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THE FRIEDBERG-MUCHNIK THEOREM RE-EXAMINED 

ROBERT I. SOARE 

In the well-known solution to Post's problem, Friedberg [1] and Muchnik 
[13] each constructed a pair of incomparable recursively enumerable (r.e.) 
degrees a and b. Subsequently, Sacks [15, p. 81] constructed r.e. degrees 
c and d such that c U d = 0' and C = d' = 0'. Lachlan showed [7, p. 69] 
that such degrees c, d could have no greatest lower bound in the upper semi-
lattice of r.e. degrees. We show that the original Friedberg-Muchnik degrees 
a, b automatically satisfy Sack's conditions and hence witness that the upper 
semi-lattice of r.e. degrees is not a lattice. 

With this example in mind we consider a class of "finite injury" priority 
constructions of r.e. sets formulated by Sacks [15, § 4], and give sufficient 
conditions on the construction so that Sacks' "priority set" (the set con­
structed in the standard way) is automatically complete. We then show that 
any Sacks construction designed to produce an r.e. set with some property P 
can be combined with a method of Yates to produce a set with property P 
and recursive in a given nonrecursive r.e. set. It follows that a Sacks con­
struction cannot be used to produce sets such as maximal sets whose degree m 
must satisfy m ' = 0" by Martin [10]. 

Although not difficult to prove, these observations apply to many construc­
tions in the literature. For example, as consequences, we derive results by 
Ladner [8] on non-mitotic r.e. sets, and affirmatively answer McLaughlin's 
question [12] of whether in every nonrecursive r.e. degree there is an r.e. 
set A such that A is regressive but not retraceable. 

Given a set A, A' denotes the jump of A, and K denotes 0''. An r.e. set A is 
complete if K is recursive in A, denoted K ST A. A degree a ^ 0' is low if 
a ' = 0', high if a' = 0", and intermediate otherwise. Other definitions and 
notation can be found in Rogers [14], or will be explained when introduced. 

1. The Friedberg-Muchnik theorem re-examined. For convenience we 
will refer to the proof of the Friedberg-Muchnik theorem given in Rogers 
[14, p. 163], although the same analysis applies to the original constructions 
[1], and [13]. It is assumed that the reader is familiar with Rogers' version 
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where r.e. sets A and B are constructed along with (nonrecursive) functions 
f(x), g(x) such that 

(1) (Vx)[[/(x) G A <=»/(*) G WX
B] and [g(x) G 5 *=> g(x) G WV]]. 

The function/(x) = limsf(x, 5), where /(x, 5) is a recursive function denoting 
the integer occupied by the xth marker on the ' 'A -list" at the end of stage s, 
and similarly for g(x) and the ".B-list". 

THEOREM 1. 

(i) A ®B =TK, where A ®B denotes "A join B"; and 
(ii) A' = TBf = TK. 

Proof. Both (i) and (ii) will follow immediately from: 

(2) A' ^TA®B, and B' S T A © B. 

To prove (2), let h be a recursive function such that for any set C and any 
index x, 

( 3 ) ^ ~ \0, otherwise. 

Now by (1) and (3), 

x 6 Wx
B**f(h(x)) G HW)B <=*/(*(*)) G 4 , 

and likewise for B, A, g in place of A, B,f, respectively. It suffices to show 
that / , g ST A © B, which follows easily from the observation that for all s 
and x, 

(4) f(x, s + 1) ^ / ( x , s) => Qy)<x[g(y, s) G 3 S + 1 - B'], 

and 

(5) g(x, s+1)* g(x, s) => (3y)^ [ / (y , *) € -4*"1 - i l ' ] . 

Simply compute / (0) , g(0) , / ( l ) , g( l) , . . . , in order using i © 5 as oracle. 
For example, to compute f(n), first compute from A © B all preceding 

values (if any) in the above list, / (0) ,g(0) , . . . ,f(n — l),g(n — 1). Next 
find a sufficiently large stage sn, such that for all x ^ any of these preceding 
values, x G ̂ 4 if and only if x G ASn, and x G i? if and only if x G BSn. Since 
4̂ @B is r.e., sw can be found recursively in A © B by the Modulus lemma 

[16, p. 23]. Clearly, f(n, sn) = f(n) by (4), and g(n) is computed similarly 
using (5). 

