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Abstract
Climate change is predicted to increase the frequency of extreme weather events, increasing
the vulnerability of smallholder farmers dependent on rain-fed agriculture. We evaluate the
extent to which farmers inMalawi suffer crop production losses due to extremeweather, and
whether sustainable land management (SLM) practices help shield crop production losses
from extreme events. We use a three period panel dataset where widespread floods and
droughts occurred in separate periods, offering a unique opportunity to evaluate impacts
using data collected immediately following these events. Results show that crop production
outcomeswere severely hit by both floods and droughts, with average losses ranging between
32–48 per cent. Legume intercropping provided protection against both floods anddroughts,
while green belts provided protection against floods. However, we find limited evidence that
SLM adoption decisions are driven by exposure to weather shocks; rather, farmers withmore
productive assets are more likely to adopt.
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1. Introduction
Rural households in Malawi face extremely difficult circumstances that limit their abil-
ity to achieve lasting improvements in food security. Rural poverty rates are high at 41
per cent (World Bank, 2016), and most farm households have very small landholdings
and are reliant on rainfed agriculture (Ricker-Gilbert et al., 2014; Asfaw et al., 2016).
Thus, farmers are currently vulnerable to extreme weather events, such as the floods that
occurred during the 2014/2015 growing season and the drought that occurred during the
2015/2016 growing season. The Malawi Vulnerability Assessment Committee (MVAC)
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forecasted that over 2.8 million people (17 per cent of the population) in 17 flood-
affected districts would not be able tomeet their food requirements over the period April
2015–March 2016 (MVAC, 2015), while over 6.5 million people (39 per cent of the pop-
ulation) in 24 drought-affected districts were forecasted to be unable to meet their food
requirements during the April 2016–March 2017 period (MVAC, 2015, 2016). At the
same time, it is expected that farmers’ exposure to extreme climate events will continue
to increase (Blanc, 2012; Belloumi, 2014; Venäläinen et al., 2016).

Currently, there is limited household survey-based empirical evidence of the impacts
of extreme weather events on crop production, or the factors that mitigate the nega-
tive impact of extreme weather events. In this paper, we use data from the 2013 and
2016 waves of the Malawi Integrated Household Panel Survey (IHPS), which is statis-
tically representative at the national- and urban/rural-levels. Additionally, we use data
collected primarily in the Southern Region, as part of the Flood Impact Assessment Sur-
vey (FIAS). The analysis focuses on the impacts of extreme rainfall on maize yields and
the value of crop production per hectare. We are also interested in determining whether
adoption of sustainable land management (SLM) practices reduce crop losses in the face
of extreme weather events. Our dataset includes information on four SLMpractices used
in the analysis: minimum soil disturbance tillage, legume intercropping, stone or earthen
bunds, and planting vetiver grass or trees on plots (hereafter referred to as green belts).

We run two sets of analyses. In the first set, we estimate crop production outcomes,
including the SLM variables as well as interaction terms with extreme weather dummies,
to evaluate whether these practices were effective in reducing production losses under
extreme weather conditions. In the second set, we estimate the determinants of SLM
adoption.

The results show large negative impacts of drought and flood shocks on maize yields
and value of crop production per hectare, with drought-induced maize yield declines
of 32–34 per cent and value per hectare declines of 42–44 per cent. The flood shock
was even more severe, leading to 54 per cent lower maize yields and 58 per cent lower
value per hectare. Of the four SLM practices, only legume intercropping had a direct
positive impact on value per hectare. Legume intercropping also led to higher maize
yields and crop production per hectare under both drought and flood shocks, reduc-
ing losses to 15–18 per cent under the drought shock and to no loss under the flood
shock. However, exposure to floods and shocks had limited impacts on adoption deci-
sions. Instead, farmers with larger plots andmore productive assets were alsomore likely
to adopt SLMs.

Our results contribute to the literature in three main ways. First, they contribute to
a small but growing literature that combines weather and climate variables with house-
hold crop production data in order to create objective measures of both current period
weather shocks and long-term climate patterns, and to test their impacts on crop produc-
tion and SLM adoption. Our three-period panel data includes two years when droughts
and floods affected a large number of households, so we did not have to rely on recall
data to tease out the impacts of extreme weather events. Second, our analysis assesses the
impacts of SLMs – and their interaction with flood and drought shocks – on production
outcomes. The empirical evidence on the effectiveness of SLMs in shielding crop produc-
tion from extreme weather induced losses is both relatively scarce andmixed; our results
are also mixed, with only robust positive impacts for legume intercropping. Third, our
results show that exposure to rainfall shocks is not driving adoption of SLMs in general.
These results contribute to the evidence base needed to support those advocating for
more concerted efforts to enable vulnerable smallholders adapt to climate change.
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2. Literature review
Despite a rich theoretical literature documenting the potential negative impacts of unin-
sured weather extremes on crop outcomes (Hardaker et al., 2004; Hurley, 2010), until
very recently, there has been little empirical evidence of the magnitude of their impacts
on crop outcomes, particularly studies using household-level data, which is the focus of
this literature review. More recent studies for Sub-Saharan African countries show large
negative impacts of droughts on crop production and incomes, highlighting how vulner-
able smallholders are to extreme weather events. Alfani et al. (2019) find that drought
reducedmaize yields by 29–41 per cent in Zambia;McCarthy et al. (2018) find that severe
flooding reduced value of crop production per hectare 52 per cent in Malawi; Micheler
et al. (2019) find that drought reduced maize yields by 50–80 per cent in Zimbabwe; and
Wineman et al. (2017) find that droughts reduced crop income per capita by 29 per cent
in Kenya.

