
8

Space-time singularities

In this chapter, we use the results of chapters 4 and 6 to establish some
basic results about space-time singularities. The astrophysical and
cosmological implications of these results are considered in the next
chapters.

In §8.1, we discuss the problem of defining singularities in space-
time. We adopt b-incompleteness, a generalization of the idea of
geodesic incompleteness, as an indication that singular points have
been cut out of space-time, and characterize two possible ways in
which b-incompleteness can be associated with some form of curvature
singularity. In § 8.2, four theorems are given which prove the existence
of incompleteness under a wide variety of situations. In §8.3 we give
Schmidt's construction of the b-boundary which represents the
singular points of space-time. In §8.4 we prove that the singularities
predicted by at least one of the the theorems cannot be just a dis-
continuity in the curvature tensor. We also show that there is not only
one incomplete geodesic, but a three-parameter family of them. In
§ 8.5 we discuss the situation in which the incomplete curves are totally
or partially imprisoned in a compact region of space-time. This is
shown to be related to non-Hausdorff behaviour of the b-boundary.
We show that in a generic space-time, an observer travelling on one of
these incomplete curves would experience infinite curvature forces.
We also show that the kind of behaviour which occurs in Taub-NUT
space cannot happen if there is some matter present.

81 The definition of singularities

By analogy with electrodynamics one might think it reasonable to
define a space-time singularity as a point where the metric tensor was
undefined or was not suitably differentiate. However the trouble with
this is that one could simply cut out such points and say that the
remaining manifold represented the whole of space-time, which would
then be non-singular according to this definition. Indeed, it would seem
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8.1] THE DEFINITION OF SINGULARITIES 257

inappropriate to regard such singular points as being part of space-
time, for the normal equations of physics would not hold at them and
it would be impossible to make any measurements. We therefore
defined space-time in §3.1 as a pair (,JK, g) where the metric g is
Lorentzian and suitably differentiable and we ensured that no regular
points were omitted from the manifold ^K along with the singular
points by requiring that (*J(, g) could not be extended with the
required differentiability.

The problem of defining whether space-time has a singularity now
becomes one of determining whether any singular points have been
cut out. One would hope to recognize this by the fact that space-time
was incomplete in some sense.

In the case of a manifold <J( with a positive definite metric g, one
can define a distance function p(x, y) which is the greatest lower bound
of the length of curves from x to y. The distance function p{x,y) is
a metric in the topological sense; that is, a basis for the open sets of JK
is provided by the sets 38(x, r) consisting of all points yeJK such that
p(x,y) < r. The pair {JK, g) is said to be metrically complete (m-complete)
if every Cauchy sequence with respect to the distance function p
converges to a point in Ji. (A Cauchy sequence is an infinite sequence
of points xn such that for any e > 0 there is a number N such that
p(xn,xm) < e whenever n and m are greater than N.) An alternative
formulation is that (J(, g) is m-complete if every C1 curve of finite
length has an endpoint in the sense of §6.2 (note that the curve need
not be C1 at the endpoint). It therefore follows that m-completeness
implies geodesic completeness (g-completeness), that is every geodesic
can be extended to arbitrary values of its affine parameter. In fact it
can be shown (see Kobayashi and Nomizu (1963)) that g-completeness
and m-completeness are equivalent for a positive definite metric.

A Lorentz metric, on the other hand, does not define a topological
metric and so one is left only with g-completeness. One can distinguish
three kinds of g-incompleteness: that of timelike, null and spacelike
geodesies. If one cuts a regular point out of space-time, the resulting
manifold is incomplete in all three ways and so one might hope that
a space-time which was complete in one of the above senses would also
be complete in the other two. Unfortunately this is not necessarily so
(Kundt (1963)), as is shown by the following example given by Geroch
(19686). Consider two-dimensional Minkowski space with coordinates
x and t and metric gab. Define a new metric §ab = £22<7aft where the
positive function Q. has the properties:

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.009


258 SPACE-TIME SINGULARITIES [8.1

(1) D, = 1 outside the region between the vertical lines x = — 1 and
x = + 1 ;

(2) Q, is symmetric about the £-axis, that is, Q(t,x) = Q(t, — x);
(3) on the £-axis, t2Cl->0 as £->oo.

By (2) the £-axis is a timelike geodesic which by (3) is incomplete as
£->oo. However every null and spacelike geodesic must leave and not
re-enter the region between x = — 1 and x = + 1. Therefore by (1) the
space is null and spacelike complete. In fact one can construct
examples which are incomplete in any of the three possible ways and
complete in the remaining two.

Timelike geodesic incompleteness has an immediate physical signifi-
cance in that it presents the possibility that there could be freely
moving observers or particles whose histories did not exist after (or
before) a finite interval of proper time. This would appear to be an
even more objectionable feature than infinite curvature and so it
seems appropriate to regard such a space as singular. Although the
affine parameter on a null geodesic does not have quite the same
physical significance as proper time does on timelike geodesies, one
should probably also regard a null geodesically incomplete space-time
as singular both because null geodesies are the histories of zero rest-
mass particles and because there are some examples (such as the
Reissner-Nordstrom solution, §5.5) which one would think of as
singular but which are timelike but not null geodesically complete.
As nothing moves on spacelike curves, the significance of spacelike
geodesic incompleteness is not so clear. We shall therefore adopt the
view that timelike and null geodesic completeness are minimum condi-
tions for space-time to be considered singularity-free. Therefore if a
space-time is timelike or null geodesically incomplete, we shall say
that it has a singularity.

The advantage of taking timelike and/or null incompleteness as
being indicative of the presence of a singularity is that on this basis
one can establish a number of theorems about their occurrence. How-
ever, the class of timelike and/or null incomplete space-times does not
include all those one might wish to consider as singular in some sense.
For example Geroch (19686) has constructed a space-time which is
geodesically complete but which contains an inextendible timelike
curve of bounded acceleration and finite length. An observer with
a suitable rocketship and a finite amount of fuel could traverse this
curve. After a finite interval of time he would no longer be represented
by a point of the space-time manifold. If one is going to say that there
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8.1] THE DEFINITION OF SINGULARITIES 259

is a singularity in a space-time in which a freely falling observer comes
to an untimely end, one should presumably do the same for an
observer in a rocketship. What one needs is some generalization of the
concept of an aflfine parameter to all C1 curves, geodesic or non-
geodesic. One could then define a notion of completeness by requiring
that every C1 curve of finite length as measured by such a parameter
had an endpoint. The idea we are going to use seems to have been first
suggested by Ehresman (1957), and has been reformulated in an
elegant manner by Schmidt (1971).

Let A(«) be a C1 curve through peJK and let {EJ (i = 1, 2, 3,4) be
a basis for Tp. One can parallelly propagate {EJ along A(t) to obtain
a basis for Tx{t) for each value of t. Then the tangent vector
V = (d/dt)A{t) can be expressed in terms of the basis as V = Vi(t) E ,̂ and
one can define a generalized affine parameter u on A by

u = f (2F'F<)*d*.
J V i

The parameter u depends on the pointy and the basis {EJ &tp.
is another basis at p, then there is some non-singular matrix Aj such
t h a t E, = S A/Er.

r
As {E^} and {EJ are parallelly transported along A(£), this relation is
maintained with constant A/. Thus

Since A/ is a non-singular matrix, there is some constant C > 0 such

that <7 £ F* F*^ 2 V* Vv < C-1 ^V^.
i i' i

Thus the length of a curve A is finite in the parameter u if and only if
it is finite in the parameter u'.If A is a geodesic curve then u is an affine
parameter on A, but the beauty of the definition is that u can be defined
on any C1 curve. We shall say that {JK, g) is b-complete (short for
bundle complete, see §8.3) if there is an endpoint for every C1 curve
of finite length as measured by a generalized affine parameter. If the
length is finite in one such parameter it will be finite in all such
parameters, so one loses nothing by restricting the bases to be ortho-
normal bases. If the metric g is positive definite, the generalized affine
parameter defined by an orthonormal basis is arc-length and so
b-completeness coincides with m-completeness. However b-complete-
ness can be defined even if the metric is not positive definite; in fact it
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can be defined providing there is a connection on Jt'. Clearly
b-completeness implies g-completeness, but the example quoted
shows that the converse is not true.

We shall therefore define a space-time to be singularity-free if it is
b-complete. This definition conforms with the requirement made
above, that timelike and null geodesic completeness are minimum
conditions for a space-time to be considered singularity-free. One
might possibly wish to weaken this condition slightly, to say that
space-time is singularity-free it it is only non-spacelike b-complete,
i.e. if there is an endpoint for all non-spacelike C1 curves with finite
length as measured by a generalized affine parameter. However this
definition would appear rather awkward in the bundle formulation of
b-completeness which we shall give in § 8.3. In fact each of the theorems
we give in § 8.2 implies that (^K, g) is timelike or null g-incomplete and
hence has a singularity by both the above definitions.

One feels intuitively that a singularity ought to involve the curva-
ture becoming unboundedly large near a singular point. However
since we have excluded singular points from our definition of space-
time, difficulty arises in defining both 'near' and 'unboundedly large'.
One can say that points on a b-incomplete curve are near the singu-
larity if they correspond to values of a generalized affine parameter
which is near the upper bound of that parameter. 'Unboundedly
large' is more difficult, since the size of components of the curvature
tensor depend on the basis in which it is measured. One possibility is
to look at scalar polynomials in gab, yabcdi and Rabcd. We shall say that
a b-incomplete curve corresponds to a scalar polynomial curvature
singularity (s.p. curvature singularity) if any of these scalar poly-
nomials is unbounded on the incomplete curve. However, with a
Lorentz metric these polynomials do not fully characterize the
Riemann tensor since, as Penrose has pointed out, in plane-wave
solutions the scalar polynomials are all zero but the Riemann tensor
does not vanish. (This is similar to the fact that a non-zero vector may
have zero length.) Thus the curvature might become very large in
some sense even though the scalar polynomials remained small.
Alternatively one might measure the components of the curvature
tensor in a basis that was parallelly propagated along a curve. We shall
say that a b-incomplete curve corresponds to a curvature singularity
with respect to a parallelly propagated basis (a, p.p. curvature singu-
larity) if any of these components is unbounded on the curve. Clearly
an s.p. curvature singularity implies a p.p. curvature singularity.
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8.1] THE DEFINITION OF SINGULARITIES 261

One might expect that in any physically realistic solution, a
b-incomplete curve would correspond both to an s.p. and a p.p.
curvature singularity. However an example of a solution where this
does not seem to be true is provided by Taub-NUT space (§5.8). Here
the incomplete geodesies are totally imprisoned in a compact neigh-
bourhood of the horizon. As the metric is perfectly regular on this
compact neighbourhood, the scalar polynomials in the curvature
remain finite. Because of the special nature of this solution, the com-
ponents of the curvature in a parallelly propagated basis along the
imprisoned geodesies remains bounded. Since the imprisoned geo-
desies are contained in a compact set, one could not extend the
manifold J( to a larger four-dimensional Hausdorff paracompact
manifold Jtl', in which the incomplete geodesies could be continued.
Thus there is no possibility of the incompleteness having arisen from
the cutting out of singular points. Nevertheless it would be unpleasant
to be moving on one of the incomplete timelike geodesies for although
one's world-line never comes to an end and would continue to wind
round and round inside the compact set, one would never get beyond
a certain time in one's life. It would, therefore, seem reasonable to say
that such a space-time was singular even though there is no p.p. or s.p.
curvature singularity. By lemma 6.4.8, such totally imprisoned in-
completeness can only occur if strong causality is violated. In §8.5 we
shall show that in a generic space-time, a partially or totally im-
prisoned b-incomplete curve will correspond to a p.p. curvature
singularity. We shall also show that the Taub-NUT kind of totally
imprisoned incompleteness cannot occur if there is some matter
present.

