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Local Solvability of Laplacian
Difference Operators Arising from
the Discrete Heisenberg Group

Keri A. Kornelson

Abstract. Differential operators Dx , Dy , and Dz are formed using the action of the 3-dimensional

discrete Heisenberg group G on a set S, and the operators will act on functions on S. The Laplacian

operator L = D2

x + D2

y + D2

z is a difference operator with variable differences which can be associated

to a unitary representation of G on the Hilbert space L2(S). Using techniques from harmonic analysis

and representation theory, we show that the Laplacian operator is locally solvable.

1 Introduction

The Heisenberg group has been instrumental in the development of a wide range

of mathematical topics (see [6], [4]). Techniques involving its representation theory

often yield interesting results or straightforward proofs of existing theorems, as seen

in [1] and [13]. Over the past 25 years, the Heisenberg group has been a standard

setting for the analysis of increasingly general operators on locally compact nilpotent

Lie groups. A few examples of this work are [3], [12], and [8]. This work uses repre-

sentation theory to examine loosely analogous differential operators arising from the

non-type-I discrete Heisenberg group.

Let G be the 3-dimensional discrete Heisenberg group G, considered as the 3 × 3

upper triangular integral matrices with diagonal entries equal to one:




1 x z

0 1 y

0 0 1



 .

For compressed notation, consider the elements as triples (x, y, z). The group

operation is given by matrix multiplication:

(x ′, y ′, z ′)(x, y, z) = (x ′ + x, y ′ + y, z ′ + z + x ′y).

The inverse element is then seen to be (x, y, z)−1
= (−x,−y,−z + xy). Let H be the

subgroup {(x, 0, 0) : x ∈ Z} and let S be the normal subgroup {(0, y, z) : y, z ∈ Z},

so S ∼
= Z

2 and G = S ⋉ H. If we take S = Z
2, and let s = (y, z) and g = (x ′, y ′, z ′),

then there is a left action of G on S given by multiplication and projection:

(1) g · s = (y + y ′, z + z ′ + x ′y)
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Local Solvability of Difference Operators 599

There is a natural notion of difference operators in terms of the generators x =

(1, 0, 0), y = (0, 1, 0), and z = (0, 0, 1) acting on a function space of S. Let f ∈ L2(S)

and define operators Dx, Dy , and Dz using the action of G on S:

Dx f (s) = f [(1, 0, 0) · s] − f [(−1, 0, 0) · s]

Dy f (s) = f [(0, 1, 0) · s] − f [(0,−1, 0) · s]

Dz f (s) = f [(0, 0, 1) · s] − f [(0, 0,−1) · s].

We then define the Laplacian operator L = Dx
2 + Dy

2 + Dz
2 for f ∈ L2(S) and

s = (y, z):

(2) L f (y, z) = f (y, z − 2y) + f (y, z + 2y) + f (y − 2, z) + f (y + 2, z)

+ f (y, z − 2) + f (y, z + 2) − 6 f (y, z).

L is a difference operator with variable differences. Given f ∈ L2(S), consider the

difference equation Lu = f . One goal of this paper is to describe conditions under

which this equation has a solution in L2(S). These conditions lead to the primary

result of this paper (Theorem 11 in the text).

Theorem The Laplacian operator L given in equation (2) is locally solvable.

Local solvability on a discrete space requires definition. In [11], the property de-

scribed was local solvability on A for A ⊂ S. We have modified the usage slightly to

avoid this restriction to subsets. An operator L is considered locally solvable if, for

every compact subset A of S and every function f in L2(S), there exists a function u

in L2(S) for which Lu = f on A.

We prove this theorem by associating our particular operator L to a unitary repre-

sentation of G on the Hilbert space H = L2(S, µ), where µ is counting measure, then

finding an equivalent representation of G which can be written as a direct integral of

representations. The Laplacian can be similarly decomposed, yielding a collection of

factor equations which are shown in Section 2 to have solutions for almost every β.

Section 3 presents a careful verification that the solutions of the factor equations can

be recombined in a measurable way. In Section 4, we find sufficient conditions for

functions f ∈ L2(S) such that the equation Lu = f has a solution u ∈ L2(S) and

from these arrive at the local solvability of L. After showing that L is in fact locally

solvable, we demonstrate in the last section how this result leads to the determination

of local solvability in sublaplacian operators.

Many thanks are due to Lawrence Baggett for his guidance as advisor and men-

tor on this project. We also thank Arlan Ramsay for helpful discussions regarding

Section 3.

2 Factor Equations Lβûβ = f̂β

Using the same action of G on S given in equation (1), define operators Ug ∈ U (H)

by

(3) Ug f (s) = f (g−1 · s) = f
(

y − y ′, z − z ′ − x ′(y − y ′)
)

.
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Since µ is invariant for the action, the map U : G → U (H) given by g 7→ Ug is a

unitary representation of G. For a proof of this, see [5]. We can now express the

Laplacian in terms of the representation elements.

L = U(2,0,0) + U(−2,0,0) + U(0,2,0) + U(0,−2,0) + U(0,0,2) + U(0,0,−2) − 6I

The Fourier transform and its inverse are unitary maps between l2(Z
2) and L2(T

2),

where T = {α ∈ C : |α| = 1}. The versions used in this paper will be:

F
−1 f (α, β) =

∑

y,z∈Z

f (y, z)αyβz

Fh(y, z) =

∫

T2

h(α, β)α−yβ−z dα dβ.