SLM techniques have long been promoted as measures to reduce production losses
associated with extreme weather events. Such measures include minimum tillage, soil
and water conservation structures, permanent soil cover and agro-forestry. As thor-
oughly reviewed in Blanco and Lal (2008), adoption of the SLM practices we observe
in our dataset should mitigate crop production losses due to weather extremes by
protecting soil quality through reducing erosion and improving soil structure, soil
nutrient levels, water retention capacity and drainage (see chapters 8–11 in partic-
ular). Cultivated plots with better soil quality are more likely to absorb weather
shocks than those with highly degraded soils (Mattee et al., 2015; Nkonya et al.,
2015).

Empirical evidence on whether these SLMs actually reduce production losses using
household survey data is scant, especially under extreme weather shocks. Arslan et
al. (2015) find that legume intercropping increases yields by about 24 per cent on
average, and that the benefits to legume intercropping increase as maximum sea-
sonal temperatures increase. Asfaw et al. (2016) find that legume intercropping com-
bined with inorganic fertilizer and trees increases maize yields; however, they find
a negative impact from the adoption of soil and water conservation structures. The
authors note that there were few areas subject to relatively extreme weather patterns,
and surmise that such structures may only provide positive benefits during more
extreme weather conditions than observed in the dataset. Micheler et al. (2019) find
in Zimbabwe that adoption of ‘conservation agriculture’ (minimum soil disturbance
tillage, permanent soil cover and crop rotation), does not result in higher yields in
‘normal’ years but does lead to higher yields when rainfall deviates from expected
rainfall.

McCarthy et al. (2011) provide a broader review of the empirical evidence document-
ing impacts of SLM techniques on both yields and yield variability, and conclude that
the evidence for most SLMs is quite mixed. This is partially because different SLM prac-
tices can have different impacts on crop production depending on whether droughts or
flooding occurs. For instance, Dutilly-Diane et al. (2003) found that farmers in semi-arid
regions of Burkina Faso who had invested in stone bunds in low rainfall areas had 41 per
cent higher sorghum/millet yields, but those in moderate and high rainfall areas actu-
ally had lower yields. A number of studies in different agro-ecological zones of Ethiopia
have found that many SLMs have a positive impacts on crop production in low produc-
tivity areas but do not provide benefits under more favorable agro-ecological conditions
(Benin, 2006; Kassie et al., 2008; Pender andGebremedhin, 2008; Kassie et al., 2010; Kato
et al., 2011).
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3. Empirical framework
3.1 Empirical strategy
Drawing on the expected utility models of crop production decisions of risk averse
decision-makers (Just and Zilberman, 1983; Ramaswami, 1992; Chavas and Holt, 1996),
we can write our crop production estimating equation as follows:

Yijt = α + β1Ŵi + β2σ
2
W,i + β3Mit

(
WA

Ŵ

)
+ β4XT

ijt + β5XSLM
ijt

+ β6

(
XSLM
ijt ∗ Mit

(
WA

Ŵ

))
+ β7Zit + μY ,i + εY ,ijt , (1)

whereYijt is crop production by household i on plot j in time period t; Ŵi aremeasures of
expected weather and σ 2

W,i is the variance of weather measures; and Mit(WA/Ŵ) cap-
tures metrics of the difference between actual weather realized and expected weather
(weather deviations). Because plots are often quite close, and given the resolution of
the weather data, we drop the plot subscript, j, from the climatic variables, since this
better captures the fact that these variables are nearly perfectly correlated at the house-
hold level. XT

ijt is a vector of traditional inputs; X
SLM
ijt is a vector of SLM inputs; XSLM,∗

ijt ∗
Mijt(WA/Ŵ) is a vector of SLM inputs interacted with weather deviations; Zitis a vec-
tor of household and community characteristics that affect crop production outcomes;
and α, β1 − β7 are parameters to be estimated.μY ,i capture unobserved, time-invariant
household characteristics affecting crop production, and εY ,ijt is the time-varying error
term, assumed to be normally i.i.d.

The SLM adoption equations are similar, but without current period weather shocks:

SLMijt = δ + κ1Ŵij + κ2σ
2
Wij + κ3Zit + μSLM,i + εSLM,ijt . (2)

The variables are identified as above, δ, κ1 − κ3 are parameters to be estimated; μSLM,i
capture unobserved, time-invariant household characteristics affecting SLM adoption,
and εSLM,ijt is the time-varying error term, assumed to be ∼ N(0, σ 2

Yit). Because we do
not observe the extent of SLM applied on the plot, we run panel linear probabilitymodels
using dummy variables for SLM adoption.

While SLM adoption decisions may well be endogenous to the crop production out-
comes, the SLM, weather-shock interaction terms are conditionally exogenous (Lewbel,
2012; Nizalava and Mirtazashvili, 2016). Decisions on whether to adopt or maintain all
four SLM practices are made at the beginning of the season. Thus, because we con-
trol for expected rainfall conditions (mean and variance of rainfall), the impact of the
SLMs under weather shocks on crop production outcomes is exogenous conditional on
expected rainfall variables.

