). It follows that fixBn (σ) = 2k−l + 2l+1 − 1; this reduces to the
expressions stated in (3.1), by checking separate cases for k = 2l or 2l + 1.

(ii) Now consider an element f (a) ∈ FixTm,n (σ), where a ∈ Tk+1. By the form of f (a)
and since n is the unique point of {1, . . . , n} fixed by σ, we must have

ak+1 =

0 if m is even,
1 if m is odd.

The remaining entries a1, . . . , ak of a may be chosen arbitrarily from T , as long as
bm/2c of them are 1’s. Thus, fixTm,n (σ) =

(
k

bm/2c

)
=

(
bn/2c
bm/2c

)
. By (2.3), it remains to show

that fixBm,n (σ) =
(
bn/4c
bm/2c

)
+

(
b(n+2)/4c

m/2

)
. Now, f (a) belongs to Bn if and only if one of (a)

or (b) holds, as enumerated in the proof of (i). Condition (b) holds if and only if
bm/2c of the entries a1, . . . , al are 1’s (recall that ak+1 is already fixed), so there are(

l
bm/2c

)
=

(
bn/4c
bm/2c

)
(k + 1)-tuples a, with f (a) ∈ Bm,n, satisfying (b). For a to satisfy (a), m

must be even (since ak+1 = 1 if m is odd). In this case, m/2 of al+1, . . . , ak must be 1’s;
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Figure 5. The reflection σ ∈ Dn and the n-tuple f (a) = (a1, . . . , ak, ak, . . . , a1) ∈ FixTn (σ), from the proof
of Lemma 3.4, in the cases n = 12 (left) and n = 14 (right). If condition (a) or (b) from the proof is
satisfied, then the green (light) or blue (dark) vertices, respectively, yield a bad block of 0’s in f (a). If

neither (a) nor (b) holds, then f (a) has no bad blocks.

it follows that there are
(

k−l
m/2

)
=

(
b(m+2)/4c

m/2

)
(k + 1)-tuples a satisfying (a) when m is even;

this is also true when m is odd, since then m/2 is not an integer. Since no a can satisfy
both (a) and (b), as m ≥ 3, it follows that fixBm,n (σ) =

(
bn/4c
bm/2c

)
+

(
b(n+2)/4c

m/2

)
. �

Recall that there are two different kinds of reflections when n is even: n/2 fixing no
points of {1, . . . , n} and n/2 fixing two. We consider these separately.

Lemma 3.4. If n ≥ 4 is even, and if σ ∈ Dn is a reflection with no fixed points, then:

(i) fixGn (σ) =

2n/2 − 2(n+4)/4 + 1 if n ≡ 0 (mod 4),
2n/2 − 2(n+6)/4 + 2 if n ≡ 2 (mod 4);

(ii) fixGm,n (σ) =

( n
2
m
2

)
− 2

(⌊ n+2
4

⌋
m
2

)
for any m with 3 ≤ m ≤ n.

Proof. Write n = 2k and let l = bk/2c. We may assume that σ(x) ≡ n + 1 − x (mod n)
for all x (see Figure 5). Let f : Tk → Tn by f (a1, . . . , ak) = (a1, . . . , ak, ak, . . . , a1) ∈ Tn.

(i) Again f is injective and has image FixTn (σ), so that fixTn (σ) = 2k = 2n/2. Thus,
again by (2.3), it remains to show that

fixBn (σ) =

2(n+4)/4 − 1 if k = 2l,
2(n+6)/4 − 2 if k = 2l + 1.

(3.2)

To do so, consider some n-tuple f (a) ∈ FixTn (σ), where a ∈ Tk. Then f (a) ∈ Bn if and
only if at least one of the following holds (see Figure 5):

(a) (a1, . . . , al) = (0, . . . , 0) or (b) (ak−l+1, . . . , ak) = (0, . . . , 0).
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There are 2k−l k-tuples a satisfying (a) and also 2k−l satisfying (b). Only one a satisfies
both (a) and (b) if k = 2l, but there are two such a if k = 2l + 1 (compare the left and
right diagrams in Figure 5). It follows that fixBn (σ) = 2 · 2k−l − (1 or 2), as appropriate,
which reduces to (3.2).