Conjugation of U by F−1 yields an equivalent representation of G on L2(T
2, ν), where

ν is Lebesgue measure on T
2. Let f ∈ L2(T

2):

(4) F
−1UgF f (α, β) =

∑

y,z∈Z

UgF f (y, z)αyβz

=

∑

y,z∈Z

∫

T2

f (α ′, β ′)α−(y−y ′)β−(z−z ′−x ′(y−y ′)) dα ′ dβ ′αyβz

= f (αβx ′

, β)αy ′

βz ′

.

The new representation elements act as multiplication operators in the β variable,

so F−1UF can be expressed as a direct integral of representations of G, each on the

space L2(T). Specifically, for each β ∈ T and g = (x ′, y ′, z ′) in G, define a unitary

operator U β
g on L2(T) by

U β
g f (α) = f (αβx ′

)αy ′

βz ′

.

The map g 7→ U β
g is a unitary representation U β of G on L2(T), and F−1UF =

∫ ⊕

T
U β dβ.

The Laplacian can be similarly conjugated by F−1 and decomposed into operators

on L2(T). For each β, we form a factor operator Lβ such that F−1LF =

∫ ⊕

T
Lβ dβ:

(5) Lβ f (α) = f (αβ2)+ f (αβ−2)+α2 f (α)+α−2 f (α)+β2 f (α)+β−2 f (α)−6 f (α).

The difference equation Lu = f can now be analyzed through the collection of

factor equations:

(6) Lβvβ = f̂β

where f̂ = F−1 f ∈ L2(T
2) and we define f̂β(α) = f̂ (α, β), which are elements of

L2(T) for almost every β. The solutions vβ will be denoted more suggestively as ûβ ,

as they will comprise the solution u to Lu = f .

The following lemma is a well-known result which we use several times to prove

invertibility of operators.
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Lemma 1 If T is an operator on a Hilbert space H, and if there exists a δ > 0 for

which |〈Tx, x〉| > δ for all x ∈ H with ‖x‖ = 1, then T has a bounded inverse and

‖T−1‖ ≤ 1
δ
.

Proof It is clear that, given such a δ, we also have |〈T∗x, x〉| > δ for all unit vectors

x ∈ H. Therefore, both T and T∗ have trivial null space. Since the orthogonal

complement of the null space of T∗ is the closure of the range of T, we know that the

range of T is dense in H. Then, since δ < |〈Tx, x〉| ≤ ‖Tx‖, we find that the range

of T is closed, and is therefore all of H.

T has now been shown to have a well-defined bounded inverse, and the bound on

the norm of T−1 is straightforward to verify:

‖T−1‖ = sup
x

‖T−1x‖

‖x‖
= sup

y

‖y‖

‖Ty‖
≤ sup

y

‖y‖

δ‖y‖
=

1

δ
.

Proposition 2 For almost every β ∈ T, Lβ has a bounded inverse.

Proof Let ‖ f ‖2 = 1. Note that Lβ is self-adjoint, so 〈Lβ f , f 〉 ∈ R.

〈Lβ f , f 〉 =

∫

T

[ f (αβ2) + f (αβ−2) + α2 f (α) + α−2 f (α)

+ β2 f (α) + β−2 f (α) − 6 f (α)] f (α) dα

= 2 Re β2 − 6 +

∫

T

[ f (αβ2) + f (αβ−2) + α2 f (α) + α−2 f (α)] f̄ (α) dα

≤ 2 Re β2 − 2.

The Cauchy–Schwartz inequality gives the last integral ≤ 4. For β 6= ±1, there is a

δβ > 0 such that Re β2 < 1 −
δβ

2
, which will give 〈Lβ f , f 〉 < −δβ . So, by Lemma 1,

for β 6= ±1, the operator Lβ has a bounded inverse and ‖(Lβ)−1‖ ≤ 1
δβ

.

Proposition 2 gives, for almost every β ∈ T, a solution to equation (6), ûβ =

(Lβ)−1 f̂β . The next step is to combine these solutions to form the function û on T
2:

û(α, β) = ûβ(α).

Before proceeding, we must ensure that û can always be formed in a measurable way.

The following section addresses this detail, and the question of a solution to Lu = f

is continued in Section 4.

3 Measurability of û

It is not obvious that the function û, as defined in the previous section, is measurable

in both variables. This is a detail requiring careful attention. The proof will use

four technical results, which we state here as lemmas. These are not new results, but

involve some subtleties from functional analysis. In order to preserve the flow of the

paper, the proofs of the lemmas have been included in an appendix.
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Lemma 3 The Borel sets of a separable Hilbert space H with the norm topology coin-

cide with the weak Borel sets.

The map from an operator T to its adjoint T∗ is not, in general, continuous in the

strong operator topology. We establish here, however, that the adjoint map is Borel

as a map on a norm-bounded set SM ⊂ B(H), where SM is given the strong operator

topology.

Lemma 4 Given H, a separable Hilbert space, and SM , the set of operators in B(H)

bounded in norm by M, the map T 7→ T∗ is Borel in the strong operator topology on

SM .