We estimate the above equations using both correlated random effects (CRE) and
household fixed effects (FE) for the crop production outcomes and SLMadoption regres-
sions. The FEmodel directly controls for time-invariant omitted relevant variables using
differences, while the CRE model controls for these by using time averages of observed
variables to capture unobserved heterogeneity (Wooldridge, 2010; Schunck, 2013). The
CRE model is more flexible in that it allows one to include time-invariant variables,
which is of particular relevance for the SLM adoption equations where climate condi-
tions are hypothesized to be important factors in driving adoption. Below, we report
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Table 1. Number of plot observations, by Long Panel and FIAS samples

2013/16 Long Panel 2013/15/16 FIAS

All Maize All Maize

IHPS 2013 2,837 1,990 1,234 1,015

FIAS 2015 527 424

IHS4 2016 3,600 2,650 1,585 1,296

Total 6,437 4,640 3,346 2,735

results using the CRE model for both crop production outcomes and SLM adoption,
while the full FE results are available in online appendices 2 and 3. In all specifications,
we use cluster-robust standard errors.

As noted above, the 2015 FIAS sample was concentrated in the Southern Region
and included households that were not necessarily in the 2013–2016 Long Panel. This
does pose some issues for constructing the three-period panel. We ran three specifi-
cations with three different samples: (1) A 2013–2016 only specification, that includes
all households in the 2013–2016 Long Panel covering all regions in the country; (2) a
specification that includes all 2013 Long-Panel households located in FIAS districts in
2013 and their corresponding 2016 panel households, plus all available FIAS house-
holds, whether in the Long Panel or not; and (3) the same as (2), but restricting FIAS
households to those that are also in the Long Panel. There are few differences in results
between the 2nd and 3rd samples, so in the text we only report results for the 1st and 3rd
samples.

3.2 Data and variables used in the analysis
We use data from the 2013 and 2016 waves of the IHPS. The IHPS was implemented by
the National Statistical Office, as part of theWorld Bank Living StandardsMeasurement
Study-Integrated Surveys on Agriculture initiative. The dataset includes 1,907 house-
holds that were interviewed in 2013, and 2,507 households that were interviewed in 2016
and that could be traced back to the 1,907 households in 2013 as part of the Long Panel
sample. There aremore households in 2016 since some households in 2013 had split into
two or more households by 2016, and all split households were interviewed.1 For the
three-period panel, we retain observations that were followed in all three periods, which
include 667, 273 and 837 households in 2013, 2015 and 2016, respectively. Table 1 gives
the number of cultivated plots and number of maize plots observed in each year, for the
two samples.

3.3 Explanatory variables
3.3.1 Weather and climate variables
We include several weather and climate variables in order to control for the impacts of
rainfall on crop outcomes, using the National Oceanic and Atmospheric Administration
(NOAA)AfricanRainfall Climatology version 2 (ARC2) dataset. Following the empirical

1The household-level attrition rate between 2013 and 2016 was 4 per cent.
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model above, we include expected flowering period rainfall2 and the coefficient of varia-
tion of flowering period rainfall to control for farmers’ expected weather realizations on
crop production outcomes, and the percentage difference of the current year’s rainfall
from expected rainfall to control for deviations from expected rainfall.3

We also allow for non-linear impacts of droughts in 2016 and floods in 2015 on crop
production by including two variables to capture these shocks. With respect to agricul-
tural droughts, there is no agreement on which specific variable fromwhich specific data
source should be used (Dalezios et al., 2017; Hao et al., 2017).We systematically explored
a number of variables to capture drought using the ARC2 data, the Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS) data, as well as NOAA’s normal-
ized difference vegetation index (NDVI), the standardized precipitation index (SPI) and
the standardized precipitation evapotranspiration index (SPEI). Measures created from
the SPI and SPEI did have expected negative impacts in some specifications, while mea-
sures created from CHIRPS and the NDVI datasets were generally not significant. A
range of different measures based on the ARC2 dataset are negative and significant.
Our systematic evaluation of the performance of different drought measures led us to
choose a semi-continuous measure, which had robust and significant negative impacts
across alternative specifications. Specifically, our drought shock variable takes a value of
zero when flowering season rainfall is less than 30 per cent below the long-term mean,
and takes the absolute value of the percentage difference for differences greater than or
equal to 30 per cent below the long-term mean. This measure captures an initial nega-
tive threshold effect at 30 per cent, and also allows for additional losses due to shocks
greater than 30 per cent. There were no observations with such extreme drought con-
ditions in 2013 or 2015, while over 35 per cent of plot-level observations experienced
drought conditions in 2016.

To best capture the impacts of floods, we use a measure of mean flood intensity,
defined as the water depth (in mm) above a flood threshold, derived from the Global
Flood Monitoring System hydrological runoff and routing model developed at the Uni-
versity ofMaryland (Merz et al., 2007). It is positively correlated withDecember-January
rainfall, but also captures underlying hydrology and so should better capture flood
events. However, the flood intensity measure alone is somewhat coarse, at about 8 km
squared resolution. Because we have information on elevation and distance to the near-
est water body at the homestead, we performed a principal components analysis of these
two characteristics and mean flood intensity. After exploring a number of flood shock
measures, we chose to define a flood shock as occurring if the flood index was greater
than 30 per cent above the average flood index value.