8.2 Singularity theorems

In §5.4 it was shown that there would be singularities in spatially
homogeneous solutions under certain reasonable conditions. Similar
theorems can be obtained for a number of other types of exact sym-
metry. Such results, although suggestive, do not necessarily have any
physical significance because they depend on the symmetry being
exact and clearly in any physical situation this will not be the case. It
was therefore suggested by a number of authors that singularities
were simply the result of symmetries and that they would not occur in
general solutions. This view was supported by Lifshitz, Khalatnikov
and co-workers who showed that certain classes of solutions with space-
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like singularities did not have the full number of arbitrary functions
expected in a general solution of the field equations (see Lifshitz and
Khalatnikov (1963) for an account of this work). This presumably
indicates that the Cauchy data which gave rise to such singularities
is of measure zero in the set of all possible Cauchy data and so should
not occur in the real universe. However more recently Belinskii,
Khalatnikov and Lifshitz (1970) have found other classes of solutions
which seem to have the full number of arbitrary functions and to
contain singularities. They have therefore withdrawn the claim that
singularities do not occur in general solutions. Their methods are
interesting for the light they shed on the possible structure of singu-
larities but it is not clear whether the power series which are used will
converge. Neither does one obtain general conditions which imply that
a singularity is inevitable. Nevertheless we may take their results as
supporting our view that the singularities implied by the theorems of
this section involve infinite curvature in general.

The first theorem about singularities which did not involve any
assumption of symmetry was given by Penrose (1965c). It was
designed to prove the occurrence of a singularity in a star which
collapsed inside its Schwarzschild radius. If the collapse were exactly
spherical, the solution could be integrated explicitly and a singularity
would always occur. However it is not obvious that this would be the
case if there were irregularities or a small amount of angular
momentum. Indeed in Newtonian theory the smallest amount of
angular momentum could prevent the occurrence of infinite density
and cause the star to re-expand. However Penrose showed that the
situation was very different in General Relativity: once the star had
passed inside the Schwarzschild surface (the surface r = 2m) it could
not come out again. In fact the Schwarzschild surface is defined only
for an exactly spherically symmetric solution but the more general
criterion used by Penrose is equivalent for such a solution and is
applicable also to solutions without exact symmetry. It is that there
should exist a closed trapped surface 3~'. By this is meant a C2 closed
(i.e. compact, without boundary) spacelike two-surface (normally, S2)
such that the two families of null geodesies orthogonal to IT are con-
verging at F (i.e. ±j(abg

ab and 2$abg
ab are negative, where ̂ ab and 2#a6

are the two null second fundamental forms of ZF. In the following
chapters we shall discuss the circumstances under which such a surface
would arise.) One may think of &~ as being in such a strong gravita-
tional field that even the 'outgoing' light rays are dragged back and

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.009


8.2] SINGULARITY THEOREMS 263

are, in fact, converging. Since nothing can travel faster than light, the
matter within ZT is trapped inside a succession of two-surfaces of
smaller and smaller area and so it seems that something must go
wrong. That this is so is shown rigorously by Penrose's theorem:

Theorem 1
Space-time {J(, g) cannot be null geodesically complete if:

(1) RabK
aKb > 0 for all null vectors Ka (cf. §4.3);

(2) there is a non-compact Cauchy surface Jtf* in «^;
(3) there is a closed trapped surface 3~ in Ji.

Note: the method of proof is to show that the boundary of the future
of 3~ would be compact if J( were null geodesically complete. This is
then shown to be incompatible with &F being non-compact.

Proof. The existence of a Cauchy surface implies that *J( is globally
hyperbolic (proposition 6.6.3) and therefore causally simple (proposi-
tion 6.6.1). This means that the boundary of J+(<T) will be E+(2T) and
will be generated by null geodesic segments which have past endpoints
on y and which are orthogonal to ̂ . Suppose Ji were null geo-
desically complete. Then by conditions (1) and (3) and proposition
4.4.6 there would be a point conjugate to ^ along every future-
directed null geodesic orthogonal to 3" within an affine distance 2c-1

where c is the value of n%abg
ab at the point where the null geodesic

intersects 2T. By proposition 4.5.14, points on such a null geodesic
beyond the point conjugate to 3~ would lie in I+(^). Thus each
generating segment of J+(^~) would have a future endpoint at or
before the point conjugate to &'. At 3~ one could assign, in a con-
tinuous manner, an affine parameter on each null geodesic orthogonal
to &'. Consider the continuous map /?: 3T x [0,6] x Q->^ (Q is the
discrete set 1, 2) defined by taking a point pe^7~ an affine distance
v e [0, b] along one or other of the two future-directed null geodesies
through p orthogonal to &'. Since 3~ is compact, there will be some
minimum value c0 of ( - J u ^ 6 ) and {-<^ahg

ah). Then if 60 = 2co~\
fi(^x[O,bo]xQ) would contain J+{F). Thus «/+(^") would be
compact being a closed subset of a compact set. This would be possible
if the Cauchy surface ffl were compact because then J+(&~) could
meet up round the back and form a compact Cauchy surface homeo-
morphic to J f (figure 49). However there is clearly going to be trouble
if one demands that Jf7 is non-compact. To show this rigorously one
can use the fact (see §2.6) that Jl admits a past-directed C1 timelike
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FIGURE 49. A two-dimensional section of a geodesically complete space with
a compact Cauchy surface ffl. The two-sphere «̂ " has a compact boundary
«/+(^") to its future J+(^~), as the outgoing null geodesies from ^" meet up
round the back of the cylinder.

vector field. Each integral curve of this field will intersect 3rif (as it is
a Cauchy surface) and will intersect J+{^) at most once. Thus they
will define a continuous one-to-one map a: J+(^") -> 3tiP. IfJ+(^') were
compact, its image ot(J+(^~)) would also be compact and would be
homeomorphic to J+(&~). However as 3tiP is non-compact, a(J+(^~))
could not contain the whole of 3tif and would therefore have to have
a boundary in Jf\ This would be impossible since by proposition 6.3.1,
J+(<9~), and therefore a(J+(«^")), would be a three-dimensional mani-
fold (without boundary). This shows that the assumption that Ji is
null geodesically complete (which we made in order to prove J+(<&~)
compact) is incorrect. •

Condition (1) of this theorem (that Rab K
aKb ^ 0 for any null vector K)

was discussed in §4.3. It will hold no matter what value the value of
the constant A, provided that the energy density is positive for every
observer. It will be shown in chapter 9 that condition (3) (that there is
a closed trapped surface) should be satisfied in at least some region
of space-time. This leaves condition (2) (that there is a non-compact
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spacelike surface Jf7 which is a Cauchy surface) to be discussed. By
proposition 6.4.9, the existence of spacelike surfaces is guaranteed
provided one assumes stable causality. That the spacelike surface 3tf
be non-compact is not too serious a restriction since the only place it
was used was to show that a( J+(^")) could not be the whole of 3tf'.
This could also be shown if, instead of taking «2f to be non-compact,
one required that there exist a future-directed inextendible curve
from Jf which did not intersect J+(^~). In other words, the theorem
would still hold even if Jf7 were compact, provided there was some
observer who could avoid falling into the collapsing star. This might
not be possible if the whole universe were collapsing also, but in such
a case one would expect singularities anyway as will be shown
presently. The real weakness of the theorem is the requirement that
J f be a Cauchy surface. This was used in two places: first, to show that
J( was causally simple which implied that the generators of J+(^)
had past endpoints on «̂ ", and second, to ensure that under the map a
every point of j 4 " ^ ) was mapped into a point of 3tf\ That the Cauchy
surface condition is necessary is shown by an example due to Bardeen.
This has the same global structure as the Reissner-Nordstrom solution
except that the real singularities at r = 0 have been smoothed out so
that they are just the origins of polar coordinates. The space-time
obeys the condition Rab K

aKb ^ 0 for any null but not timelike vector
K, and contains closed trapped surfaces. The only way in which it fails
to satisfy the conditions of the theorem is that it does not have
a Cauchy surface.

It therefore seems that what the theorem tells us is that in a col-
lapsing star there will occur either a singularity or a Cauchy horizon.
This is a very important result since in either case our ability to pre-
dict the future breaks down. However it does not answer the question
of whether singularities occur in physically realistic solutions. To
decide this we need a theorem which does not assume the existence of
Cauchy surfaces. One of the conditions of such a theorem must be that
RahK

aKb ^ 0 for all timelike as well as null vectors, since failure to
obey this condition is the only way in which Bardeen's example is
unreasonable. The theorem we shall give below requires this condition
and also the chronology condition that there be no closed timelike
curves. On the other hand it is applicable to a wider class of situations
since the existence of a closed trapped surface is now only one of three
possible conditions. One of these alternative conditions is that there
should be a compact partial Cauchy surface, and the other is that there
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Past light cone

\

FIGURE 50. A point p whose past light cone starts reconverging.

should be a point whose past (or future) light cone starts converging
again (figure 50). The first of these other conditions is satisfied in
a spatially closed solution while the second is closely related to the
existence of a closed trapped surface but is in a form which is more
convenient for some purposes; for in the case in which the light cone
is our own past light cone, one can directly determine whether this
condition is satisfied. In the last chapter it will be shown that recent
observations of the microwave background indicate that it is.

The precise statement is:

Theorem 2 (Hawking and Penrose (1970))
Space-time (JK, g) is not timelike and null geodesically complete if:

(1) R^KaK1* ^ 0 for every non-spacelike vector K (cf. §4.3).
(2) The generic condition is satisfied (§4.4), i.e. every non-spacelike

geodesic contains a point at which K[aRb]cd[eKf]KcKd + 0, where K is
the tangent vector to the geodesic.