The next lemma considers the map from an operator T to its inverse, where T

comes from a norm-bounded set of invertible operators. If the inverses were also

uniformly bounded, the inverse map would be continuous in the strong operator

topology. For our purposes, there is no such bound on the norms of the inverses, but

we can show that the inverse map is Borel as a map from a set of uniformly bounded

invertible operators with the strong operator topology to B(H).

Lemma 5 Given H a separable Hilbert space and SM the set of operators in B(H)

bounded uniformly in norm by M, the map T 7→ T−1 is a Borel map in the strong

operator topology from the invertible operators in SM to B(H).

Note that the composition of the Borel maps from Lemmas 4 and 5 gives an ad-

ditional result that T 7→ (T−1)∗ is also a Borel map in the strong operator topology

from SM to B(H).

Lemma 6 Let A, B be σ-finite measure spaces. For each β ∈ B, let fβ be an element

of L2(A).

(1) If fβ(α) as a map on A × B is in L2(A × B), then the map β 7→ fβ is a Borel map

into L2(A).

(2) If the map β 7→ fβ is Borel, then fβ(α) can be selected to be a Borel map on the

product space A × B.

These four results are now combined to prove the measurability of û.

Proposition 7 Define the function û by

û(α, β) = ûβ(α) = (Lβ)−1 fβ(α)

where fβ(α) = f (α, β) for a function f ∈ L2(T
2). Then û is a Borel measurable

function on T
2.

Proof Consider the inner product:

〈 fβ , g〉 =

∫

T

fβ(α)ḡ(α) dα.
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The integrand is Borel on T
2, so the integral is Borel on T by Fubini’s Theorem, and

Lemma 3 gives fβ a Borel map from T to L2(T).

Using the definition of Lβ , we have:

Lβ f (α) = f (αβ2) + f (αβ−2) + α2 f (α) + α−2 f (α) + β2 f (α) + β−2 f (α) − 6 f (α).

This function is Borel (and in fact continuous) in β, so Lβ is a Borel function of β in

the strong operator topology. Next, since almost every Lβ is invertible, we can write

the following inner product for almost every β.

(7) 〈(Lβ)−1 fβ , g〉 =

〈

fβ , ((Lβ)−1)∗g
〉

=

∫

T

fβ(α)((Lβ)−1)∗g(α) dα

By Lemmas 4 and 5, we have ((Lβ)−1)∗ Borel in the strong operator topology,

which gives ((Lβ)−1)∗g ∈ L2(T) a Borel function of β. Lemma 6 then gives

((Lβ)−1)∗g(α) jointly Borel on T
2, and thus the integrand in equation (7) is also

Borel. By Fubini’s theorem, then, the inner product is a Borel function of β and

Lemma 3 gives û(α, β) = (Lβ)−1 fβ(α) a Borel function on T
2.

4 Local Solvability of L

Now that we have established the measurability of the function û, we determine suf-

ficient conditions on a function f ∈ l2(Z
2) under which the equation Lu = f has a

solution.

Theorem 8 Let L be the Laplacian operator and let f ∈ l2(Z
2) have compact support

and satisfy the following conditions for every y ∈ Z:

∑

z

f (y, z) = 0,
∑

z

f (y, z)z = 0,

∑

z

(−1)z f (y, z) = 0,
∑

z

(−1)z f (y, z)z = 0.

Then there exists a function u for which Lu = f .

Proof We have found a measurable function satisfying F−1LFû = f̂ . If the solution

û is an element of L2(T
2), then we can take its Fourier transform to get a function

u ∈ l2(Z
2) which satisfies Lu = f .

‖û‖2
2 =

∫

T2

|û|2 =

∫

T2

|(Lβ)−1 f̂β(α)|2 dα dβ

=

∫

T

‖(Lβ)−1 f̂β‖
2
2 dβ

≤

∫

T

‖(Lβ)−1‖2‖ f̂β‖
2
2 dβ
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therefore,

(8) ‖û‖2
2 ≤

∫

T

‖ f̂β‖
2
2

δ2
β

dβ by Lemma 1.

The existence of a δβ for which 2 − 2 Re β2 < −δβ is clearly seen for β 6= ±1, but

we must now state the bound explicitly. Let β = eiθ for −π
2
≤ θ < 3π

2
, and define:

δβ = min
(

θ2, (π − θ)2
)

=

{

θ2 −π
2
≤ θ < π

2
,

(π − θ)2 π
2
≤ θ < 3π

2
.

We wish to show that the function û is an element of L2(T
2). We split the integral

over β into two parts, depending on the definition of δβ . If δβ = θ2, we expand f̂ in

a Taylor series around θ = 0,

f̂ (α, θ) = f̂ (α, 0) +
∂ f̂

∂θ
(α, 0)θ +

∂2 f̂

∂θ2
(α, 0)

θ2

2
+ · · · + Rn(α, θ)θn.

Since f has compact support, f̂ is a finite sum of terms with convergent Taylor series,

so this series will converge. By the assumptions of this theorem, however, the first

two terms in the expansion are zero:

f̂ (α, 0) =

∑

y,z

f (y, z)αy
=

∑

y

(

∑

z

f (y, z)
)

αy
= 0,

∂ f̂

∂θ
(α, 0)θ =

∑

y,z

f (y, z)αy(iz) =

∑

y

(

∑

z

f (y, z)z
)

iαy
= 0.