For the SLM adoption equations, instead of using the coefficient of variation of rain-
fall, we use the probability of experiencing a drought and the probability of receiving
a flood. While the coefficient of variation captures the range of potential realizations

2Total flowering season rainfall covers the 5th–8th dekads (a dekad is defined as a 10-day period) follow-
ing onset of the rainy season. Onset was defined as the first dekad with 25mm of rainfall that was followed
by a dekad with 20mm rainfall, starting any time after October 1 (Nicholson et al., 2013).

3We evaluated the robustness and predictive power of a number of different time periods within the sea-
son and determined that variables covering the flowering period were consistently robust and significantly
negative across alternative specifications, while total period rainfall was almost never significant. This is
also consistent with the agronomic literature, which shows that the flowering period is the period when
maize crops have the highest water requirements (see the FAO webpage at http://www.fao.org/land-water/
databases-and-software/crop-information/maize/en/).
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affecting crop production outcomes and is consistent with expected utility models, the
probabilities of droughts and floods better capture exposure to extreme weather events
that may drive the threshold decision to adopt SLMs.

Finally, we also include a measure of temperature shocks. Research has shown that
high temperatures have ‘threshold’ impacts on maize yields; temperatures above which
have significant negative impacts on yields (Schlenker and Lobell, 2010; Hatfield, 2016).
To capture threshold effects, we use historical data onmaximummidnight temperatures
obtained from the EuropeanCentre forMedium-RangeWeather Forecasts ERA-Interim
reanalysis model dataset. The empirical literature suggests that the number of dekads
wheremaximummidnight temperatures were greater than 28°C during the growing sea-
son captures negative impacts on crop production, and so we include this as a measure
of high temperature shocks (Hatfield, 2016; Steward et al., 2018).

3.3.2 SLM practices
Given available data from the questionnaire, we include four dummy variables for the
SLM practices: (1) minimum soil disturbance (MSD) tillage, (2) legume intercropping,
(3) stone or earthen bunds, and (4) green belts (either trees or vetiver grass on the plot).
We then create interaction terms for each of the four SLM dummies with both the flood
and drought shocks.

Other authors have argued that combinations of practicesmay be required in order to
generate benefits, such as the three components of conservation agriculture (CA) (Kassie
et al., 2015; Ward et al., 2018). With respect to CA specifically, we do not have data
on crop rotation, but we do have information on permanent crop cover. However, less
than 0.6 per cent of plots combined bothminimum soil disturbance and permanent crop
cover, so there is not sufficient variation to probe this further. Among the four SLM
practices included in the analysis, farmers tended to adopt only one practice per plot, and
so it was not possible to test whether different bundles of SLMs performed differently.

3.3.3 Additional control variables
3.3.3.1 Plot characteristics We include plot size in natural logarithms; a dummy that
captures whether plot slope is moderately or very steep (vis-à-vis flat or slight); dum-
mies for sandy and clay soils versus omitted loamy soils; a dummy for whether the plot
is owned, and a dummy for whether the plot can be sold or used for collateral. We
also include plot management characteristics, such as dummies for whether the plot is
managed by a woman or jointly managed by a man and woman, vis-à-vis the omitted
category, managed by aman; and age of the primary plot manager. For crop production,
we expect land size to be negative, reflecting diminishing returns to scale; and favorable
characteristics (less steep slopes,malemanager, owned, can be sold/used for collateral) to
be positive. For SLM adoption, we expect plot size, owned and can be sold/used for col-
lateral to be positive, and we expect that less favorable characteristics may increase SLM
adoption, e.g., steeper slopes more vulnerable to erosion. Signs for other co-variates are
generally ambiguous, for instance, age may increase yields due to experience, but may
decrease adoption of more labor-intensive SLMs.

3.3.3.2 Production inputs Production inputs include the number of adults, in natural
logarithms, to proxy for household labor and a dummy for whether hired labor was used;
the number of weedings performed; a dummy for whether any pesticide or herbicide was
used on the plot; and a dummy for the use of organic fertilizer. Following Battese (1997),
to account for plots that did not have inorganic fertilizer, we include a dummy variable
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equal to one where fertilizer was not applied, and then include the logged quantity of fer-
tilizer used.4 For themaize yield regressions, we included the quantity of seeds (logs). For
the value of crop production regressions, we include a dummy for whether the house-
hold planted cash crops, such as cotton or tobacco. We expect all production inputs to
have a positive impact on crop production outcomes.

3.3.3.3 Household demographics and wealth Household demographic variables
include the maximum years of education of any adult in the household and the pro-
portion of adults literate in English, which should increase crop production. They may
also increase adoption of SLMs, since education and literacy should increase the abil-
ity to obtain information and adapt practices to local conditions. We include dummies
from whether the head and/or spouse are disabled, which should decrease both crop
production and adoption of SLM.

A wealth index was created from a principal component factor analysis of consumer
durables and household dwelling characteristics, and an index of agricultural imple-
ments owned by the household was also created from a principal component factor
analysis. We include the number of mobile phones owned by household members and
a dummy for whether any member of the household has an account at a financial insti-
tution. All of these variables are hypothesized to increase crop production and adoption
of SLMs by relieving resource constraints.