(ii) Now, FixTm,n (σ) is empty if m is odd (see Figure 5), in which case the stated formula
for fixGm,n (σ) holds, as m/2 is not an integer. From now on, we assume that m = 2h is
even. Clearly, fixTm,n (σ) =

(
k
h

)
. If a ∈ Tk is such that f (a) belongs to Bm,n, then exactly

one of (a) or (b) holds, as above. There are
(

k−l
h

)
k-tuples a satisfying (a) and the same

number satisfying (b). Thus, by (2.3),

fixGm,n (σ) = fixTm,n (σ) − fixBm,n (σ) =

(
k
h

)
− 2

(
k − l

h

)
=

( n
2
m
2

)
− 2

(⌊ n+2
4

⌋
m
2

)
. �

For the final lemma, we must consider separate cases for fixGm,n (σ) according to the
parity of m.

Lemma 3.5. If n ≥ 4 is even, and if σ ∈ Dn is a reflection with two fixed points, then:

(i) fixGn (σ) =

2(n+2)/2 − 2(n+8)/4 + 1 if n ≡ 0 (mod 4),
2(n+2)/2 − 2(n+6)/4 if n ≡ 2 (mod 4);

(ii) fixGm,n (σ) =



( n
2
m
2

)
− 2

(⌊ n
4
⌋

m
2

)
if m ≥ 3 is even,

2
( n

2 − 1⌊m
2
⌋ )
− 2

(⌊ n
4
⌋⌊m

2
⌋) if m ≥ 3 is odd.

Proof. Write n = 2k and let l = bk/2c. This time we may assume that the fixed points
of σ are 1 and k + 1, in which case σ(x) ≡ n + 2 − x (mod n) for all x (see Figure 6).
Define a map f : Tk+1 → Tn by f (a1, . . . , ak+1) = (a1, a2, . . . , ak, ak+1, ak, . . . , a2).

(i) As usual, f is injective and has image FixTn (σ), so that fixTn (σ) = 2k+1 = 2(n+2)/2.
Thus, by (2.3), it remains to show that

fixBn (σ) =

2(n+8)/4 − 1 if k = 2l,
2(n+6)/4 if k = 2l + 1.

(3.3)

To do so, consider some n-tuple f (a) ∈ FixTn (σ), where a ∈ Tk+1. Then f (a) ∈ Bn if
and only if at least one of the following holds (see Figure 6):

(a) (a1, . . . , ak−l) = (0, . . . , 0), (b) (al+2, . . . , ak+1) = (0, . . . , 0),
(c) a = (1, 0, . . . , 0, 1).

For k = 2l or 2l + 1, respectively, there are 2 · 2l+1 − (2 or 1) elements a ∈ Tk+1

satisfying (a) or (b). Since a = (1, 0, . . . , 0, 1) satisfies neither (a) nor (b), it follows
that fixBn (σ) = 2l+1 − (2 or 1) + 1, which reduces to (3.3).
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Figure 6. The reflection σ ∈ Dn and the n-tuple f (a) = (a1, a2, . . . , ak, ak+1, ak, . . . , a2) ∈ FixTn (σ), from
the proof of Lemma 3.5, in the cases n = 12 (left) and n = 14 (right). If condition (a) or (b) from the proof
is satisfied, then the green (light) or blue (dark) vertices, respectively, yield a bad block of 0’s in f (a). If

neither (a) nor (b) holds, then f (a) has no bad blocks.

(ii) Write h = bm/2c and consider some n-tuple f (a) ∈ FixTm,n (σ), where a ∈ Tk+1. If
m = 2h + 1 is odd, then exactly one of a1, ak+1 must be 1 and h of the remaining
entries a2, . . . , ak must be 1’s. If m = 2h is even, then either a1 = ak+1 = 1 and h − 1 of
a2, . . . , ak are 1’s, or else a1 = ak+1 = 0 and h of a2, . . . , ak are 1’s. Thus,

fixTm,n (σ) =


(

k−1
h−1

)
+

(
k−1

h

)
=

(
k
h

)
if m = 2h is even,

2
(

k−1
h

)
if m = 2h + 1 is odd.