(3) The chronology condition holds on Jt (i.e. there are no closed
timelike curves).

(4) There exists at least one of the following:
(i) a compact achronal set without edge,
(ii) a closed trapped surface,
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(iii) a point p such that on every past (or every future) null geodesic
from p the divergence 6 of the null geodesies from p becomes negative
(i.e. the null geodesies from p are focussed by the matter or curvature
and start to reconverge).

Remark. An alternative version of the theorem is that the following
three conditions cannot all hold:

(a) every inextendible non-spacelike geodesic contains a pair of
conjugate points;

(b) the chronology condition holds on Jt\
(c) there is an achronal set £? such that E+(£f) or E~{£f) is compact.

(We shall say that such a set is, respectively, future trapped or past
trapped).

In fact it is this form of the theorem that we shall prove. The other
version will then follow since if Jt were timelike and null geodesically
complete, (1) and (2) would imply (a) by propositions 4.4.2 and 4.4.5,
(3) is the same as (6), and (1) and (4) would imply (c), since in case (i)
Sf would be the compact achronal set without edge and

E+(S?) = E-(Sf) = S?;

in cases (ii) and (iii) Sf would be the closed trapped surface and the
point p respectively, and by propositions 4.4.4, 4.4.6, 4.5.12 and
4.5.14 E+(6^) and E~(SP) would be compact respectively, being the
intersections of the closed sets J+(^) and J~{&*) with compact sets
consisting of all the null geodesies of some finite length from SP.

Proof. As the proof is rather long, we shall break it up by first estab-
lishing a lemma and corollary. We note that by an argument similar
to that of proposition 6.4.6, (a) and (b) imply that strong causality
holds on ^#.

Lemma 8.2.1

If £f is a closed set and if the strong causality condition holds on
then H+iE+i^)) is non-compact or empty (figure 51).

By lemma 6.3.2, through every point qeJ+(Sf)—Sf there is a past-
directed null geodesic segment lying in J+(Sf) which has a past end-
point if and only if qeE+(Sf). (Note that as we no longer assume the
existence of a Cauchy surface, Jt may not be causally simple and so
J+(Sf)-E+(£f) maybe non-empty.) Therefore if qeJ+(S?)-E+(Sf),
there is a past-inextendible null geodesic through q which lies in J+(Sf)
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Identify
Identify

FIGURE 51. A future trapped set Sf\ null lines are at + 45°, three lines have been
identified and the points q are at infinity. The achronal sets E+(£f), J+(Sf) and
H+{E+(S^)) are shown. A future-inextendible timelike curve yeD+(E+(y)) is
shown.

and so does not intersect I~{j+(£f)). From lemma 6.6.4 it then follows
that q is not in D+(J+(&?))-H+(J+(&f)). Hence

Z)+( B+(ST)) - H+(B+(ST)) = Z)+( J+(5^)) - H+(J +{&))

and H+(B+(S?)) c H+(J+{ST)).

Now suppose that H+(E+(<Sf)) was non-empty and compact. Then
it could be covered by a finite number of local causality neighbour-
hoods %. Let px be a point of J+(S?) n [^-D+CJ+(^))] . Then from
^x there would be a past-inextendible non-spacelike curve Ax which did
not intersect either J+(&*) or D+(E+(£?)). Since the %t have compact
closure, Ax would leave ^ x . Let ^x be a point on Ax not in tft1. Then since
q1eJ+(^?) there would be a non-spacelike curve /ix from q± to Sf \ This
curve would intersect D+(E+(£f)) and hence would intersect some %i

other than <&1 (say, * 2 ) . Then letp2 be a point of p± 0 [<%2 - D+(J+(Sf))]
and continue as before.

This leads to a contradiction since there were only a finite number
of the local causality neighbourhoods <%i9 and one could not return to
an earlier ^ . because no non-spacelike curve can intersect a %t more
than once. Thus H+(E+(Sf)) must be non-compact or empty. •

Corollary

If £? is a future trapped set, there is a future-inextendible timelike
curve y contained in
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Put a timelike vector field on Jt. If every integral curve of this field
which intersected E+(SP) also intersected H+(E+(£f)) they would
define a continuous one-one mapping of E+(£f) onto H+(E+(<9P)) and
hence H+(E+(<Sf)) would be compact. The intersection of I+{^) with
a curve which does not intersect H+(E+(Sf)) gives the desired curve y
(figure 51 indicates one possible situation). •

Now consider the compact set 8F defined as E+(£f){\ J~(y). Since
y was contained in intI+(E+(£P)), E~(lF) would consist of IF and
a portion of e/~(y). Since y was future inextendible, the null geodesic
segments generating J~{y) could have no future endpoints. But by (a)
every inextendible non-spacelike geodesic contains a pair of conjugate
points. Thus by proposition 4.5.12, the past-inextendible extension vf

of each generating segment v of J~(y) would enter I~(y). There would
be a past endpoint for v at or before the first point p of ^' n I~(y)-
As I~(y) would be an open set, a neighbourhood of p would contain
points in I~(y) on neighbouring null geodesies. Thus the affine distance
of the points p from IF would be upper semi-continuous, and E'ijF)
would be compact being the intersection of the closed set J~(y) with
a compact set generated by null geodesic segments from IF of some
bounded affine length. It would then follow from the lemma that
there would be a past-inextendible timelike curve A contained in
int D~(E~(^)) (figure 52). Let an be an infinite sequence of points on A
such that:

(I) an+1eI-(an),
(II) no compact segment of A contains more than a finite number

of the an.

Let bn be a similar sequence on y but with 7+ instead of 7~ in (I) and
with b^l+iaj.

As y and A were contained in the globally hyperbolic set
int D(E-(tF)) (proposition 6.6.3), there would be a non-spacelike geo-
desic fin of maximum length between each an and the corresponding
bn (proposition 6.7.1). Each would intersect the compact set E+(£f).
Thus there would be a qeE+(Sf) which was a limit point of the
fin n E+(£f) and a non-spacelike direction at q which is a limit of the
directions of the /in. (The point q and the direction at q define a point
of the bundle of directions over J(. Such a limit point exists because
the portion of the bundle over E+(£f) is compact.) Let /i'n be a
subsequence of the /in such that p/n f] E+(S?) converges to q and such
that the directions of the fi'n at E+(£f) converge to the limit direction.
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Identify

FIGURE 52. AS figure 51, but with three further lines identified. 3F is the set
E+(,$f) f| J~(y); the points p are past endpoints of null geodesic generating
segments of E~(3F). The curve A is a past-inextendible timelike curve contained

(More precisely, the points defined by the/^'n in the bundle of directions
over E+(£f) converge to the limit point.) Let /i be the inextendible
geodesic through q in the limit direction. By (a) there would be
conjugate points x and y on fi with yel+(x). Let x' and y' be on /i to
the past and future of a; and y respectively. By proposition 4.5.8, there
is some e > 0 and some timelike curve a from x' to y' whose length
is e plus the length of pi from x' to yf. Let fy and i^ be convex normal
coordinate neighbourhoods of x' and y' respectively, each of which
contains no curve of length \e. Let x" and y" be 4/ n oc and i^{\ a
respectively. Let x'n and y'n be points on /i'n converging to x' and yf

respectively. For n sufficiently large, the length /jb'n from x'n to y'n will
be less than \e plus the length of ju, from x' to y'. Also for n sufficiently
large, x'n and y'n would be in I~(x", °U) and I+(y", ir) respectively.
Then going from x'n to x", along a to y"', and from y" to i/'n would
give a longer non-spacelike curve than fi'n from a:'n to y'n. But by
property (II), a'n would lie to the past of x'n on /i'n and b'n would lie
to the future of y'n on /i'n, for n large enough. Therefore /i'n ought to
be the longest non-spacelike curve from x'n to y'n. This establishes the
desired contradiction. •
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While this theorem establishes the existence of singularities under
very general conditions, it has the disadvantage of not showing
whether the singularity is in the future or the past. In case (ii) of
condition (4), when there is a compact spacelike surface, one has no
reason to believe that it should be in the future rather than in the past,
but in case (i) when there is a closed trapped surface, one would expect
the singularity to be in the future, and in case (iii) when the past null
cone starts reconverging, one would expect the singularity to be in the
past. One can show that there is a singularity in the past if condition
(iii) is strengthened somewhat to say that all past-directed timelike
as well as null geodesies from p start to reeonverge within a compact
region in J~(p).

Theorem 3 {Hawking (1967))
If (1) RabK

aKb > 0 for every non-spacelike vector K (cf. §4.3);
(2) the strong causality condition holds on (JK, g);
(3) there is some past-directed unit timelike vector W at a point p

and a positive constant b such that if V is the unit tangent vector to
the past-directed timelike geodesies through p, then on each such
geodesic the expansion 6 = Va.a of these geodesies becomes less than
— 3c/b within a distance b/c from p, where c = — WaVa,
then there is a past incomplete non-spacelike geodesic through p.

Let Ka be the parallelly propagated tangent vector to the past-
directed non-spacelike geodesies through^, normalized by KaWa = — 1.
Then for the timelike geodesies through p, Ka = c"1 Va and so
Ka.a = c~1Fa

;a. Since Ka.a is continuous on the non-spacelike geo-
desies, it will become less than — 3/6 on the null geodesies through p
within an affine distance b. If Yl5 Y2, Y3 and Y4 are a pseudo-ortho-
normal tetrad on these null geodesies with Yx and Y2 spacelike unit
vectors and Y3 and Y4 null with r3

aY4a = — 1 and Y4 = K, the expan-
sion 6 of the null geodesies through p is defined as

The second term is zero because Ka is parallelly propagated. The third
term can be expressed as \{Ka Ka). b 73

6, which is less than zero as
KaK

a is zero on the null geodesies and negative for timelike geodesies.
This shows that B will become less than — 3/6 within an affine distance b
along each null geodesic fromp. Thus if all past-directed null geodesies
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from p were complete, E~(p) would be compact. Any point
qeJ~(E~(p)) — E~(p) would be in I~(p). Thus it could not be in
J+(E~(p)) since E~(p) is achronal. Therefore

J+(E-(p))()J-(E-(p)) = E~(p)

and so would be compact. Then by proposition 6.6.7, D~(E-(p)) would
be globally hyperbolic. By proposition 6.7.1, each point reD~(E-(p))
would be joined top by a non-spacelike geodesic which did not contain
any point conjugate to p between r and p. Thus by proposition 4.4.1,
D~(E~(p)) would be contained in expp (F) where F is the compact
region of Tp consisting of all past-directed non-spacelike vectors Ka

such that KaWa < - 26. If all past non-spacelike geodesies from p were
complete, expp (K

a) would be defined for every KaeF, and so expp (F)
would be compact being the image of a compact set under a continuous
map. However by the corollary to lemma 8.2.1, D~(E~(p)) contains
a past-inextendible timelike curve. By proposition 6.4.7 this could not
be totally imprisoned in the compact set exj)p(F), therefore the
assumption that all past-directed non-spacelike geodesies from p are
complete must be false. •

Theorems 2 and 3 are the most useful theorems on singularities since
it can be shown that their conditions are satisfied in a number of
physical situations (see next chapter). However it might be that what
occurred was not a singularity but a closed timelike curve, violating
the causality conditions. This would be much worse than the mere
breakdown of prediction which was the alternative after theorem 1,
and it is our personal opinion that it would be physically more objec-
tionable than a singularity. Nevertheless one would like to know
whether such causality violations would prevent the occurrence of
singularities. The following theorem shows that they cannot in certain
situations. This means that we have to take singularities seriously and
it gives us confidence that, in general, causality breakdowns are not
the way out.