3.3.3.4 Household networks We include the number of adult children living away from
home, and three density networks. The questionnaire collected data on the number of
connections to input and output markets, distinguishing between ‘within community’,
‘nearby towns’, and ‘towns and cities further away’, and so we include the number of
connections at these three levels. Greater networks should increase crop production out-
comes through better capacity to source market information and inputs, and increase
SLM adoption through greater information flows to enhance learning about the benefits
of SLMs and adapting to local conditions.

3.3.3.5 Location characteristics and fixed effects We control for the number of house-
holds in the community; the difference between largest and smallest landholdings in the
community to proxywealth heterogeneity; the proportion of community leaderswho are
women; the proportion of community leaders with no education; a dummy for whether
there is an assistant agricultural extension agent located in the community; a dummy for
farm-related groups; an index of community infrastructure and services; and an index
that captures the density of road networks and proximity to urban centers (access index).
We expect that less heterogeneous communities, with more educated leaders, an exten-
sion agent, farmer groups, greater infrastructure and services and greater accessibility
will have greater crop production and will be more likely to adopt SLMs. We hypothe-
size that the proportion of women leaders will also be positive for both crop production
and SLM adoption as more female leaders may increase information flows to women
farmers.

We include a number of supra-community characteristics including the number of
radio stations operating in the district to capture locally relevant information flows that

4Inorganic fertilizer quantity is combined as a simple sum of all types of inorganic fertilizer applied on
plot.
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can increase both crop production and SLM adoption; the number of government-
owned Agricultural Development and Marketing Corporation stations in the district,
which are expected to increase crop production with ambiguous impacts on SLM adop-
tion; and the percentage of land within the extension planning area that is in estates,
which is expected to increase crop production through greater density of marketing
opportunities but with ambiguous impacts on SLM adoption.

Finally, to control for any remaining location FEs, we include dummies for the exten-
sion planning area. These areas are administrative units lower than districts, and are
included to control unobserved local agricultural system characteristics.

3.4 Descriptive statistics
Table 2 provides descriptive statistics for dependent and select explanatory variables
used in the analysis.5 Vis-à-vis 2013, maize yields were 51 and 35 per cent lower in 2015
and 2016, respectively, while value per hectare was 58 and 24 per cent lower in 2015
and 2016, respectively. Looking at the climate and weather variables, we see that average
rainfall deviations were substantially higher in 2015 and 2016 than in 2013, at 29 and 33
per cent versus 21 per cent respectively. High temperature shocks were fairly limited in
2013 and 2015, though 6 per cent of the observations received a temperature shock in
2016. Looking at the historical climate variables, we see that the 2015 values, which are
based on the smaller FIAS sample concentrated in the Southern Region, show that mean
rainfall is lower while rainfall variability and exposure to shocks are higher than the full
sample. In fact, both the flood and drought shocks were concentrated in this region.

Looking at our SLM practices, we note that adoption of minimum soil disturbance is
low and roughly similar across years, while legume intercropping is relatively high, at 35
per cent in 2013 on average, but dropping to 28 per cent in 2016, a statistically significant
decrease. Bunds also decrease similarly over the period 2013 and 2016. Finally, green
belts increased from 2013 to 2016, though still at moderate levels of adoption of 9.5 per
cent in 2016. Given these adoption rates, weather shock interaction terms are highest for
legume intercropping and for bunds, particularly when interacted with the flood shock.

4. Results and discussion
4.1 Maize yield and crop value per hectare results
Table 3 presents the CRE results for maize yields and gross crop value per hectare at
the plot level, controlling for cluster robust standard errors, for both the Long Panel
and FIAS samples. Table 3 includes results only for our key variables of interest, but full
results are available in the online appendix. Hereafter, we refer to the 2013–2016 Long
Panel sample as the Long Panel and the 2013–2015–2016 FIAS Long Panel sample as
FIAS. We first note the strong negative impact of the 2015 and 2016 time dummies on
crop production, reflecting an overall reduction in yields between 2013 and 2015, 2016,
with only the 2016 dummy insignificant in the FIAS value per hectare equation. The
drought shock led to further significant reductions in maize yields and value of crop
production per hectare across all samples. All else equal, the drought shock led to 32–34
per cent lower maize yields and between 42–44 per cent lower value per hectare. While
negative for both, the drought shock had significantly greater negative impacts on value

5A full table of descriptive statistics is provided in the online appendix.
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Table 2. Descriptive statistics by year, select variables