By (2.3), and since k = n/2 and h = bm/2c, it remains to show that fixBm,n (σ) = 2
(
bn/4c
bm/2c

)
.

To do so, consider an n-tuple f (a) ∈ FixBm,n (σ), where a ∈ Tk+1. So, a satisfies either (a)
or (b), as above, and these are mutually exclusive (since m ≥ 3); note that (c) cannot
hold (also since m ≥ 3). Note that a satisfies (a) if and only if ak+1 = 0 or 1 (for m = 2h
or 2h + 1, respectively), and h of ak−l+1, . . . , ak are 1’s. There are thus

(
l
h

)
=

(
bn/4c
bm/2c

)
such

(k + 1)-tuples a satisfying (a) and there are the same number satisfying (b). �

4. Proofs of the main results

We can now complete the proofs of our main results, as stated in Section 1.

Proof of Theorem 1.5. As discussed in Section 2, the proof uses Burnside’s lemma.
Specifically, Equation (2.2) says that pm,n = 1/(2n)

∑
σ∈Dn

fixGm,n (σ). From Lemmas 3.1
and 3.2 and the fact that the cyclic group Cn has ϕ(d) elements of order d if d | n, the
contribution to (2.2) made by the rotations fromDn is

1
2n

∑
σ∈Cn

fixGm,n (σ) =
1
2n

(n
m

)
− n

( ⌊ n
2
⌋

m − 1

)
+

∑
1,d|n

ϕ(d)
( n

d
m
d

) =
∑
d|n

ϕ(d)
2n

( n
d
m
d

)
−

1
2

( ⌊ n
2
⌋

m − 1

)
.
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Since
(

n/d
m/d

)
= 0 if d - m, ‘

∑
d|n’ may be replaced by ‘

∑
d|gcd(m,n)’. It therefore remains to

show that the contribution to (2.2) made by the reflections fromDn is

1
2n

∑
σ∈Dn\Cn

fixGm,n (σ) =
1
2

(⌊m
2
⌋

+
⌊ n−m

2
⌋⌊m

2
⌋ )

−

(⌊ n
4
⌋⌊m

2
⌋) − (⌊ n+2

4
⌋

m
2

) .
If n is odd, thenDn has n reflections; if n is even, thenDn has n/2 reflections with no
fixed points and n/2 with two fixed points. Combining Lemmas 3.3, 3.4 and 3.5, and
keeping in mind that

(
b(n+2)/4c

m/2

)
= 0 if m is odd, we calculate case by case that

1
2n

∑
σ∈Dn\Cn

fixGm,n (σ) =



1
2

(⌊ n
2
⌋⌊m

2
⌋) − (⌊ n

4
⌋⌊m

2
⌋) − (⌊ n+2

4
⌋

m
2

) if n is odd,

1
2

(( n
2
m
2

)
−

(⌊ n
4
⌋

m
2

)
−

(⌊ n+2
4

⌋
m
2

))
if n and m are both even,

1
2

( n
2 − 1⌊m

2
⌋ )
−

(⌊ n
4
⌋⌊m

2
⌋) − (⌊ n+2

4
⌋

m
2

) if n is even and m is odd.

It finally remains to observe that bm/2c + b(n − m)/2c is equal to n/2 − 1 if n is even
and m is odd, or to bn/2c otherwise; this may be checked on a case-by-case basis. �

Proof of Theorem 1.6. With some careful algebra, (2.2) and Lemmas 3.1–3.5 yield

pn =
∑
d|n

ϕ(d)
2n

(2n/d − 1) − 2bn/2c−1 +


3 · 2(n−4)/2 − 3 · 2(n−4)/4 + 1

2 if n ≡ 0 (mod 4),
2(n−1)/2 − 3 · 2(n−5)/4 + 1

2 if n ≡ 1 (mod 4),
3 · 2(n−4)/2 − 2(n+2)/4 + 1

2 if n ≡ 2 (mod 4),
2(n−1)/2 − 2(n+1)/4 + 1

2 if n ≡ 3 (mod 4).
(4.1)

(Note that the ‘n/2’ from the even case of Lemma 3.1(i) cancels out with the ‘n/2’
from the d = 2 case of Lemma 3.2(i).) Using the identity

∑
d|n ϕ(d) = n,∑

d|n

ϕ(d)
2n

(2n/d − 1) =
∑
d|n

ϕ(d) · 2n/d

2n
−

1
2n

∑
d|n

ϕ(d) =
∑
d|n

ϕ(d) · 2n/d−1

n
−

1
2
.