COROLLARY. The Turing degrees of A and B have no greatest lower bound in 
the upper semi-lattice of r.e. degrees {or even of all degrees). 
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The proof of Theorem 1 also applies to the Sacks' construction [15, p. 51] 
of a recursively independent sequence of r.e. sets A0, A1} A2, . . . , to show 
that the recursive join of the full sequence has complete r.e. degree while for 
any n, the recursive join of the deleted sequence AQ, Ai, . . . , An-i, An+i, . . . , 
has low r.e. degree, i.e., degree a where a' = 0'. The recursive join of an 
infinite sequence B0, Bh . . . , is {pm

n+1 : n Ç Bm}. 

2. Complete r.e. sets. Frequently one constructs an r.e. set T to have 
some property P and later modifies the construction (usually by coding K 
into T on alternate stages) to produce a complete set T with property P. We 
show that in many cases this is unnecessary because the original r.e. set 
constructed in the ' 'standard" way is already complete. Another method for 
proving such sets complete was given by Martin [11] and Lachlan [6]. To 
formalize this principle we turn to a formulation by Sacks [15, § 4] of a broad 
class of finite-injury priority constructions where the requirements correspond 
to effectively open sets in 2œ. In Sacks' scheme, there is a recursive function t 
such that for every s, t(s) is the index of a pair of disjoint finite sets (Fs

} Hs). 
Define g(s) = (t(s))2 and requirement. 

Re = {(F',H'):g(s) = e). 

(We may always assume that Fs ^ 0, by replacing (0, H) with 

{(n,H) :n g H}.) 

Priorities are used to construct an r.e. set T, called the priority set of t, which, 
whenever possible, "meets" requirement Re by lying in the effectively open set, 

{X : Qs)[g(s) = e &FS QX &HS nX = 0}. 

Sacks constructs T as the limit of finite sets Ts, such that at certain stages 
5 + 1 , Ts+1 = Ts U Fs+1. The requirement Re is met at stage s + 1 just if 
e = g(s + 1) a n d ^ s + 1 ^ Ts+1 — Fs- (Note that at most one requirement is 
met at a given stage so that a requirement is never "accidentally" met.) The 
requirement Rg(S+1) is later injured at stage r + l > s + l i f TT+l C\ Hs+l ^ 0. 
Sacks' construction guarantees that each requirement is injured at most 
finitely often and that T eventually meets every /-dense requirement, where 
Re is t-dense if for each finite set L, there exists s such that g(s + 1) = e, 

Fs+i ç£ TS, Hs+l r\ Ts = 0 and L C\ Fs+1 = 0. 

THEOREM 2. Let the a recursive function which enumerates requirements in the 
sense of Sacks. For the priority set T of t to be complete, it is sufficient that there 
exist recursive functions f(e, s) and h{e) such that for all e and s, 

(i) Re is met at stage s + 1 => (Vj)[fU, s + 1) Ç T5+1 - Ts ^ j = e], 
(ii) f(e, s + 1) y£ f(e, s) => Qj)<e[Rj is met at stage 5 + 1 ] , and 

(iii) e G K =» Rnu) is a t-dense requirement, and e (£ K => Rn(e) = 0-
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Remark. Constructions satisfying (i) are frequently called "movable 
marker" constructions, where fie, s) denotes the integer occupied by the £th 
marker, Ae, at the end of stage s. Condition (i) asserts that marker Ae is 
associated with an element of Ts+1 — Ts if and only if Re is met at stage 5 + 1. 
For most nontrivial constructions, (iii) can easily be satisfied either directly 
as in the proof of Theorem 1, or by use of the recursion theorem. The crucial 
condition for completeness of T is (ii) which asserts that Ae moves at 5 + 1 
only if for some j < ef R3- is met at 5 + 1, and hence by (i) contributes 
f(j* s + 1) = f(j, s) as a "trace" in Ts+1 — Ts. (For this purpose it would even 
suffice to have x G Ts+1 — Ts for some x ^ f(j, s) in place of x = f(j, s).) 