Theorem 4 (Hawking (1967))
Space-time is not timelike geodesically complete if:

(1) RahK
aKh ^ 0 for every non-spacelike vector K (cf. §4.3);

(2) there exists a compact spacelike three-surface £f (without
edge);

(3) the unit normals to £f are everywhere converging (or every-
where diverging) on £f.
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Remarks. Condition (2) may be interpreted as saying that the universe
is spatially closed and condition (3) as saying that it is contracting
(or expanding). As explained in § 6.5 one may take a covering manifold
Jl in which each connected component of the image of Sf is diffeo-
morphic to Sf and is a partial Cauchy surface in Jt'. We shall work in ^
and shall denote by & one connected component of the image of Sf \
Considering the Cauchy evolution problem in Jt one sees that the
occurrence of singularities (though not necessarily their nature) is a
stable property of the Cauchy data on & since a sufficiently small
variation of the data on & will not violate condition (3). This is a
counterexample to the conjecture by Lifshitz and Khalatnikov that
singularities occur only for a set of Cauchy data of measure zero,
though it must be remembered that the definition of a singularity
adopted here is not that used by Lifshitz and Khalatnikov

Proof. By conditions (2) and (3) the contraction xaa °f ^ e second
fundamental form of & has a negative upper bound on Sf. Thus if Jt
(and hence *M) was timelike geodesically complete there would be
a point conjugate to Sf on every future-directed geodesic orthogonal
to Sf within a finite upper bound b of distance from £f (proposition
4.4.3). But by the corollary to proposition 6.7.1, to every point
qeD+(^) there is a future-directed geodesic orthogonal to & which
does not contain any point conjugate to & between & and q. Let
/?: & x [0, b] -*<Jfbe the differentiate map which takes a point pe&
a distance s e [0, b] up the future-directed geodesic through p ortho-
gonal to 6?. Then J3(^ x [0,6]) would be compact and would contain
D+(#). Thus JD+(^) and hence H+{#) would be compact. If one
assumed the strong causality condition the desired contradiction
would followr from lemma 8.2.1. However even without strong
causality one can obtain a contradiction. Consider a point qEH+(<Sf).
Since every past-directed non-spacelike curve from q to & would
consist of a (possibly zero) null geodesic segment in H+(£P) and then
a non-spacelike curve in D+(&), it follows that d(^,q) would be less
than or equal to b. Thus, as d is lower semi-continuous, one could find
an infinite sequence of points rn e D+{£f) converging to q such that
d(^,rn) converged to d(^,q). To each rn there would correspond at
least one element ^~1(rn) of Sf x [0, b] Since Sf x [0, b] is compact there
would be an element (p,s) which was a limit point of the ^~1(rn). Bv
continuity s = d(&, q) and fi(p, s) = q. Thus to every point qeH+(£f)
there would be a timelike geodesic of length d(&, q) from &. Now let
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q1 e H+(&) lie to the past of q on the same null geodesic generator A of
H+(^). Joining the geodesic of length d(& ,q^) from & to qx to the
segment of A between q1 and q, one would obtain a non-spacelike curve
of length d{&, qx) from & to q which could be varied to give a longer
curve between these endpoints (proposition 4.5.10). Thus d(^,q),
q e H+(&), would strictly decrease along every past-directed generator
of H+(^). But by proposition 6.5.2, such generators could have no
past endpoints. This leads to a contradiction since as d(&, q) is lower
semi-continuous in q, it would have a minimum on the compact
set H+{#). •

Condition (2) that Sf is compact is necessary, since in Minkowski space
(uf,*)) the non-compact surface S?: (x1)2 + (x2)2 + (x*)2 - (x*)2 = - 1,
a;4 < 0, is a partial Cauchy surface with xa

a = — 3 at all points. If one
took the region of Minkowski space defined by

x* < 0, (x1)2 + (x2)2 + (xz)2 - (a;4)2 < 0,

one could identify points under a discrete group of isometries G such
that SPjG was compact (Lobell (1931)). As required by theorem 4, the
space {J(\G,r\) would be timelike geodesically incomplete because one
could not extend the identification under G to the whole of Jt (neither
conditions (1) nor (2) of §5.8 would hold at the origin). In this case the
incompleteness singularity arises from bad global properties and is not
accompanied by a curvature singularity. This example was suggested
by Penrose.

Conditions (2) and (3) can be replaced by:

(2') & is a Cauchy surface for Jt\
(3') xaa is bounded away from zero on Sf\

since in this case there cannot be a Cauchy horizon, yet all the future-
directed timelike curves from & must have lengths less than some
finite upper bound.

Geroch (1966) has shown that if condition (2) holds, and if conditions
(1) and (3) are replaced by:

(1") RahK
aKb ^ 0 for every non-spacelike vector, equality holding

onlyifi?a6 = 0;
(3") there is a point p e& such that any inextendible non-spacelike

curve which intersects & also intersects both J+(p) and J~(p);

then either the Cauchy development of & is flat, or Jt is timelike
geodesically incomplete.
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Condition (3") requires that an observer at p can see, and be seen by,
every particle that intersects &. The method of proof is to consider all
spacelike surfaces without edge which contain p. One can form a
topological space S(p) out of all these surfaces, in a manner analogous
to that in which one forms a topological space out of all the non-
spacelike curves between two points. Conditions (2) and (3") then
imply that S(p) is compact. One can show that the area of the surfaces
is an upper semi-continuous function on S(p) and so there will be some
surface £f' through p which has an area greater than or equal to that
of any other surface. By a variation argument similar to that used for
non-spacelike curves, one can show that %a

a vanishes everywhere on
£f' except possibly at p, where the surface may not be differentiate.

Consider a one-parameter family of spacelike surfaces Sf{u) where
£f(0) = </". The variation vector W == djdu can be expressed as / n
where n is the unit normal to the surfaces and/is some function. One
can apply the Raychaudhuri equation to the congruence of integral
curves of W to show

dd/du =f{- \d2 - 2a2 - Rabn"nb + / - 1 / .

where 0 = xa
a, (rab = Xab - ¥Kb> Kb = Qab + nanb>

and a2 = \<rabcrab.

If there is some point qe6ff at which Rabn
anb #= 0 or Xab + 0 o n e c a n

find an/such that dd/du is negative everywhere on S'. Y£Rabn
anb and

Xab were zero everywhere on Sf\ but there was some point q on &" at
which Cabcdn

bnd was not equal to zero, then dcrjdu =|= 0 and one could
find an/such that ddjdu = 0 and dWjdv? < 0 everywhere on &". In
either case, one would obtain a surface Sf" on which xa

a < ® every-
where, and so J( would be timelike geodesically incomplete by
theorem 4. If Rab, xab

 a n d Cabcdnbnd were zero everywhere on £?', then
the Ricci identities for na show that Cabcd = 0 on £?'. Hence space-time
is flat in D(&). An example in which conditions (1"), (2) and (3") hold
and in which D(£f) is flat is Minkowski space with {a;1, x2, x3, x4}
identified with {x1 + 1, x2, a;3, x4}, {x1, x2+l, xz, x*}, and {x1, x2, x* + 1, x4}.
This is geodesically complete. However the example given previously
also satisfies these conditions and shows that D(£f) can be both
geodesically incomplete and flat.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.009


276 SPACE-TIME SINGULARITIES [8.3

8.3 The description of singularities
The preceding theorems prove the occurrence of singularities in a large
class of solutions but give little information as to their nature. To
investigate this in more detail, one would need to define what one
meant by the size, shape, location and so on of a singularity. This would
be fairly easy if the singular points were included in the space-time
manifold. However it would be impossible to determine the manifold
structure at such points by physical measurements. In fact there
would be many manifold structures which agreed for the non-singular
regions but which differed for the singular points. For example, the
manifold at the t = 0 singularity in the Robertson-Walker solutions
could be that described by the coordinates

{t, r cos 6, r sin 6 cos §J, r sin 6 sin 0}

or that described by

{t, Sr cos d, Sr sin 6 cos <fi, Sr sin 6 sin <j)}.

In the first case the singularity would be a three-surface, in the second
case a single point.

What is needed is a prescription for attaching some sort of boundary
d to ^ which is uniquely determined by measurements at non-
singular points, i.e. by the structure of (*J(, g). One would then like to
define at least a topology, and possibly a differentiable structure and
metric, on the space UK+ = <J? U d. One possibility would be to use the
method of indecomposable infinity sets described in §6.8. However
since this depends only on the conformal metric, it does not distinguish
between infinity and singular points at a finite distance. To make this
distinction it would seem one should base one's construction for JK+
on the criterion that has been adopted for the existence of a singularity:
namely b-incompleteness. An elegant way of doing this has been
developed by Schmidt. This supersedes earlier constructions by
Hawking (19666) and Geroch (1968a) which defined the singular
points as equivalence classes of incomplete geodesies. These construc-
tions did not necessarily provide endpoints for all b-incomplete curves,
such as incomplete timelike curves of bounded acceleration. There was
also a certain ambiguity in their definition of equivalence classes.
Schmidt's construction does not suffer from these weaknesses.

Schmidt's procedure is to define a positive definite metric e on the
bundle of orthonormal frames n: 0{Jl)->Jt\ Here O(JK) is the set of
all orthonormal four-tuples of vectors {Ea}, EaejTp for each peJK
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(a ranges from 1 to 4), and n is the projection which maps a basis at
a point p to the point p. It turns out that O(JK) is m-incomplete in
the metric e if and only if J( is b-incomplete. If 0{Ji) is m-incomplete,
one can form the metric space completion 0{J() of O(JK) by Cauchy
sequences. The projection n can be extended to O(^) , and the
quotient of O(^K) by n is defined to be Jt+ which is the union of Jt with
a set of additional points d. The set d consists of the singular points
of J( in the sense that it is the set of endpoints for every b-incomplete
curve in Jt'.