This allows us to write the integral over the set A = [− π
2
, π

2
):

∫

A

∥

∥

∥

f̂β

θ2

∥

∥

∥

2

2
dβ =

∫

A

∥

∥

∥

∥

∂2 f̂
∂θ2 (α, 0) θ2

2
+ · · · + Rn(α, θ)θn

θ2

∥

∥

∥

∥

2

2

dβ

≤
1

4

∫

A

∥

∥

∥

∂2 f̂

∂θ2
(α, 0) + · · · + Rn(α, θ)θn−2

∥

∥

∥

2

2
dβ

< ∞.

An identical argument shows that the integral is also finite over the set B =

[ π
2
, 3π

2
), for which δβ = (π − θ)2, by writing the Taylor series about θ = π and

using the other two assumed conditions. Since each integral is finite, we have shown

that û ∈ L2(T
2), hence its Fourier transform u = Fû ∈ l2(Z

2), and u satisfies our

equation Lu = f .

Let f be an element in L2(Z
2) and A any compact subset of Z

2. Let f̃ be the

restriction of f to A. We will show L is locally solvable by proving the existence of
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an extension g of f̃ in L2(Z
2) which satisfies the conditions in Theorem 8. Given a

fixed y ∈ supp( f̃ ), these conditions can be written in complex-valued matrix form.

Define the matrix An with dimensions 4 × (2n + 1) to have entries

(9) An[s, t] = (−1) jtk

where t ∈ {−n, . . . , n} and k, j ∈ {0, 1}, so that the index s, which will be given by

s = 2 j + k + 1, is in {1, 2, 3, 4}. For example, when n = 4 we have the 4 × 9 matrix:

A4 =









1 1 1 1 1 1 1 1 1

−4 −3 −2 −1 0 1 2 3 4

1 −1 1 −1 1 −1 1 −1 1

−4 3 −2 1 0 −1 2 −3 4









.

For each fixed y, there is an m such that f̃ (y, z) = 0 for all |z| > m. Define

a column vector v of length 2m + 1 by v[t] = f̃ (y, t) for t = −m, . . . , m. The

conditions of Theorem 8 are now concisely written as

Amv = 0.

Given n ≥ 2, we can construct a square 4 × 4 matrix Sn from the 2 outermost

columns on each end of An (columns −n,−n + 1, n − 1, n).

Lemma 9 Sn is nonsingular for all but finitely many positive integers n ≥ 2.

Proof

Sn =









1 1 1 1

−n −n + 1 n − 1 n

±1 ∓1 ∓1 ±1

±(−n) ∓(−n + 1) ∓(n − 1) ±n









.

The entries in Sn are polynomials in n, and therefore so is the determinant. When

n = 2, the determinant is nonzero, so the polynomial has nonzero values. It can

therefore have only finitely many (positive integral) roots.

Lemma 10 For any complex vector v of length 2m + 1, there exists n ≥ m + 2 such

that there is an extension w of v to length 2n + 1 with Anw = 0.

Proof Let Amv = b, where b will be a column vector of length 4. If b = 0, no

extension of v is necessary and we are done. If not, by Lemma 9, there exists an

n ≥ m + 2 for which the square matrix Sn is nonsingular. Let w1 and w2 be vectors of

length 2 which comprise the solution to the equation

Sn

[

w1

w2

]

= −b.
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If we denote by 0k the zero column vector of length k = n−m− 2, then construct

the column vector w of length 2n + 1:

w =













w1

0k

v

0k

w2













.

Clearly w is an extension of v and we have Anw = 0.

Theorem 11 The Laplacian operator L is locally solvable.

Proof For each fixed y in the support of f̃ , as above we form the vector v of length

2m + 1, where m is a positive integer for which f̃ (y, z) = 0 when |z| < m. Lemma 10

gives an extension w of v with length 2n + 1 for which Anw = 0, so we define an

extension g of f̃ by g(y, z) = w[z] for −n ≤ z ≤ n. We repeat this process on the

finitely many y ∈ supp( f̃ ), which gives an extension g satisfying the conditions of

Theorem 8. Therefore, the operator L is locally solvable.

5 Sublaplacian Operators

It is possible to determine the local solvability of the sublaplacian operators on l2(Z
2)

which arise from the same representation of the discrete Heisenberg group.

D2
z , D2

x + D2
z , and D2

y + D2
z . The local solvability of the operator D2

z becomes clear

with the observation that the definition of our bound δβ in Section 4 for the full

Laplacian involved only the term from the z component. The exact same argument

used previously will therefore prove that the sublaplacian operators D2
z , D2

x + D2
z , and

D2
y + D2

z are locally solvable.

D2
x and D2

y . First, let L = D2
x and f ∈ l2(Z

2),

(10)
L = U(2,0,0) + U(−2,0,0) + 2I,

L f (y, z) = f (y, z − 2y) + f (y, z + 2y) − 2 f (y, z).

The result can be determined directly by counterexample.

Corollary 12 The operator L = D2
x is not locally solvable.

Proof Consider any function f ∈ l2(Z
2) for which f (0, 0) = k 6= 0. Given any

function u on Z
2, equation (10) gives:

Lu(0, 0) = u(0, 0) + u(0, 0) − 2u(0, 0)

= 0

6= k.

https://doi.org/10.4153/CJM-2005-024-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-024-7


Local Solvability of Difference Operators 607

Thus, there is no u for which Lu = f at the point (0, 0).