The ‘1/2’ here cancels those in (4.1). If n is even, then −2bn/2c−1 + 3 · 2(n−4)/2 =

−2 · 2(n−4)/2 + 3 · 2(n−4)/2 = 2(n−4)/2 = 2b(n−3)/2c. A similar calculation shows that if n
is odd, then −2bn/2c−1 + 2(n−1)/2 = 2(n−3)/2 = 2b(n−3)/2c. �

Proof of Theorem 1.7. The dominant term in Theorem 1.6 is the d = 1 term of the
sum, that is, 2n−1/n. All other terms (of which there are at most n) are at most a
constant multiple of 2n/2. �

The formula pn ∼ 2n−1/n = 2n/(2n) given in Theorem 1.7 can be interpreted as
saying that: (i) practically all of the 2n subsets of {1, . . . , n} correspond to polygons
(see Lemma 3.1(i)); (ii) practically all such polygons are completely asymmetric, so
that each equivalence class of polygons is counted approximately 2n times.
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Proof of Theorem 1.8. Note that for integers 0 ≤ k ≤ x, the binomial coefficient
(

x
k

)
is a

polynomial of degree k in x; thus, it is asymptotic to its leading term xk/k!. Examining
the expression for pm,n in Theorem 1.5, there are two dominant terms: the d = 1 term of
the sum, and the second bracketed binomial coefficient, both of which are polynomials
in n of degree m − 1. Thus, for fixed m and as n→∞,

pm,n ∼
1
2n

(
n
m

)
−

1
2

( ⌊ n
2
⌋

m − 1

)
∼

1
2n
·

nm

m!
−

1
2
·

nm−1/2m−1

(m − 1)!

=
nm−1

2m!
−

nm−1

2m(m − 1)!
=

2m−1 − m
2mm!

nm−1. �

5. Triangles and quadrilaterals

Specialising Theorem 1.5 to the cases m = 3 and m = 4 allows us to recover
Honsberger’s theorem on triangles (stated in Theorem 1.2 above) and also the new
result (Theorem 1.9) on quadrilaterals.

Proof of Theorem 1.2. By Theorem 1.5, the number of inequivalent (that is,
incongruent) integer triangles of perimeter n is

p3,n =
1
2n

(
n
3

)
+

1
n

( n
3

1

)
+

1
2

((
1 + b n−3

2 c

1

)
−

(⌊ n
2
⌋

2

)
−

(⌊ n
4
⌋

1

)
− 0

)
=

n2 − 3n + 2
12

+
(0 or 1)

3
+

1 + b n−3
2 c

2
−
b n

2 c(b
n
2 c − 1)
4

−
b n

4 c

2

=


n2

48
+
−4 + (0 or 4) + (0 or 3)

12
if n is even,

(n + 3)2

48
+
−4 + (0 or 4) + (0 or 3)

12
if n is odd.

Since p3,n is an integer, and since − 1
2 < −

4
12 ≤ (−4 + (0 or 4) + (0 or 3))/12 ≤ 3

12 <
1
2 ,

it follows that p3,n is the nearest integer to n2/48 or (n + 3)2/48, as appropriate. �

Proof of Theorem 1.9. As in the above proof of Theorem 1.2, we use Theorem 1.5 to
show, case by case, that

p4,n =


(n3 − 3n2 + 20n)/96 if n ≡ 0 (mod 4),
(n3 − 7n + 6)/96 if n ≡ 1 (mod 4),
(n3 − 3n2 + 20n − 36)/96 if n ≡ 2 (mod 4),
(n3 − 7n − 6)/96 if n ≡ 3 (mod 4).