2013 2015 2016

N Mean SE N Mean SE N Mean SE

Ag Production Vars, Plot Level

Maize Yield 1,990 1,805 48.38 424 776 42.439 2,651 1,135 24.336

Value Per Ha. (100 K MWK) 2,837 331 7.93 527 125 6.15 3,601 247 4.61

Weather and Climate

Abs. Rainfall Deviations 2,837 0.208 0.003 527 0.326 0.010 3,601 0.285 0.002

2016 Drought Shock 2,837 0 0 527 0 0 3,601 0.148 0.003

2015 Flood Shock 2,837 0 0 527 0.285 0.020 3,601 0 0

High Temp. Shocks 2,837 0.011 0.004 527 0.000 0.000 3,600 0.057 0.006

Climate

Mean Rainfall 2,837 2.850 0.004 527 2.781 0.011 3,601 2.839 0.003

Coef. of Variation, Rainfall 2,837 0.331 0.001 527 0.360 0.002 3,601 0.335 0.001

Probability, Drought 2,837 0.180 0.001 527 0.188 0.002 3,601 0.182 0.001

Probability, Flood 2,837 0.134 0.005 527 0.172 0.012 3,601 0.132 0.005

Mean High Temp. Shock 2,837 0.017 0.003 527 0.034 0.005 3,600 0.019 0.003

SLM Practices

MSD Tillage 2,837 0.029 0.003 527 0.057 0.010 3,601 0.040 0.003

Legume Intercrop 2,837 0.320 0.009 527 0.376 0.021 3,601 0.278 0.007

Bunds 2,837 0.338 0.009 527 0.235 0.018 3,601 0.219 0.007

Green Belts 2,837 0.076 0.005 527 0.059 0.010 3,601 0.095 0.005

SLM× Shocksa

Drought×MSD Tillage 1,259 0.019 0.003

Drought× Legume Intercrop 1,259 1,259 0.181

Drought×Bunds 1,259 0.120 0.006

Drought×Green Belts 1,259 0.020 0.003

Flood×MSD Tillage 150 0.047 0.017

Flood× Legume Intercrop 150 0.393 0.040

Flood×Bunds 150 0.200 0.033

Flood×Green Belts 150 0.047 0.017

Notes: The table is constructed across all plot observations in the Long Panel and FIAS samples.
aThe interaction term descriptive statistics are for those households that received a shock, as reflected in N.

per hectare than maize yields across the samples. The 2015 flood shock also had signif-
icant negative effects on both maize yields and value per hectare in the FIAS sample,
with maize yields 54 per cent lower and value per hectare 58 per cent lower. As with the
drought shock, the flood shock disproportionately reduced value per hectare vis-à-vis
maize yields, though to a lesser extent. High temperature shocks also reduced value per
hectare in the FIAS sample, but the impact was not significant in the Long Panel sample.
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Table 3. Crop production regressions, CREmodel

Maize yield (log) Value per hectare (log)

Long Panel FIAS Long Panel FIAS

Dummy, 2015 −0.909*** −1.086***
(0.205) (0.395)

Dummy, 2016 −0.727*** −0.804*** −0.661*** −0.689**
(0.092) (0.188) (0.114) (0.293)

Climate

Rainfall Deviations 0.806* 0.408 1.173** 0.331
(0.444) (0.258) (0.576) (0.472)

2016 Drought Shock −1.13** −1.078** −1.891** −1.976**
(0.463) (0.447) (0.835) (0.912)

2015 Flood Shock −0.82*** −0.92***
(0.257) (0.321)

High Temperature Shocks 0.052 −1.287 −0.098 −1.302***
(0.198) (0.787) (0.182) (0.470)

SLM practices

MSD Tillage 0.245 −0.247 0.199 −0.285
(0.215) (0.195) (0.293) (0.349)

Legume Intercrop −0.026 −0.128 0.383*** 0.352**
(0.066) (0.096) (0.087) (0.152)

Bunds 0.016 −0.045 0.018 0.018
(0.053) (0.062) (0.075) (0.087)

Green Belts −0.141* −0.148 −0.137 −0.149
(0.084) (0.157) (0.098) (0.241)

SLM× SHOCKS

Drought×MSD Tillage −1.759 −0.602 −2.464 −0.764
(2.197) (1.650) (2.503) (2.316)

Drought× Legume Intercrop 0.51 0.796** 1.189** 1.467**
(0.318) (0.400) (0.498) (0.739)

Drought×Bunds −0.669** −0.604* −0.791* −0.656
(0.334) (0.311) (0.458) (0.403)

Drought×Green Belts 0.362 1.547 −0.062 0.053
(0.788) (1.046) (0.709) (0.964)

Flood×MSD Tillage 0.129 −0.441
(0.902) (0.832)

Flood× Legume Intercrop 0.863*** 0.994***
(0.262) (0.363)

Flood×Bunds 0.049 0.531
(0.683) (0.968)

Flood×Green Belts 1.18* 0.783
(0.602) (0.633)

Constant 5.7** 9.544*** 7.497** 13.491***
(2.592) (3.428) (3.306) (3.861)

(continued)
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Table 3. Continued.

Maize yield (log) Value per hectare (log)

Long Panel FIAS Long Panel FIAS

Number of observations 4,640 2,735 6,437 3,346

R2 (within) 0.193 0.254 0.12 0.165

R2 (between) 0.41 0.398 0.406 0.44

R2 (overall) 0.312 0.33 0.238 0.273

Notes: Cluster robust standard errors in parentheses.
Asterisks denote significance: *p< 0.10, **p< 0.05, ***p< 0.01.

With respect to the SLMs, we note that MSD tillage has no significant impacts on
crop production. There remains much debate in the empirical literature on the impacts
ofMSD tillage alone on crop yields, with some studies suggesting that it must be adopted
for at least 3 – or even 5 – years before direct benefits accrue, and/or that MSD must be
used in conjunction with the two other principals of conservation agriculture. It was not
possible to explore this further using our dataset, since an extremely low proportion of
people stated having practicedMSD for the previous three years (<1.5 per cent). Legume
intercropping is the only SLM practice with a direct positive correlation, associated with
42–45 per cent higher value per hectare.