Next, let L = D2
y . Conjugation by the Fourier transform will provide insight,

although decomposition into factor operators will not prove helpful since we cannot

bound the inner products 〈Lβ f , f 〉 away from zero.

(11)

L = D2
y = U(0,2,0) + U(0,−2,0) − 2I,

L f (y, z) = f (y − 2, z) + f (y + 2, z) − 2 f (y, z),

F
−1LF f (α, β) = α2 f (α, β) + α−2 f (α, β) − 2 f (α, β).

Corollary 13 The operator L = D2
y is locally solvable.

Proof The transformed operator

F
−1LF f (α, β) =

(

2 Re(α2) − 2
)

f (α, β)

is a multiplication operator with a clear inverse for α 6= 1. The transformed equation

F−1LFû = f̂ then has a solution û which can be defined to be jointly measurable.

û(α, β) =

f̂ (α, β)
(

2 Re(α2) − 2
) a.e.

It remains to be shown, however, whether such solutions are square integrable, so

that we have a solution u = Fû to the equation Lu = f .

Given f ∈ l2(Z
2) and a compact subset A ⊂ Z

2, let f̃ be the restriction of f to A.

Then the Fourier transform of f̃ is a polynomial in α and β with a finite number of

terms. Let every power of α be between M and −M, and let N > 2M. Define

ĝ(α, β) = (1 − α2N )2 f̂ (α, β).

This function ĝ maintains all the nonzero coefficients of ˆ̃f , which means that g = Fĝ

is compactly supported and equal to f on A. We claim that the solution û to the

transformed equation F−1LFû = f̂ is an element of L2(T
2).

û(α, β) =

ĝ(α, β)
(

2 Re(α2) − 2
) a.e.

=

(1 − α2N)2 f̂ (α, β)
(

2 Re(α2) − 2
)

=

(1 − α2)2(1 + α2 + α4 + · · · + α2N−2)2 f̂ (α, β)
(

2 Re(α2) − 2
)

=

1

2

(1 − α2)2

(

Re(α2) − 1
) (1 + α2 + α4 + · · · + α2N−2)2 f̂ (α, β)
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The factor (1−α2)2

(Re(α2)−1)
must be shown to be bounded near α2

= 1, and thus for

all α. Let α2
= eiθ.

∣

∣

∣

∣

(1 − α2)2

Re(α2) − 1

∣

∣

∣

∣

=

|1 − eθ|2

1 − cos θ
=

|1 − cos θ − sin θ|2

1 − cos θ

=

(1 − cos θ)2 + sin2 θ

1 − cos θ
=

2 − 2 cos θ

1 − cos θ

= 2 θ 6= 0.

The expression is bounded as θ → 0, so we have û ∈ L2(T
2). The Fourier transform

u = Fû has finite support and is a solution to Lu = g. Therefore, the operator

L = D2
y is locally solvable.

D2
x + D2

y . If L = D2
x + D2

y , we can take the appropriate terms from equation (5) to

find the factor operators Lβ on T:

Lβ f (α) = f (αβ2) + f (αβ−2) − 2 f (α) + [2 Re(α2) − 2] f (α).

Fix β ∈ T and let f be a function in L2(T
2) with ‖ f ‖2 = 1. Recall that, by Lemma 1,

if there is a bound δβ for which 〈Lβ f , f 〉 < −δβ , then Lβ has a bounded inverse.

Although we cannot bound almost every inner product away from zero when con-

sidering D2
x and D2

y individually, there does exist such a bound for almost every β

when our operator is the sum L = D2
x + D2

y . To find the bound, use the expansion of

f in its Fourier series: f (α) =

∑

n∈Z
cnα

n.

〈Lβ f , f 〉 =

∫

T

[ f (αβ2) + f (αβ−2) + (α2 + α−2) f (α) − 4 f (α)] f (α) dα

= −4 +

∫

T

f (αβ2) f (α) + f (αβ−2) f (α) + (α2 + α−2)| f (α)|2 dα

= −4 +

∫

T

∑

n,k∈Z

[cnc̄k(αβ2)nα−k + cnc̄k(αβ−2)nα−k

+ cnc̄kα
n+2α−k + cnc̄kα

n−2α−k] dα

= −4 +
∑

n,k

[

∫

T

cnc̄kα
n−kβ2n dα +

∫

T

cnc̄kα
n−kβ−2n dα

+

∫

T

cnc̄kα
n+2−k dα +

∫

T

cnc̄kα
n−2−k dα

]

= −4 +
∑

n

[(β2n + β−2n)|cn|
2 + cnc̄n+2 + cnc̄n−2],

therefore,

(12) 〈Lβ f , f 〉 = −4 +
∑

n

[2 Re(β2n)|cn|
2 + cnc̄n+2 + cnc̄n−2].
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Lemma 14 Let β = eiθ and f ∈ L2(T
2) with ‖ f ‖2 = 1. There exists a neighborhood

N of θ = 0 such that for all θ ∈ N\{0}, the inner product 〈Lβ f , f 〉 for the corresponding

β is bounded by some δβ away from zero.

Proof If, for each β ∈ N \ {0}, there exists a δβ for which at least one of

∑

n

Re β2n|cn|
2 or

∑

n

cnc̄n+2

is less than 1 −
δβ

2
, then by equation (12) we have 〈Lβ f , f 〉 < −δβ .