(5.1)

For example, if n ≡ 2 (mod 4), then

p4,n =
1
2n

(
n
4

)
+

1
2n

( n
2

2

)
+

1
2

(( n
2

2

)
−

( n
2

3

)
−

( n−2
4

2

)
−

( n+2
4

2

))
,
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Table 1. The number pm,n of inequivalent integer m-gons with perimeter n for 3 ≤ m ≤ n ≤ 20.

m\n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 1 0 1 1 2 1 3 2 4 3 5 4 7 5 8 7 10 8
4 1 1 2 3 5 7 9 13 16 22 25 34 38 50 54 70 75
5 1 1 3 4 9 13 23 29 48 60 92 109 158 186 258 296
6 1 1 4 7 15 25 46 72 113 172 248 360 491 686 896
7 1 1 4 8 20 37 75 129 228 359 584 868 1324 1870
8 1 1 5 10 29 57 125 231 435 745 1261 2031 3195
9 1 1 5 12 35 79 185 374 749 1382 2489 4237

10 1 1 6 14 47 111 280 600 1281 2493 4746
11 1 1 6 16 56 147 392 912 2052 4261
12 1 1 7 19 72 196 561 1368 3260
13 1 1 7 21 84 252 756 1980
14 1 1 8 24 104 324 1032
15 1 1 8 27 120 406
16 1 1 9 30 145
17 1 1 9 33
18 1 1 10
19 1 1
20 1

Table 2. The number pn of inequivalent integer polygons with perimeter n for 3 ≤ n ≤ 20. These are
column sums of Table 1.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 3 5 10 16 32 54 102 180 336 607 1144 2098 3960 7397 14 022 26 452

which reduces to (n3 − 3n2 + 20n − 36)/96. Equation (5.1) clearly completes the
proof in the n ≡ 0 (mod 4) case. In the n ≡ 1 (mod 4) case, since (n3 − 7n + 6)/96
is an integer, and since 6

96 <
1
2 , certainly (n3 − 7n + 6)/96 is the nearest integer to

(n3 − 7n)/96. The other cases are analogous. �

6. Calculated values and concluding remarks

Tables 1 and 2 give calculated values of pm,n and pn, respectively, for 3 ≤ n ≤ 20.
Because of the powers of 2 in Theorem 1.6, the pn sequence is very easy to compute;
for example, the millionth term can be calculated in well under 20 seconds on a
standard laptop. The first four rows of Table 1 are Sequences A005044, A057886,
A124285 and A124286, respectively, in the Online Encyclopedia of Integer Sequences
[15], while the whole of Table 1 is Sequence A124287. At the time of writing, the
sequence pn (Table 2) did not appear in [15]; it is now Sequence A293818. Out of all
these sequences, as far as we are aware, a formula had only previously been proven
for Sequence A005044 (Honsberger’s theorem 1.2 concerning triangles, quoted in
Section 1 above).

If we were interested in polygon equivalence under cyclic re-ordering of edges
but not reversals, then the inequivalent integer m-gons (respectively, polygons) of
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perimeter n are in one–one correspondence with the orbits of Gm,n (respectively, Gn)
under the action of the cyclic group Cn given by (2.1). If we write p′m,n (respectively,
p′n) for the number of such inequivalent m-gons (respectively, polygons), then

p′m,n = |Gm,n/Cn| =
1
n

∑
σ∈Cn

fixGm,n (σ) =
∑

d|gcd(m,n)

ϕ(d)
n

(
n/d
m/d

)
−

(
bn/2c
m − 1

)
,

p′n = |Gn/Cn| =
1
n

∑
σ∈Cn

fixGn (σ) =
∑
d|n

ϕ(d)
n

(2n/d − 1) − 2bn/2c

=
∑
d|n

ϕ(d) · 2n/d

n
− 1 − 2bn/2c.

The sequence p′3,n (triangles up to rotation) is Sequence A008742 in [15]; curiously,
however, A008742 is listed as the Molien series of a certain three-dimensional point
group. More computed values may be found in Sequences A293819–A293823 in
[15]. (Note that Sequence A124278 of [15] counts |Pm,n/Sm|, that is, polygons up to
arbitrary re-orderings of the sides, under which (1,1,2,2) and (1,2,1,2) are considered
equivalent, for example; see also [2].)

Finally, we observe that Theorem 1.6 has an interesting number-theoretic
consequence: namely, that

∑
d|n ϕ(d) · 2n/d−1 is a multiple of n for n ≥ 3; compare

Sequences A000031, A053634 and A053635 in [15].
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