To perform this construction, we recall (§ 2.9) that the connection on
^M given by the metric g defines a four-dimensional horizontal subspace
Hu of the ten-dimensional tangent space Tu at the point ueO(^df).
Then Tu is the direct sum of Hu and the vertical subspace Vu consisting
of all the vectors in Tu which are tangent to the fibre 7T~1(n(u)). We now
construct a basis {G^} = {Ea, FJ for Tu where A runs from 1 to 10,
a runs from 1 to 4 and i runs from 1 to 6; {Ea} is a basis for Hu, and
{FJ is a basis for Vu.

Given any vector X e TM{<J() there is a unique vector X e HU(O(JK))
such that 77* X = X. Thus on 0{<J() there are four uniquely defined
horizontal vector fields Ea which are the horizontal lifts of the ortho-
normal basis vectors Ea for each point u e 0{J(). The integral curves of
the field Ea in 0(JK) represent parallel propagation of the basis {Ea}
along the geodesic in *J( in the direction of the vector Ea.

The group 0(3,1), the multiplicative group of all non-singular 4 x 4
real Lorentz matrices Aab, acts in the fibres of 0{*JK) sending a point
u = {p,Ea}G0(^) to the point A(u) = {p,AahE^e0(Ji(). One can
regard 0(3,1) as a six-dimensional manifold and represent the tangent
space T7(O(3,1)) to 0(3,1) at the unit matrix / by the vector space of
all 4 x 4 matrices a such that aahGhc — —acbGba. Then if #6 7^(0(3,1)),
one can define a curve in 0(3,1) by At = exp (ta) where

oo ftn
exp (b)= S -

Thus if ue0{J?) one can define a curve through u in 7r~1(7r(̂ )) by
Xau(t) = At(u). As the curve Xau{t) lies in the fibre, its tangent vector
{dl<ft)xau is vertical. For each aeTz, one can therefore define a vertical
vectorMfield F(a) by F(a)|M = (dfit)Xau\u for each ue0{JK). If {aj
(i = 1, 2, . . . , 6) are a basis for JP7, then Fi = ¥(a{) will be six vertical
vector fields on 0{JK) which will provide a basis for VU at each point
ue0(JC).
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A matrix BeO(S, 1) defines a mapping O(JK)-^O{JK) by u->B(u).
Under the induced map B*\ Tu-+TB(u), the vertical and horizontal
vector fields transform as follows:

where CJ = B^^^B'1^^^ and {aj} are the basis for T*7 dual to the
basis {aj for rz(thus al

aba^b = 8^ a\lhajcd = \8ac8bd). The property
of these induced maps which will be important for what follows is not
their actual form but the fact that they are constant over O(*J().

One now has a basis {G^} = {Ea, F J (A = 1,..., 10) for Tu at each
point ueO(JK). One can thus define a positive definite metric e on
0{J?) by e(X,Y) = S P 7 ^ where X,YeT(u) and XA, YA are the

A

components of X, Y respectively in the basis {G^}.
Using the metric e, one can define a distance function p(u, v),

u,veO(<Jif), as the greatest lower bound of lengths (measured by e)
of curves from u to v. One can then ask whether 0{JK) is m-complete
with the distance function p.

Proposition 8.3.1
(O(JK), e) is m-complete if and only if (J(, g) is b-complete.

Suppose y(t) is a curve in ^t'. Then given a point ue7r~1(p) wherepGy
one can construct a horizontal curve y(t) through u such that
n(y(t)) = y(t). From the definition of the positive definite metric e, it
follows that the arc-length of y(t) as measured in this metric is equal
to the generalized affine parameter of y(t), defined by the basis at p
represented by the point u. If therefore y(t) has no endpoint but has
finite length as measured by the generalized affine parameter, then
y(t) will also have no endpoint but will have finite length in the
metric e. Thus m-completeness in OI^Jl) implies b-completeness in *Jt'.

To prove the converse, one needs to show that if A(£) is a C1 curve in
O(J() of finite length without endpoint, then TT(A(£)) is a C1 curve in J(
with

(1) finite affine length,
(2) no endpoint in *J(.

To prove (1), one proceeds as follows. Let ueX{t). Then one can
construct a horizontal curve A(£) through u such that 7r(A(t)) = n(\(t)).
For each value of t, X(t) and A(£) will lie in the same fibre, so there will
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be a unique curve B(t) in 0(3,1) such that X(t) = B(t)l(t). This
implies

where 5* = d£/d£. Therefore

((si (s)J -
where {Ea} is the basis of H*u dual to the basis {Ea} (i.e. <Ea, E6> = Sa

b)
and a*a6 is the basis of Tz* dual to the basis aiab (i.e. aiaba

j
ab = 8J).

The matrix Bab satisfies Bab GbcBdc = Gad. Therefore

as (?a6 = G'1^. Differentiating with respect to t, one has

B'abB~\cGcd = -GacB'dbB~\c

Thus S#
a65-VeT7(0(3,1)). Since the a\b are a basis for T7*^ there is

some constant C such that

Any matrix Se0(3,1) can be expressed in the form B
where (i) Q, and Q, are orthogonal matrices of the form

where 0 and 0 are 3x3 orthogonal matrices, and the basis {Ea} has
been numbered so that E4 is the timelike vector; these matrices
represent rotations; and (ii) A is the matrix

sh£
0
0

0
1
0
0

0
0
1
0

sinh £
0
0

cosh£

which represents a change of velocity in the 1-direction. With this
decomposition, R . R_2 R . R_± r 2

B abB bcB adB dc > 2(S ) •

For any vector X e Tu,
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Thus

Therefore

and so

Let £0 < oo be the least upper bound for |£| on A(<). Then

where L(\) is the length of the curve A in the metric e. Since this is
finite, £0 and L(X) must be finite. Thus the affine length of the curve
n(X(t)) in Jt', which is equal to L(X), will be finite.

To complete the proof of proposition 8.3.1, we have to show that the
curve n(\(t)) in Jt has no endpoint, that is, we have to show that there
is no point peJt such that n(\(t)) enters and remains within every
neighbourhood Ql oip. Because of the existence of normal neighbour-
hoods °tt oip, this is a consequence of the following result:

Proposition 8.3.2 {Schmidt (1972))
Le.t Jf be a compact subset of J(. Suppose there is a curve X(t) in 0{J()
without endpoint and of finite length, which enters and remains
within TT~X{^). Then there is an inextendible null geodesic y contained
inyT.

Let X{t) be the horizontal curve through some point ue\(t) such
that n(\(t)) = n(X(t)). The curve A(t) has no endpoint. Suppose
there were a point veO{J() which was an endpoint of the hori-
zontal curve A(£). Then there would be an open neighbourhood if of v
with compact closure such that A(t) entered and remained within if.
Let if' be the set {x e 0(JK): Bxeif for all matrices B with |£| ^ £0}.
Since if was compact and £0 is finite, if' would be compact. The
curve A(£) would enter and remain within W. But any compact set
is m-complete with respect to the positive definite metric e. Thus
A(£), having finite length, would have an endpoint in if'. This shows
that X(t) has no endpoint.
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Let {xn} be a sequence of points on X(t) without any limit point.
Since Jf is Compact, there will be a point x eJ^ which is a limit point
of 7r(xn). Let °ll be a normal neighbourhood of x with compact closure,
and let a: W -> O(JK) be a cross-section of O(JK) over °ll, i.e. cr(p),p e °U,
is an orthonormal basis at p. Let A(£) = (7(TT(A(^))) for A(^)e7r~1(^).
Then as in the previous proposition, there will be a unique family of
matrices A(t)EO(3,1) such that X(t) = 4̂(£)A(£), and one can express
the matrix A in the form A = fiAQ. Suppose that |£(£n')| had a finite
upper bound £l5 where xn. = A(£n/) is a subsequence of the xn which
converges to x. Then the points xn. would be contained in the set
<%'= {veO(:J():A-1v^(r(<%) for some AeO(Z, 1) with |£| < £>1}.
However °U' would be compact and so would contain a limit point of
the {xn]> which is contrary to our choice of the {xn}. Thus |£(£n')| has
no finite upper bound. Since the orthogonal group is compact, one can
choose a subsequence {xn*} such that Q,n» converges to some Q', Qn»
converges to some £}', £n"->oo, and

for some constant a (here £in» = Q,(tn»), etc.).
Let A'(0 = (Q')"1^) , andletAn.(0 = A ^ - 1 ^ ' ) " 1 ^ ) . Then Xn.{tn.)

tends to £ = Q'cr(x). Since the length of the curve A(£) is finite, the
curve A'(£) also has finite length. This means that

f tn'+1 ((X*)2 + (X»)2 + (X2)2 + (X3)2)* d*
J in-

tends to zero, where

and

Thus r
tends to zero, for each A. The components F n ^ of the tangent vector
of the horizontal curve Xn*{t) are

Thus fn + 1 |7n^ |d^ (il = fi,2,3), (8.2)
J

tend to zero.
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Let fi be the integral curve of the horizontal vector field Ev through ft.
Then n(/i) will be a null geodesic in Jt'. Suppose that n(/i) left JV in
both the past and future directions. Then there would be some
neighbourhood y of x with compact closure and with the property
that in each direction /i left and did not re-enter the set y \ where
Yf = \yeO(J()\ there is a A with Av contained in y}. One could
choose y sufficiently small that it had this property for any integral
curve of Ev which intersected y and so that any such curve would
leave n~1(tA

r) in both directions. Let <& be the tube consisting of all
points on integral curves of Ev which intersect Y. Then <& n n~\Jf)
would be compact. For sufficiently large n", Xn*(tn.) would be con-
tained in Y. By (8.2) the components of the tangent vector to %n»
transverse to the direction Ev are so small that for large n" and
t > tn», the curve Xn*(t) could not leave the tube <&[\ TT~\J/') except at
its ends where <& left TT-\JT). However Xn»(t) cannot leave TT~\N), as
\{t) does not leave v~\Jf). Thus Xn»{t) would be contained in
<&fi 7r~1(tyT) for t ^ tn*. This leads to a contradiction as follows:
^n'+itfn'+i) ^S contained in y. However by (8.1), Y* can be chosen
sufficiently small that

Xn.(tn.+1) = K'+lK'^K'+litn'+l)

is not contained in Y, though it is contained in y . This shows that
our assumption that the null geodesic n(/i) left J^ in both directions
is false. Thus there will be some point p e«yT which is a limit point of
n(/i). By lemma 6.2.1 there will be an inextendible null geodesic
y through p which is contained in JV* and which is a limit curve of
n(/i). •

If 0{J() is m-incomplete, one can form the metric space completion
). This is defined to be the set of equivalence classes of Cauchy

sequences of points in 0{J(). If x = {xn} and y = {ym} are Cauchy
sequences in 0{J(), the distance p(x,y) between x and y is defined to
be lim p(xn,yn) where p is the distance function on 0{JK) defined by

n—>oo

the positive definite metric e; x and y are said to be equivalent if
p(x, y) = 0. One can decompose 0{J() into a part homeomorphic to
0(uf) and a set of boundary points d (i.e. 0(JK) = 0{JK) u d). The
distance function p defines a topology on 0(<J[). From (8.1), it follows
that the topology on 0{J() is independent of the choice of basis
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One can extend the action of 0(3,1) to 0{J(). For under the action
of A eO(3,1), the transformation of the basis {G^} is independent of
position in 0(JK). Thus there are positive constants Cx and C2

(depending only on A) such that C^iu, v) ^ p(A(u),A(v)) ^ C2p(u, v).
This means that under the action of A, Cauchy sequences will map to
Cauchy sequences and equivalence classes of Cauchy sequences are
mapped to equivalence classes of Cauchy sequences. Therefore the
action of 0(3,1) extends to 0{J() in a unique way. One can then define

to be the quotient of 0{J() by the action of 0(3,1). Since the
quotient of 0(JK) by 0(3,1) is Jt', and since 0(3,1) maps incomplete
Cauchy sequences to incomplete Cauchy sequences, one can express
Jl+ as the union of J( and a set d of points called the b-boundary oiJK.
One can regard points of d as representing the endpoint of equivalence
classes of b-incomplete curves in Jl'.