Let ǫ = θ2. Define F = {n ∈ Z | 1 − Re β2n < ǫ} and let F̃ be the complement

of F.

∑

n∈Z

Re β2n|cn|
2

=

∑

F

Re β2n|cn|
2 +

∑

F̃

Re β2n|cn|
2 − |cn|

2 + |cn|
2

≤
∑

F

|cn|
2 +

∑

F̃

|cn|
2 +

∑

F̃

(Re β2n − 1)|cn|
2

≤ 1 − ǫ
∑

F̃

|cn|
2.

Define δβ to be ǫ2. For functions such that
∑

F̃ |cn|
2 ≥ ǫ

2
, we will have

∑

n

Re β2n|cn|
2 ≤ 1 −

δβ

2
.

Otherwise, we are considering the functions such that
∑

F̃ |cn|
2 < ǫ

2
. We want to

show that for all of these functions,
∑

n cnc̄n+2 < 1 −
δβ

2
.

∑

n

cnc̄n+2 =

∑

A

cnc̄n+2 +
∑

B

cnc̄n+2 +
∑

C

cnc̄n+2 +
∑

D

cnc̄n+2,

where

A = {n : n, n + 2 ∈ F},

B = {n : n ∈ F, n + 2 ∈ F̃},

C = {n : n ∈ F̃, n + 2 ∈ F},

D = {n : n, n + 2 ∈ F̃}.

The neighborhood N can be defined such that, when θ ∈ N \ {0}, the set A must

be empty. Define the set G = {φ : 1 − Re φ < θ2}, so that n ∈ A implies that both

β2n and β2n+4 are in G. For angles sufficiently near (but not equal) zero, however,

θ2 < 1 − cos 2θ, so the set G ⊂ (e−2iθ, e2θ). Since β2n+4 is a 4θ rotation from β2n,

they cannot both be in G.
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Next, the Cauchy–Schwartz Inequality gives:

∑

n

cnc̄n+2 ≤
(

∑

B

|cn|
2|c̄n+2|

2
)

1

2

+
(

∑

C

|cn|
2|c̄n+2|

2
)

1

2

+
(

∑

D

|cn|
2|c̄n+2|

2
)

1

2

=

(

∑

F

|cn|
2
∑

F̃

|cn+2|
2
)

1

2

+
(

∑

F̃

|cn|
2
∑

F

|cn+2|
2
)

1

2

+
(

∑

F̃

|cn|
2
∑

F̃

|cn+2|
2
)

1

2

≤

√

ǫ

2
+

√

ǫ

2
+

ǫ

2
,

therefore,

∑

n

cnc̄n+2 ≤ 1 −
ǫ2

2

= 1 −
δβ

2
.

This last inequality holds for ǫ sufficiently small. We define the neighborhood N to

be − 1
2
≤ θ ≤ 1

2
, so ǫ ∈ (0, 1

4
) and δβ ∈ (0, 1

16
). For θ ∈ N \ {0} and β = eiθ, we

have 〈Lβ f , f 〉 < −δβ .

Lemma 15 For almost every β, Lβ has a bounded inverse.

Proof Lemmas 1 and 14 combine to give the result for β in a neighborhood of 1.

An identical argument can be made for β near i, −1, and −i, using ǫ = (θ − π
2

)2,

(θ−π)2, (θ− 3π
2

)2 respectively, and for all other β ∈ T, we just restrict ǫ to a constant

(we use ǫ =
1
4
). Letting δβ = ǫ2 gives 〈Lβ f , f 〉 < −δβ for all β 6= ±1,±i.

Proposition 2 gives, for almost every β ∈ T, a solution to equation (6), ûβ =

(Lβ)−1 f̂β . Combine these solutions as we did in the full Laplacian case to form the

measurable function û on T
2 given by û(α, β) = ûβ(α).

Theorem 16 Let L = D2
x + D2

y and let f ∈ l2(Z
2) have compact support. Let f satisfy

the following 16 conditions for each y in the support of f :

∑

z

[ f (y, z)z j (ik)z] = 0 j = 0, 1, 2, 3, k = 0, 1, 2, 3.

Then there exists a function u for which Lu = f .
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Proof We have satisfied F−1LFû = f̂ . If the solution û is an element of L2(T
2), then

we can take its Fourier transform to get a function u ∈ l2(Z
2). As in equation (8), we

have:

(13) ‖û‖2
2 ≤

∫

T

‖ f̂β‖
2
2

δ2
β

dβ.

From the definition of ǫ in Lemmas 14 and 15, we can express

δβ = ǫ2
= min

{ 1

16
,
∣

∣

∣
θ −

kπ

2

∣

∣

∣

4

; k = 0, 1, 2, 3
}

,

so the integral in equation (13) must be shown finite over the intervals on T near
kπ
2
, k = 0, 1, 2, 3. For each k, expand f̂ in a Taylor series about θ =

kπ
2

:

f̂ (α, θ) = f̂
(

α,
kπ

2

)

+
∂ f̂

∂θ

(

α,
kπ

2

)(

θ −
kπ

2

)

+
∂2 f̂

∂θ2

(

α,
kπ

2

) (θ − kπ
2

)2

2
+ · · ·

· · · + Rn(α, θ)
(

θ −
kπ

2

) n

.