Turning next to the impacts ofweather shocks and SLM interaction terms, in the FIAS
sample, both the drought- and flood-legume intercrop interaction terms have positive
impacts on maize yields and value per hectare. In the Long Panel, the drought-legume
intercrop interactions term has a positive impact on value per hectare. Green belts have
a significant positive impact under flood conditions only for maize yields. And finally,
bunds have significant negative impacts under droughts for bothmaize and value of crop
production, while conferring no benefits under floods, which helps explain the decline
in such structures over time.

The benefits to legume intercropping can be quite substantial, as captured in point
estimates of the linear combinations of relevant variables. For instance, under drought
conditions, legume intercropping reducesmaize yield losses to just 14 per cent, and value
per hectare losses to 12–18 per cent. Under flood conditions, legume intercropping leads
to 4 per cent higher maize yields and 7 per cent higher value per hectare. The negative
impacts of stone bunds are also substantial; households with bunds had around 20 per
cent lower maize yields under droughts.

Overall, the negative impacts of drought and flood shocks, and high temperature
shocks in the FIAS sample, had severe negative impacts on crop yields and the value
of production per hectare. SLMs have limited direct correlations with crop production,
with the exception of legume intercropping in value per hectare, and only legume inter-
cropping helped protect crop production against losses under both the drought and flood
shocks, while green belts protected yields under floods.

Because many SLMs are expected to provide benefits against particularly poor pro-
duction outcomes, we also investigated the impacts of SLMs and theweather shock inter-
action terms in reducing the probability of receiving very low yields, which we defined
as yields at the 25th percentile or below of current period yields. In general, variables
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that were significant predictors of production outcomes were also significant in reduc-
ing the probability of low production outcomes including the SLM-shock interaction
terms, so we do not report results here.

There are a number of important caveats in interpreting these results. First, as noted
above, the percentage of households who adopted MSD tillage and green belts and who
also faced drought and flood shocks was relatively low. Under these circumstances, we
likely have relatively low power to tease out the impacts of adoption under extreme
weather events. Second, it is possible that we are not controlling for omitted variables
that affect both SLM adoption and crop production outcomes. We have controlled for a
wide range of household characteristics, the presence of externally-funded agricultural
projects, and agro-climatic factors such as elevation, soil types and the coefficient of
variation of rainfall, but theremay be other factors affecting these decisions.We are con-
fident that the CRE results control for time-invariant characteristics since theWald tests
of joint significance of household averages fail to reject the null hypothesis that they are
jointly zero, and also because of the similarity of results to the FE specification as shown
in online appendix 2. Finally, we have included other standard production inputs, such as
number of weedings, inorganic fertilizer and pesticide use, all of which may be affected
by omitted time-varying factors that also affect production outcomes. Our results are
robust to the inclusion or exclusion of these variables, and so we include these inputs in
our preferred specification.

4.2 SLM adoption
Table 4 presents the results for key covariates for the SLMCRE, linear probability model
results.6 With respect to climate characteristics, we note that MSD is more likely to be
practiced under low rainfall conditions and where high temperature shocks occur more
often. On the other hand, legume intercropping is more likely to be practiced where
average rainfall is high (for the Long Panel) but is less likely in locations subject to more
frequent high temperature shocks. Climate variables have limited impact on adoption
of bunds and green belts. Temperature shocks do have a positive impact on adoption of
green belts for the FIAS sample. Also, probability of a drought reduces use of bunds in
the Long Panel, consistent with the negative impact of bunds on crop production under
drought conditions.

In terms of plot characteristics and agricultural implements, we note that both plot
size and agricultural implements generally have positive impacts on adoption, implying
that adoption is undertaken by relatively wealthy farm households. These results sug-
gest that such farmers face lower transaction costs and opportunity costs of land, and/or
that the marginal benefits to productivity are higher for these farmers, even though they
are likely to be less risk-averse than those with fewer assets and smaller landholdings.
Results on sandy and clay soils for the MSD regressions are somewhat counterintuitive
at first glance.MSD should perform better onwell-drained soils not susceptible to water-
logging.However, clay soils are found inmany areas that are subject to both high drought
and flood shocks, especially in the Southern Region. Additionally, external funding for
promoting MSD adoption has targeted the Southern Region precisely because of the

6Full results for both the CRE and FE specifications are provided in online appendix 3. Note that coeffi-
cients on climate conditions are not directly comparable across the specifications, since in the FE, climate
conditions only vary for those who have moved locations.
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Table 4. SLM adoption, CREmodel

MSD Legume intercrop Bunds Green belts

Long Panel FIAS Long Panel FIAS Long Panel FIAS Long Panel FIAS

Climate

Mean Rainfall, FS −0.295*** −0.306** 0.228* 0.013 0.429*** 0.135 −0.064 −0.023
(0.098) (0.124) (0.135) (0.261) (0.143) (0.218) (0.125) (0.108)

Prob. Drought Shock 0.046 −0.121 0.34 0.438 −0.578* −0.139 0.403 −0.063
(0.098) (0.214) (0.341) (0.624) (0.333) (0.523) (0.294) (0.256)

Prob. Flood Shock −0.04 −0.046 −0.02 −0.033 0.048 −0.019 −0.018 0.051
(0.030) (0.048) (0.048) (0.066) (0.066) (0.074) (0.063) (0.036)

Mean High Temp. Shock 0.407** 0.48** −0.264** −0.832** 0.108 −0.151 0.221 0.337**
(0.158) (0.237) (0.132) (0.401) (0.213) (0.345) (0.205) (0.157)

Plot Charact’s. & Ag. Imps.