The projection n: 0(<J()->Ji(+, which assigns a point in O(JK) to its
equivalence class under 0(3,1), induces a topology on ^#+ from the
topology on 0(J(). However n does not induce a distance function
on J(+ because p is not invariant under 0(3,1). Thus although the

topology of 0(J?) is a metric topology, and so Hausdorff, that
need not be Hausdorff. This means that there may be a point pe*J?
and a point q e d such that every neighbourhood of p in ^ + intersects
every neighbourhood of q. This happens when the point q corresponds
to an incomplete curve which is totally or partially imprisoned in <Jt'.
We shall discuss imprisoned incompleteness further in §8.5.

If g is a positive definite metric on ^ , then ^ + is homeomorphic
to the completion of (J(, g) by Cauchy sequences. Schmidt's construc-
tion also has the desirable property that if one cuts a closed set si out
of a space, then one gets at least one point of the b-boundary for every
point of J / ' that is the endpoint of a curve in Jt — srf. An example
where one gets more than one b-boundary point for a point of si* is
provided by two-dimensional Minkowski space in which the set s& is
taken to be the £-axis between — 1 and + 1 . Then there will be two
b-boundary points for each point (0, t) where — 1 < t < 1. An example
where a point in s/' cannot be reached by a curve in Ji — si is given
by the set

[ 1 \
stf = h = sin - , t 4= 0 U {- 1 ^ t ^ 1, x = 0}.

I x )
There is no curve in J( — si which has an endpoint at the origin, and
hence this point will not be in (J? — si)+, although it is in si'.
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Although Schmidt's construction has an elegant formulation, it is
unfortunately very difficult to apply in practice. The only solutions
for which ̂ + has been found, apart from spaces of constant curvature,
are the two-dimensional Robertson-Walker solutions with normal
matter. In these 8 turns out to be a spacelike one-surface as might be
expected from the conformal picture. In this case, one can define a
natural differential structure on 8 and make J(+ into a manifold with
boundary. However there does not seem to be any general way of
defining a manifold structure on 8. Indeed one might expect that in
generic situations 8 would be highly irregular and could not be given
a smooth structure.

8.4 The character of the singularities
In this and the following section we shall discuss the character of the
singularities predicted by theorem 4. We consider this theorem rather
than the others because more information about the singularity can
be obtained. We expect however that the singularities predicted by
the other theorems will have similar properties.

First there is the question of how bad the breakdown of differenti-
ability of the metric must be. The theorems of the previous section
showed that space-time must be geodesically incomplete if the metric
was C2. The C2 condition was necessary in order that the conjugate
points and variation of arc-length should be well-defined; in other
words, in order that solutions of the geodesic equation should depend
differentiably on their initial position and direction. However one can
talk about geodesic incompleteness provided that solutions of the
geodesic equation are defined. They will exist if the metric is C1 and
will be unique and depend continuously on initial position and direction
if the metric is C2~ (i.e. if the connection is locally Lipschitz). In fact
one can discuss b-incompleteness provided merely that the positive
definite metric e on the bundle of frames O(JK) is defined almost every
where and is locally bounded. This will be the case if the components
Ya

hc of the connection are defined almost everywhere and are locally
bounded, i.e. if the metric is C1".

It thus might appear that what the theorems indicate is not that
the curvature becomes unboundedly large but merely that it has a
discontinuity (i.e. the metric is C2~ rather than C2). We shall show that
this is not the case: under the conditions of theorem 4 space-time must
be timelike geodesically incomplete (and hence b-incomplete) even if
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the metric is only required to be C2~. The method of proof is to
approximate the C2~ metric by a C2 metric and to perform variation
of arc-length in this metric.

Suppose that space-time is defined to be inextendible with a C2~
metric and that the conditions of theorem 4 are satisfied. The timelike
convergence condition, RahK

aKb ^ 0, is now required to hold 'almost
everywhere' with the Ricci tensor defined by generalized derivatives.
The only part of the proof of theorem 4 that does not hold in a C2~
metric is where variation of arc-length is used to show that there can
be no point peD+(^) such that d{&,p) > -3/#0, where 60 is the
maximum value of xa

a
 o n &*- Thus if Jt were timelike geodesically

complete there would be some such point p and a geodesic orthogonal
to & of length d(&, p) from & to p. Let °lt be an open set with compact
closure which contains J~(p) 0 J+(^) and let e and g be C00 positive
definite and Lorentz metrics respectively. For any e > 0 one could
find a C00 Lorentz metric ge

ab such that on °il

(1) \9eab-9ab\ <*,
(2) \ge

a%-9abic\ <e,
(3) |#e

a6|Cd| < C, where C is a constant depending on °ll, e, g and g,
(4) ReabK

aKb > - e \Ka\2 for any vector K such that geabK
aKb > 0.

(The ge
ab may be constructed by covering °ll by a finite number of

local coordinate neighbourhoods ( ^ , <fia), integrating the coordinate
components of gab with a suitable smoothing function pe(x) and
summing with a partition of unity {^a}, i.e.

where jp€(x) d4x = 1.)
Property (1) implies that for sufficiently small values of e, p would

be in D+(#, ge) and J~(p, ge) n J+(^, ge) would be contained in ^ .
There would therefore be a geodesic ye in the metric ge from & to p of
length de(&,p). Also \de(&,p) — d(<&,p)\ would tend to zero as e->0.

By properties (1), (2) and (3), and the standard theorems on ordinary
differential equations, as e->0 the tangent vector to a geodesic
in the metric ge would tend to that of the geodesic in the metric
g with the same initial position and direction. There would be
some upper bound to | Va\ on # n fl(# x [0,2d(#,p)]), where Va is the
unit tangent vector to the geodesic orthogonal to & in the metric g.
Thus for any 8 > 0 there would be an e1 > 0 such that for any e < ev

Reab Ve
a Vb > — 8. We can now establish a contradiction by showing that
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a sufficiently small variation of the energy condition will not prevent
the occurrence of conjugate points in the metric ge within a distance
less than de(^,p). For the expansion 6e of the geodesies in the metric
ge obeys the Raychaudhuri equation:

Thus Aid-1) Ids > \ + Reah VaVbd~2. Therefore if the initial value d€o

were negative and SSd€Q~2 were less than one, de~
x would become zero

within a distance 3/0o(l-3£0o-2) from ST. But d€o->60 as e->0. This
shows that for sufficiently small values of e there would be a conjugate
point on every geodesic in the metric ge orthogonal to & within a
distance less than de(^,p). Therefore Ji must be timelike geodesically
incomplete even if the metric is required only to be C2~.

This result implies that if space-time is extended to try to continue
the incomplete geodesies, the metric must fail to be Lorentzian or the
curvature must be locally unbounded, i.e. there would be a curvature
singularity. However even though the curvature were locally un-
bounded, the metric might still be able to be interpreted as a distribu-
tional solution of the Einstein equations provided that the volume
integrals of the components of the curvature tensor over any compact
region were finite. This would be the case if the metric were Lorentz,
continuous and had square integrable first derivatives. In particular
this would be true if the metric were Lorentz and Cx~ (i.e. locally
Lipschitz). Examples of such C1" solutions include gravitational shock
waves (where the curvature has a ^-function behaviour on a null three-
surface, see, for example, Choquet-Bruhat (1968) and Penrose
(1972a)); thin mass shells (where the curvature has a ^-function
behaviour on a timelike three-surface, see, for example, Israel (1966));
and solutions containing pressure-free matter where the geodesic flow
lines have two- or three-dimensional caustics (see Papapetrou and
Hamoui (1967), Grischuk (1967)). Because of the non-linear depend-
ence of the curvature on the metric one cannot necessarily approxi-
mate a C1' distributional solution by a G2 metric which obeys the
convergence condition at every point, or at least does not violate it
by more than a small amount as in the case above (property (4)).
However in all the examples given above one can. Indeed this is their
physical justification: they are regarded as mathematical idealizations
of C2 or C00 solutions which obey the convergence condition and in
which the curvature is very large in a small region. One could apply
the theorems of §8.2 to these C2 solutions and prove the existence of
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incomplete geodesies in them. This shows that the singularities pre-
dicted cannot be just gravitational impulse waves or caustics of flow
lines but must be more serious breakdowns of the metric. (Ordinary
hydrodynamic shock waves involve only discontinuities of density
and pressure and so can exist with a C2~ metric.) Although we are not
quite able to prove it we believe that the singularities must be such
that the metric cannot be extended to be even a distributional solution
of the Einstein equations, i.e. as well as the components of the curva-
ture being unbounded at a singular point, their volume integral over
any neighbourhood of such a point must also be unbounded. This is so
in all known examples of singularities other than the exceptional case
of the Taub-NUT solution, which will be dealt with in the next section.
If this conjecture is correct for 'generic' singularities (i.e. except for
those arising from a set of initial conditions of measure zero), then one
can regard a singularity as a point where the Einstein equations (and
presumably the other presently known laws of physics) break down.