Since f has compact support, f̂ is a finite sum of terms with convergent Taylor se-

ries and this series will converge. Note that the partial derivatives of these expansions

have the form:

∂ j f̂

∂θ j

(

α,
kπ

2

)

=

∑

y,z

f (y, z)αy(ik)z(iz) j
=

∑

y

(

∑

z

f (y, z)(ik)zz j
)

i jαy.

The hypotheses on f force the first four terms of each Taylor expansion to be zero.

The integral over region Bk = {β : δβ = |θ − kπ
2
|4} becomes

∫

Bk

∥

∥

∥

∥

f̂β

(θ − kπ
2

)4

∥

∥

∥

∥

2

2

dβ =

∫

Bk

∥

∥

∥

∥

∂4 f̂
∂θ4 (α, kπ

2
)

(θ− kπ
2

)4

4!
+ · · · + Rn(α, θ)(θ − kπ

2
)n

(θ − kπ
2

)4

∥

∥

∥

∥

2

2

dβ

=

∫

Bk

∥

∥

∥

1

4!

∂4 f̂

∂θ4

(

α,
kπ

2

)

+ · · · + Rn(α, θ)
(

θ −
kπ

2

) n−4∥
∥

∥

2

2
dβ

< ∞.

This gives û ∈ L2(T
2), and therefore its Fourier transform u = Fû is in l2(Z

2), and u

satisfies our equation Lu = f .

Given a function f ∈ L2(Z
2) and a compact set A ⊂ Z

2, let f̃ be the restriction

of f to A. An identical argument to that used for the Laplacian will prove that there

exists an extension g of f̃ which satisfies the conditions in Theorem 16.

Theorem 17 The operator L=D2
x + D2

y is locally solvable.
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Proof Given a function f ∈ L2(Z
2) and a compact subset A ⊂ Z

2, let f̃ be the

restriction of f to A and, as we did for the Laplacian, we write the conditions of

Theorem 16 in matrix form. Define the matrix An of size 16 × (2n + 1):

An[s, t] = (ik)tt j ,

where t ∈ {−n, . . . , n} and j, k ∈ {0, 1, 2, 3}, so that the index s = 4k + j + 1 is

in {1, 2, . . . , 16}. For each fixed y in the support of f̃ , define the column vector v

containing the values v[t] = f̃ (y, t)t = −m, . . . , m, where f̃ (y, z) = 0 for |z| >

m. The conditions are now expressed for each y as the matrix equation Amv = 0.

The square matrix Sn will now be composed of the 8 outermost columns on each

side of An. The argument of Lemma 9 is valid for the larger matrix as well, so Sn is

nonsingular for some n ≥ m + 8. Following the steps in Lemma 10, for each y in the

support of f̃ we extend the vector v to w, which in this case must have length 2n + 1

for n ≥ m + 8. We then define the function g(y, z) = w[z] for z ∈ {−n, . . . , n}.

Since Ang = 0, by Theorem 16, the equation Lu = g has a solution u ∈ L2(Z
2), and

for this u, we have Lu = f on A.

Appendix

This appendix contains the proofs of results from Section 3.

Proof of Lemma 3 The weak topology on a Hilbert space is the smallest topology

such that the functionals in H∗ are all continuous. Since these are continuous in the

norm topology, we have that every weak open set is also open in norm.

We next show that any norm open set in H is weakly Borel. Let Bǫ be the closed ball

{x ∈ H : ‖x‖ ≤ ǫ} and let Iǫ be the closed disc of radius ǫ in C. If {xi} is a countable

dense subset of the set of unit vectors in H, then we have ‖x‖ = sup‖y‖=1 |〈x, y〉| =

supi |〈x, xi〉|. This gives x ∈ Bǫ ⇔ |〈x, xi〉| ≤ ǫ for all i. Let x∗i be the functional given

by x∗i (y) = 〈y, xi〉.

Bǫ =

⋂

i

{x : |〈x, xi〉| ≤ ǫ}

=

⋂

i

(x∗i )−1(Iǫ).

Thus, Bǫ is weakly closed. Let O be the open ball {x ∈ H : ‖x‖ < ǫ}.

O =

⋃

n

Bǫ− 1

n

The open ball O is Borel in the weak topology. H is separable in the norm topol-

ogy, so every open set is a countable union of open balls and we can conclude that

every norm open set is weakly Borel.

Proof of Lemma 4 The strong operator topology on B(H) is the weakest topology

such that all of the seminorms ρx given by ρx(T) = ‖Tx‖ are continuous. When re-

stricted to the bounded set SM , the strong operator topology is second countable. To
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verify this, let {xi} be a countable dense subset of H and let {ρi} be the correspond-

ing seminorms given by ρi(T) = ‖Txi‖. The weakest topology on SM such that each

ρi is continuous is a second countable topology, and we show that it is, in fact, the

strong operator topology.

Given x ∈ H and ǫ > 0, there is an xi such that ‖x− xi‖ < ǫ
3M

. Let {Tα} ⊂ SM be

a net of operators converging to T, which also gives ρi(Tα) converging to ρi(T) since

ρi is continuous:

|ρx(Tα) − ρx(T)| =

∣

∣‖Tαx‖ − ‖Tx‖
∣

∣

≤ ‖Tαx − Tx‖

≤ ‖Tαx − Tαxi‖ + ‖Tαxi − Txi‖ + ‖Txi − Tx‖

≤ ‖Tα‖ ‖x − xi‖ + ρi(Tα − T) + ‖T‖ ‖xi − x‖

≤ ǫ for sufficient choice of α.