Plot Size (logs) −0.002 −0.001 0.064*** 0.085*** 0.035*** 0.038*** 0.015*** 0.008
(0.003) (0.007) (0.007) (0.012) (0.007) (0.009) (0.004) (0.006)

Ag. Implements Index 0.071*** 0.125*** 0.011 0.112 0.184*** 0.247*** 0.039 −0.001
(0.022) (0.042) (0.050) (0.075) (0.065) (0.074) (0.040) (0.045)

Slope −0.024*** −0.026** 0.032 0.049 0.052** 0.013 0.004 −0.01
(0.008) (0.011) (0.025) (0.032) (0.022) (0.021) (0.014) (0.010)

Dummy, Sandy Soil −0.016*** −0.014 −0.015 0 −0.016 −0.003 0.016 0.008
(0.006) (0.010) (0.015) (0.027) (0.016) (0.020) (0.012) (0.009)

Dummy, Clay Soil 0.015** 0.011 −0.035** −0.058*** −0.013 −0.009 0.005 0.006
(0.007) (0.011) (0.014) (0.018) (0.020) (0.027) (0.012) (0.011)

Constant 1.177*** 1.304*** −0.12 0.587 −0.526 −0.006 −0.007 −0.026
(0.248) (0.382) (0.345) (0.691) (0.399) (0.604) (0.365) (0.306)

Number of Observations 6,437 3,346 6,437 3,346 6,437 3,346 6,437 3,346

R2 (within) 0.019 0.04 0.055 0.075 0.074 0.117 0.053 0.046

R2 (between) 0.534 0.604 0.496 0.48 0.237 0.296 0.177 0.224

R2 (overall) 0.278 0.32 0.304 0.257 0.146 0.18 0.142 0.11

Notes: Cluster robust standard errors in parentheses.
Asterisks denote significance: *p< 0.10, **p< 0.05, ***p< 0.01.

https://doi.org/10.1017/S1355770X20000455 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1355770X20000455


446 Nancy McCarthy et al.

region’s vulnerability to weather shocks. These counterintuitive results nonetheless help
explain the limited impacts on maize yields and value of crop production.

To summarize, the probability of flood and drought shocks generally do not have
significant impacts on SLM adoption, though expected temperature shocks do increase
MSD and green belts while having a negative impact on legume intercropping. The
lack of significance of exposure to flood and drought shocks is particularly unfortunate
for legume intercropping, which has a positive impact on crop production under both
droughts and floods. Even more unfortunate is the fact that legume intercropping has
declined over time.

5. Concluding comments
Given that extreme weather events are likely to increase – both droughts and floods –
this study provides three key pieces of evidence. The first is that crop outcomes were
severely affected by the droughts in 2016 and floods in 2015. Second, evidence suggests
that certain SLM techniques, particularly legume intercropping and – to a lesser extent –
green belts, can offset the impacts of extreme weather events, making farmers more
resilient. Yet, adoption of legume intercropping has decreased over time in our sam-
ple, and though adoption of green belts is increasing, it remains limited at just 9 per cent.
Third, farmerswho adopt legume intercropping and green belts have larger landholdings
and greater wealth levels, suggesting that costs of adopting – opportunity costs of land
taken out of production, cash costs to purchase legume seeds, vetiver grass or suitable
trees for tree belts, costs of protecting the establishment of green belts and maintaining
them – are currently prohibitive for poorer and more vulnerable farm households.

From the above, we can draw some tentative policy implications. First, our evidence
contributes to that of other studies that find positive benefits from legume intercrop-
ping on crop production outcomes both under normal conditions as well as under both
droughts and floods. Farmers prefer options that increase yields under all rainfall condi-
tions, and legume intercropping appears to be one of the few options that does so. This is
particularly important for farmers in areas subject to high probabilities of both droughts
and floods, such as farmers located in the Southern Region inMalawi. Secondly, our evi-
dence also contributes to a fairly large body of evidence that suggests that MSD offers
limited benefits to farmers. While more can be done to understand why, the combined
results suggest that policymakers and donor-funded project managers should carefully
re-think the strong emphasis on conservation agriculture in Malawi, and instead con-
sider shiftingmore towards legumes, and to a lesser extent, green belts. Similarly, farmers
are still very exposed to negative impacts of droughts and floods, with severe losses
experienced under these climate extremes. It may be useful to consider other options
that increase both ‘average’ productivity and resilience to extremes, such as irrigation
schemes and heat resistant seeds.

A potential concern about endogeneity of the direct impact of SLM adoption and
crop outcomes remains. Though we have run CRE and FE models and included a
wide range of household and community control variables, certain time-varying omit-
ted characteristics may explain both adoption of SLM and crop outcomes. Yet, there
were no defensible instruments; additionally, we would have needed at least four such
instruments.

Finally, we also learned quite a bit about the difficulty of specifying flood and drought
shocks, and even determining the best rainfall data sources to use to create long-
term climate characteristics. While some variables created across different data sources
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performed similarly, others did not. We chose the ones that worked best to explain our
outcomes. Much remains to be done to systematically evaluate the performance of both
data sources and specific variables to measure extreme weather events.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X20000455.
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