Another question one would like to answer is: how many incomplete
geodesies are there? If there were only one, one might be tempted to
feel that the singularity could be ignored. From the proof of theorem 4
one can see that if there is no Cauchy horizon, i.e. if & is a Cauchy
surface, then no timelike curve from & (geodesic or not) can be
extended to a length greater than — 3/#0 where 60 is the maximum
value of xa

a
 o n ^- ^n fac^ ^n^s result is true even if S? is non-compact

provided that xa
a

 stiU n a s a negative upper bound. However this does
not necessarily indicate that what happens is that every timelike curve
hits the singularity. Rather it suggests that a singularity will be
accompanied by a Cauchy horizon and so our ability to predict the
future will break down. An example of this is shown in figure 53. Here
the metric is singular at the pointy and so this point has been removed
from the space-time manifold. Spreading out from this hole there is
a Cauchy horizon. This example shows that the most one can hope to
prove is that there is a three-dimensional family of geodesies which
are incomplete and which remain within the Cauchy development of
Sf (in the example these are the geodesies which would pass throughp).
There may be other geodesies which leave the Cauchy development
of & and which are incomplete but one cannot predict their behaviour
from knowledge of conditions on &.

It is clear that there must be more than one incomplete geodesic in
D+(&). For from theorem 4 it follows that there must be a geodesic y,
orthogonal to &, which remains in D+(&) but which is incomplete.
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FIGURE 53. The point p has been removed from space-time because a singularity
occurs there. Consequently there is a Cauchy horizon H+(Sf) for the surface &.

Let p be the point where y intersects &. Then one can make a small
variation of & in a neighbourhood of p to obtain a new surface &' for
which xa

a is st̂ ill negative, but which is not orthogonal to y. Then by
theorem 4 there must be some other timelike geodesic y' orthogonal
to Sf' which is incomplete and which does not cross H+(&*'), which is
the same as H+(&).

One can in fact prove that there is at least a three-dimensional
family of timelike geodesies (one through each point of some achronal
surface) which remain within D+(«^) and which are incomplete. These
geodesies all correspond to the same boundary point in the sense of the
indecomposable past sets of §6.8, that is, they all have the same past.
They may not, however, all correspond to the same points as defined
by the construction of the previous section. An outline of the proof is
as follows: in theorem 4 it was shown that there must be a future-
directed timelike geodesic orthogonal to S? which cannot be extended
to length 3/0o. One can say more than this: there must be such a
geodesic y which remains within D+(£f) and is at each point a curve
of maximum length from Sf, i.e. for each q ey, the length of y from £f
to q equals d(&, q). The idea is now to consider the function d(r, y) for
r e J~{y). Clearly this is bounded on J+(&) 0 J~(y)- From the fact that
y is a curve of maximum length from ^ , it follows that in a neighbour-
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hood of y, d(r, y) is continuous and the surfaces of constant d(r, y) are
spacelike surfaces which intersect y orthogonally. The timelike geo-
desies orthogonal to these surfaces will then remain within J~(y) and
so will be incomplete.

8.5 Imprisoned incompleteness

In §8.1 we proposed b-incompleteness as a definition of a singularity.
The idea was that a b-incomplete curve corresponded to a singular
point which had been left out of space-time. However suppose that
there is a b-incomplete curve A which has a limit point peJK, i.e. A is
partially or totally imprisoned in a compact neighbourhood of p. Then
one cannot imbed Jt in a larger four-dimensional Hausdorff para-
compact manifold ^M' such that A can be continued in *Jt'. For if q were
the point where A intersected the boundary of ̂  in ̂ ', then any
neighbourhood of q would intersect any neighbourhood of p, which
would be impossible as Jt' is Hausdorff and q #= p. In fact, one can
characterize imprisoned incompleteness of <Jl by non-Hausdorff
behaviour of the Schmidt completion Jf+.

Proposition 8.5.1

A point pG<J? is not Hausdorff separated in «^+ from a point red if
there is an incomplete curve A in *Jl which has p as a limit point and
which has r as an endpoint in ^ + .

Suppose that p eJK is a limit point of a b-incomplete curve A. One can
construct a horizontal lift A of A in the bundle of orthonormal frames
0{JK). This will have an endpoint at some point

r) c 3 = 0{J?)-0{J?).

If Y* is a neighbourhood of r in ̂ + then n~1(/jfr) is an open neighbour-
hood of a; in O(JV). Thus it contains all points on A beyond some pointy.
Therefore all points on A beyond n(y) will lie in i^ and hence ^will
intersect any neighbourhood of p since p is a limit point of A. •

Taub-NUT space (§5.8) is an example where there are incomplete
geodesies which are all totally imprisoned in compact neighbourhoods
of the past and future horizons U(t) = 0. As the metric is perfectly
regular on these compact neighbourhoods, the incomplete geodesis.
do not correspond to s.p. (scalar polynomial) curvature singularities.
Consider a future incomplete closed null geodesic A(v) in the future
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horizon U(t) = 0. Let p = A(0) and let vx be the first positive value of v
for which \(v) = p. Then as in § 6.4, the parallelly propagated tangent
vector to A will satisfy

where a > 1. For each n, the point A(vn) = p, where

n d~

and
Thus if one takes a pseudo-orthonormal parallelly propagated basis
{Ea} on X(v), where E4 = djdv, then the other null basis vector E3 obeys
E3|v=Vn = »~nE3|v=0. Each time one goes round the closed null geo-
desic A, the vector E4 gets bigger and the vector E3 gets smaller. The
vectors Ex and E2 remain the same. If therefore there were some non-
zero component of the Riemann tensor which involved E4 and
possibly Ex and E2, it would appear bigger and bigger each time one
went round A and so there would be a p.p. (parallelly propagated)
curvature singularity. However in Taub-NUT space it turns out that
the vector E3 can be chosen so that there is only one independent non-
zero component of the Riemann tensor, which is i?(E3, E4, E3, E4).
This involves E3 and E4 equally, and so has the same value each time
round. Since a similar argument will probably hold for any imprisoned
curve, it seems there is no p.p. curvature singularity in Taub-NUT
space, although this space is singular by our definition. One would like
to know whether this kind of behaviour would occur in physically
realistic solutions containing matter, or whether Taub-NUT space is
an isolated pathological example. This question is important because,
as we shall argue in the next chapter, we interpret the preceding
theorems as indicating not that geodesic incompleteness necessarily
occurs, but that General Relativity breaks down in very strong gravita-
tional fields. Such fields do not occur in the Taub-NUT kind of situation.
This conclusion is a result of the very special nature of the Riemann
tensor in Taub-NUT space. In general, one would expect some other
components of the Riemann tensor to be non-zero on the imprisoned
curve, and so there would be a p.p. curvature singularity even though
there might be no s.p. curvature singularity. In fact one can prove:

Proposition 8.5.2
If peJK is a limit point of a b-incomplete curve A and if at p,
RahK

aKb #= 0 for all non-spacelike vectors K, then A corresponds to
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a p.p. curvature singularity. (This condition can be replaced by the
condition that there do not exist any null directions Ka such that
K"K<CMdKe] = 0.)

Let & be a convex normal coordinate neighbourhood of p with com-
pact closure, and let {YJ, {Y*} be a field of dual orthonormal bases
on °ll. Let {Ea}, {Ea} be a parallelly propagated dual orthonormal basis
on the curve X(t). Let t be a parameter on A such that in °ll,

dt/dt= ( 2 I ^ ) i ,
i

where X{ are the components of the tangent vector d/dt in the basis
{YJ. Then t measures arc-length in the positive definite metric on °tt
in which the bases {YJ, {Y*} are orthonormal.

Since Rab K
aKb #= 0 at p for any non-spacelike vector Ka, there is

a neighbourhood Y* <^ °tt such that Rab = CZaZb + R'ab, where C + 0
is a constant, Za is a unit timelike vector, and R'ab is such that
CR'abK

aKb > 0 for any non-spacelike vector Ka. Suppose that after
some value t0 of t the curve A intersects ir. Since A has no endpoint
and since p is a limit point of A, the part of A in if will have infinite
length as measured by t. However, the generalized affine parameter is
given by du/dt ^

where X1 are the components of the tangent vector {djdt)x, so
2 XlXl = 1, and Ea

i are the components of the basis {Ea} in the basis

{Y*}. Since u is finite on the curve, the modulus of the column vector
Ea

i X
1 must go to zero, and so the Lorentz transformation represented

by the components Ea
i must become unboundedly large. Since Z is

a unit timelike vector, the components of Z in the basis {Ea} will
therefore become unboundedly large and hence some component of
the Ricci tensor in the basis {Ea} will become unboundedly large. •

This result shows that an observer whose history was a b-incomplete
imprisoned non-spacelike curve in a generic space-time would be torn
apart by unboundedly large curvature forces in a finite time. However
another observer could travel through the same region without experi-
encing any such effects. An interesting example in this connection is
provided by Taub-NUT space in which the metric has been altered
by a conformal factor Q. which differs from one only in a small neigh-
bourhood of a point p on the horizon. This conformal transformation
would not alter the causal structure of the space and would not affect
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the incompleteness of the closed null curve through the pointy. How-
ever in general RahK

aKb 4= 0 where Ka is the tangent vector to the
closed null geodesic. After each cycle, RabK

aKb increases by a factor a2

and so there is a p.p. curvature singularity. Yet the metric is perfectly
regular on a compact neighbourhood of the horizon and so there is
no s.p. curvature singularity associated with the incompleteness.

One would like to rule out this kind of situation in which the
incomplete curves are totally imprisoned in a compact region. This
kind of behaviour might occur in a countably infinite number of
different regions of space-time. Thus one cannot describe it by saying
that all the incomplete curves are totally imprisoned in one compact
set. Instead one wants to describe it by saying that a set of incomplete
curves which are compact in some sense are totally imprisoned in a
compact region of Ji. To make this concept precise, we define
b-boundedness as follows.

We define the space B(JK) to be the set of all pairs (A, u), where u is
a point in the bundle of linear frames L(*J() and A is a C1 curve in J(
which has only one endpoint, which is at n(u). Let <% be an open set
in J( and if be an open set in L{Jt). We define the open set 0{°U, if)
to be the set of all elements oiB(JK) such that A intersects °tt and ueY\
The sets of the form O(°tt,if) for all °U, if form a sub-basis for the
topology of B{J(). Recall that the map exp: T(J()-+J( is defined by
taking a vector X at a point p and proceeding along the geodesic
from p in the direction of X a unit distance as measured in the
affine parameter defined by X. Similarly we may define a map
Exp: B{J()->J( by proceeding from n(u) along the curve A a unit
distance as measured in the generalized affine parameter on A defined
by u. The map Exp is continuous and will be defined for all oiB{*J()
\iJt is b-complete. We shall say that [J(, g) is b-bounded if for every
compact set W <z B{J(), Exp (W) has a compact closure in Jt'. Since
Exp is continuous, {JK, g) is b-bounded if it is b-complete. However,
Taub-NUT space is an example which is b-bounded but not b-com-
plete. We shall show that this can be possible only because Taub-NUT
space is completely empty. The presence of any matter on the surface
Sf in theorem 4 will mean that the space is both b-incomplete and
b-unbounded.