Every seminorm ρx is continuous, so this second countable topology on SM is actually

the strong operator topology.

Next, we verify that open sets in the strong operator topology on SM are Borel sets

in the weak operator topology. A countable base of open sets around zero on SM is

given by:

Ui,n =

{

T : ρi(T) <
1

n

}

=

∞
⋃

m=n+1

{

T : ‖Txi‖ <
1

n
−

1

m

}

.

Let {y j} be a dense subset of the unit sphere in H. Using the fact that ‖Txi‖ =

sup j |〈Txi , y j〉|, we can write Ui,n as a union of an intersection of open sets in the

weak operator topology:

Ui,n =

∞
⋃

m=n+1

∞
⋂

j=1

{

T : |〈Txi , y j〉| <
1

n
−

1

m

}

.

This is sufficient to show that every strongly open set is weakly Borel.

Given any open set O in the strong operator topology on SM , O is also a Borel

set in the weak operator topology. Let C = {T : T∗ ∈ O}. Note that the adjoint

map T 7→ T∗ is continuous from the strong operator topology to the weak operator

topology on SM , since Tn →s T implies 〈(Tn − T)x, y〉 = 〈x, (T∗
n − T∗)y〉 → 0

for every x, y ∈ H. As a result of this continuity, C is Borel in the strong operator

topology, which proves the adjoint map is Borel.

Proof of Lemma 5 Given an open set O in the strong operator topology on B(H),

let C = {T ∈ SM : T invertible and T−1 ∈ O}. The goal is to prove that C is a Borel

set in the strong operator topology on SM .

For each natural number K, define

SMK = {T ∈ SM : T invertible and ‖T−1‖ ≤ K}.
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We must show that SMK is closed in the strong operator topology on SM . Recall from

the proof of Lemma 4 that SM is second countable (hence first countable) in the

strong operator topology. Let {Tn} ⊂ SMK be a sequence converging in the strong

operator topology to an operator T. Since SM is strongly closed, ‖T‖ ≤ M. It remains

to be shown that T is also invertible with ‖T−1‖ ≤ K.

Notice that for each Tn ∈ SMK , since ‖T−1
n ‖ ≤ K, we also have for every x ∈ H:

(14)
‖T−1

n x‖

‖x‖
=

‖y‖

‖Tn y‖
≤ K where y = T−1

n x.

Thus, for all unit vectors y, we have ‖Tn y‖ ≥ 1
K

, and a straightforward contra-

diction argument shows that ‖Ty‖ ≥ 1
K

for ‖y‖ = 1 as well. Therefore, T has

trivial kernel and closed range. This also implies that T∗ will have trivial kernel, and

since the orthogonal complement of the kernel of T∗ is the closure of the range of T,

we now have T a bijection. Therefore, T is invertible with bounded inverse. Equa-

tion (14) applied to T gives ‖T−1‖ ≤ K, so T ∈ SMK , and therefore SMK is closed in

the strong operator topology.

Next, observe that the sequence {T−1
n } above converges to T−1 in the strong op-

erator topology. This calculation makes use of the identity

T−1
n − T−1

= T−1
n (T − Tn)T−1.

For every x ∈ H:

‖T−1
n x − T−1x‖ = ‖T−1

n (T − Tn)T−1x‖

≤ ‖T−1
n ‖ ‖(Tn − T)(T−1x)‖

≤ K‖(Tn − T)(T−1x)‖ → 0 as n → ∞.

Therefore, the inverse map T 7→ T−1 is continuous in the strong operator topology

from SMK to B(H).

Let O be an open set in B(H) and C ⊂ B(H) defined previously. C can be written

as a union of sets which are the intersection of SMK with open subsets of SM :

C = {T ∈ SM : T invertible and T−1 ∈ O}

=

⋃

K

{T ∈ SMK : T−1 ∈ O}.

Each set in the union is open in the strong operator topology on SMK by the continu-

ity of the inverse map, and is therefore the intersection of an open set in SM with the

closed set SMK . Since each of these sets is Borel on SM , so is their union. Therefore,

the inverse map is Borel from SM to B(H) in the strong operator topology.

Proof of Lemma 6 (1) An immediate consequence of Lemma 3 is that the function

β 7→ fβ is s.o.t.-Borel if and only if the map β 7→ 〈 fβ , g〉 is Borel.

〈 fβ , g〉 =

∫

A

fβ(α)ḡ(α) dα
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We are assuming fβ(α) is Borel on A × B, so the integrand above is also a Borel

function on the product space A × B, so by Fubini’s theorem, the integral is a Borel

function on B.

(2) Let β 7→ fβ be a Borel function, and recall fβ ∈ L2(A). If φn is an orthonormal

basis of L2(A), then we can write (with possible changes on sets of measure zero on

each fβ):

fβ(α) =

∑

n

〈 fβ , φn〉φn(α).

By Lemma 3, 〈 fβ , φn〉 is a Borel function on B. We also have each φn a Borel function

on A. Since functions of only one variable are Borel on the product space, each term

in the sum is Borel on A × B, and thus so is the sum.
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