Theorem 5

Space-time is not b-bounded if conditions (1 )-(3) of theorem 4 hold, and
(4) the energy-momentum tensor is non-zero somewhere on 5?,
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(5) the energy-momentum tensor obeys a slightly stronger form of
the dominant energy condition (§4.3): if Ka is a non-spacelike vector,
then Ta^/Ta is zero or non-spacelike and T^i£ai?6 ^ 0, equality holding
only if TabKb = 0.

Remark. Condition (4) could be replaced by the generic condition
(see Theorem 2).

Proof. Consider the covering space *JtG (§§$) defined as the set of all
pairs (p, i[A]), where A is a curve from qtop,p,qe M, and i[A] is the
number of times A cuts £f in the future direction minus the number of
times it cuts it in the past direction. For each integer a,

is diffeomorphic to £f and is a partial Cauchy surface in UKQ. In
general JKG need not be b-bounded if JK is, but in the situation under
consideration we have the following result:

Lemma 8.5.3
Let conditions (l)-(3) hold and let Z>+(«$̂ ) not have compact closure
in JlG\ then if i]r is the covering projection i/r: u^G->u^, &(D+(S%))
will not have compact closure in ^ .

<Jif is either diffeomorphic to *J(G or to *J?a, the portion o£<J?G between
&>a and Sfa+1 with &>a and ^a+1 identified. If for any a ^ 0, J(a n D+(S%)
does not have compact closure in J(G, then rfr(D+(S%)) will not have
compact closure in Jt'. If however Jta n D+(S^0) had compact closure
for all a ̂  0 it would also have to be non-empty for all a ̂  0 since
Z)+(5^) is non-compact. But for peS^a, the proper volume of
I~(p) fl ^a-\

 n a s some lower bound c. Thus for every a ^ 0 the proper
volume of ̂  n £>+(^) could not be less than c. But this is impossible
since by conditions (l)-(3) and proposition 6.7.1, the proper volume of
D+(6^0) is less than 3/( — 60) x (area of S?)9 where 60 is the negative
upper bound of xa

a
 o n ̂ - ^

Using this result, one can prove:

Lemma 8.5.4
If D+(<S%) does not have compact closure, >J( is not b-bounded.

Let iV* be the subset of B(JKG) consisting of all pairs (A, u) where A is
any future-inextendible timelike geodesic curve in JKG orthogonal to
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<9£ with endpoint re£%, and ue7T~\r) is any basis at r, one of whose
vectors is tangent to A and of length — 3/#0, the remaining vectors
being an orthonormal basis in 6%.

Let { â} be a collection of open sets which cover #~. Each ^ a will
be the union of finite intersections of sets of the form 0(^ , ir). It is
sufficient to consider the case when the 3P can be represented as

where for each a the %ap are a finite number of open sets in JVG, and
i^a is an open set in L{<J(G). Let (ju,, v) e W. Then there is some a such
that (fi, v)e£?a. This means that the geodesic JLL intersects the open set
°Uap for each value of /? and that vei^. Since geodesies depend con-
tinuously on their initial conditions there will be some neighbourhood
&a of n(v) such that every future-inextendible geodesic through ^ a

orthogonal to ^ will intersect °ttap for each value of /?. Let y ' a be an
open set contained in ̂  such that n^'a) c ^ a . Then

is contained in ^ a . Thus the sets {O(7r(^r
a), ̂ ' a ) } form a refinement of

the covering £Pa.
Consider the subset Q of L{JtG) consisting of all bases over <9£

where one of the basis vectors is orthogonal to ̂  and of length
— 3/#0, and the remaining vectors are an orthonormal basis of ̂ .
Since SL is compact, it can be covered by a finite number of the sets
y ' a . Thus Of is compact since it can be covered by a finite number of
the sets 0{n{r'a),r'a).

By proposition 6.7.1 each point of D+(£%) lies within a proper
distance — 3/#0 along the future-directed geodesic orthogonal to £%.
This means that ExpC^) contains D+{S%). Let ifr*: B{J(G)->B{J()
be the map which takes (A, u)eB(<JfG) to (̂ r(A), i]r*u) eB{J(). Then
ilr^'W will be a compact subset of B{JK) such that

Thus if Z>+(^) is not compact, i/r(D+(<S%)) is not compact, so (JK, g)
is not b-bounded. •

This shows that it is sufficient to prove D+(£%) non-compact. Suppose
it were compact. Then H+(^o) would also be compact. We show below
that this would imply that the divergence of the null geodesic
generators would have to be zero everywhere on H+{6Q. This would
be impossible if the matter density were nonzero somewhere on H+(S%).
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Lemma 8.5.5

If H+(J2) is compact for a partial Cauchy surface i?, then the null
geodesic generating segments of H+(J2) are geodesically complete in
the past direction.

From proposition 6.5.2 it follows that the generating segments have
no past endpoints. They must therefore form 'almost closed' curves
in the compact set H+(£>). If they formed actual closed curves, one
could use proposition 6.4.4 to show that if they were incomplete in the
past direction, they could be varied towards the past to give closed
timelike curves. This however would be impossible since such curves
would lie in D+(«2). The proof in the case when the null geodesic
generators of H+(£>) are only 'almost closed' is similar though a little
more delicate.

Introduce a future-directed timelike unit vector field V which is
geodesic in a neighbourhood °l£ oiH+{£) with compact closure. Define
the positive definite metric g' as in proposition 6.4.4 by

g'(X, Y) = g(X, Y) + 2g(X, V) g(Y, V)

and let t be a parameter which measures proper distance in the metric
g' along a null geodesic generating segment y of i/+(*2), and which is
zero at some point qey. Then g(V,d/dt) = — 2~£. As y has no past
endpoint, t will have no lower bound. Let /and h be given by

where v is an affine parameter. Suppose y were geodesically incomplete
in the past, then the affine parameter

Jo

would have a lower bound v0 as t-> — co. Now consider a variation
a of y whose variation vector d/du is equal to — xV. Then

3 Id d\\ _ ,/dx , ,dh\ / o o x) \ 2 ' w h j (8-3)
Since h->co as £-> — oo, one could find a bounded function x(t) such
that (8.3) was negative for all t ^ 0. However this would not be suffi-
cient to ensure that the variation gave an everywhere timelike curve
since it could be that the range of u for which (8.3) remained negative
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tended to zero as t-^ — co. To deal with this we shall consider the
second derivative under the variation:

a2 Id d\ _ d I Id D d\\
dv?9\di'Jt) ~du\g\di9didu))

m d_ D d\ id D D d\ id id d\ d\
~9\Ytfa'Jtfa)*g[jt'irtifudu)

Choosing dx/du to be zero and using the fact that V is a geodesic in
a neighbourhood °ll of H+(£) this reduces to

for 0 ^ u ̂  e. In any basis orthonormal with respect to the metric g',
the components of the Riemann tensor and of the co variant derivative
of V (with respect to g) will be bounded on tf£. Thus there is some
O O s u c h t h a t 82

so

Therefore

for 0 ^ u ̂  e, where d = (2<v/2)eC1 + 2e2C1
2+ 1, and C1 is an upper

bound to |d#/d£|. Thus we have

dy
and -f-

du

where y = g(d/dt, djdt). Therefore

y ^ d (cosh Cxu —l) + a sinh Cxu

where a = 2-iC-1d(loghx)/dt.
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Now take , A f, , ,„
h1 h^dt'
, A f0x = h'1 -

= 2 f ° h
J — oo

where K

then a = — 2-i(7~1Aa:. Since/ = — h~1(dh/dt) is bounded on the compact
set H+(£) and since -0

h~1dtf = -v

was assumed to converge as t -> — oo, there would be upper bounds for
x and |d#/d£| and a positive lower bound C2 for h when — oo < t ^ 0.
Then for 0 < u < min (e, 2C~2d~1C2), y would be negative when
-oo < t ^ 0.

In other words, the variation a would give a past-inextendible time-
like curve which lay in intD+(j2) and which was totally imprisoned in
the compact set tft. But this is impossible, since by lemma 6.6.5 the
strong causality condition holds on intZ)+(i?). Thus y must be geo-
desically complete in the past direction. •

Consider the expansion B of the tangent vectors d/dt to the null
geodesic generators of H+{SfQ). Suppose that 0 > 0 at some point q on
a generator y and let J be a spacelike two-surface through q in a
neighbourhood of q in H+(5fQ). The generators of H+(S%) will be
orthogonal to 3" and would be converging into the past. Then by
condition (1) and the above lemma there would be a point rey conju-
gate to y along y (proposition 4.4.6). Points on y beyond r could be
joined to 2T by timelike curves (proposition 4.5.14). But this would
be impossible since H+(S%) is an achronal set. Therefore ^ 0 on

Now consider the family of differentiate maps/^:
defined by taking a point qeH+(,$f0) a distance z (measured in the
metric gr) to the past along the null geodesic generator through q.
Let dA be the area measured in the metric g' of a small element of
H+{S?0). Under the map fle,

dz ~

Thus ^ f dA = - f 0cL4. (8.4)

But fiz maps H+(£fQ) into H+(6^0) (and onto if the generating segments
have no future endpoints). Thus (8.4) must be less than or equal to
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zero. Together with the previous result this would imply 6 = 0 on
H+(f9?

0). By the propagation equation (4.35) this is possible only if
RahK

aKb = 0 everywhere on H+(SQ, where K is the tangent vector to
the null geodesic generator. However by the conservation theorem
of §4.3 condition (5) implies that TahK

aKb is non-zero somewhere
on H+(Sf) and by the Einstein equations (with or without A), TahK

aKb

equals RabK
aKb. (Strictly, the form of the conservation theorem

required is slightly different from that in §4.3. Since there are no
suitable spacelike surfaces which intersect H+(SfQ), one uses instead
a family of surfaces one of which is H+(6^0), the others being spacelike.
These surfaces can be defined by taking the value of the function t at
the pointyeD+ffl) to be minus the proper volume of J+(p) 0 D+(SfQ).
Since t;a becomes null on H+(6^)y it is no longer necessarily true that
there is a constant C > 0 such that on

However if Va is a timelike vector field on D+(S?0), there is a constant 0
such that

and T"bVa,b ̂  CT«b(t;at.b + t.aVb).

One can then proceed as in §4.3 using Tab(t;ab+ Va;b) in place of
Tabt;ab, and proving that Tab(t;at;b + t.aVb) cannot be zero on H+(SfQ)
if it is non-zero on S%. The result then follows from (5).) •
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