Proof of Theorem 2. By (i), f(e, s + 1) G Ts+1 — Ts only if Re is met at 
stage 5 + 1 , which happens at most finitely often. Hence, by (ii), f(e) = 
lims/(e, s) exists and is recursive in T. To see that K ^ T T, fix e, and exactly 
as in Theorem 1 compute recursively in T, 

se = (ps)0/t)>s[f(He),s) =f(h(e),t)± 

If RHe) was met at some stage s < se, then e G K by (iii). Otherwise, we claim 

e e K*>f(h(e)) G T. 

By (i) if Rh(e) was not met at some stage 5 < se, then f(h(e)) (? TSe. If e G K, 
then Rh(e) = 0 by (iii) so f(h(e)) is never added to T at s > se by (i). If 
e G K, then Rh(e) is /-dense by (iii), and so is met at some stage s + 1 à se 

(since every /-dense requirement is eventually met) at which stage 
f(h(e)) e Ts+1 - Tsby (i). 

In addition to the Friedberg-Muchnik construction of A ®B, Theorem 2 
applies to many constructions in the literature including McLaughlin's 
construction [12] of an r.e. set A such that Â is regressive but not retraceable, 
and Lachlan's construction [5, Lemma 4] of a non-mitotic r.e. set. The follow­
ing sketch is from Ladner [8, § 3] (with one minor change explained below) 
and gives an alternate proof of his result [8, Theorem 3] that there is a complete 
such set. 

An r.e. set A is non-mitotic if it cannot be decomposed as the disjoint union 
of r.e. sets B and C such that B = T C = T A. H A, B and C are r.e. sets and 
6, ^ are partial recursive functionals, (B, C, 9, >P) is a mitotic splitting of 
A if (S, C) is an r.e. splitting of A, and 6(B) = A = ^ (C) . To insure that 
the 6th such quadruple (Be, Ce, 6e, ^re) is not a mitotic splitting of A, we 
designate a certain element, say f(e, s), which remains in Âs until some 
stage 5 + 1 where (Be, Ce, 6e, ^re) "threatens" to mitotically split A because, 

(6) Oes(Be
s; x) = ¥a ' (CV; x) = As(x), for x - f(e, s), 
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Be
s H Ce

s = 0, and Be*(x) \J Ce
s(x) = As(x) for all x S k, the maximum 

number in Be
s U Ce

s used in either computation in (6). One can then meet the 
^th requirement by enumerating/(e, s) G As+1 — As and refraining from later 
enumerating in A any x S k. (In Sacks' formulation, one enumerates in 
requirement Re the pair ({f(e, s)}, H), where H = {x : x (£ ^4*andx S k}.) 
Since f(e, s) £ As+1 — As can be enumerated in only one of Be

s+1, Ce
s+1, the 

other maintains the computation of (6) which ^As+1(f(e, s)). 
This construction clearly satisfies hypotheses (i) and (ii) of Theorem 2. To 

meet hypothesis (iii), use the recursion theorem to find a quadruple 
(Bh(e), Ch(e), 0ft(6), ^h(e)) which never threatens if We = 0, and if We ^ 0, 
continues to threaten until requirement Rn(e) is

 m e t and not injured thereafter. 
(Ladner replaces "x = f(e, s)" by "all x S f(e, s)" in (6), in which case we 
do not know whether (iii) applies.) 

3. Combining Sacks' constructions with Yates' permitting. After 
trying to obtain a complete r.e. set with some property P , the recursion theorist 
frequently turns to incomplete r.e. degrees. In this section we show that for 
any nonrecursive r.e. set C, a Sacks construction which produces sets with 
property P can always be combined with the "permitting" method of Yates 
[18] to produce an r.e. set T ST C having property P. Corollaries include 
Ladner's result [8, Theorem 4] that there is a non-mitotic r.e. set below any 
nonrecursive r.e. degree, an answer to McLaughlin's question [12] concerning 
the degrees of r.e. sets A such that A is regressive and not retraceable, and a 
more natural proof of the relativized Friedberg theorem than Friedberg's 
original proof [2], which is repeated in Rogers [14, p. 175]. A further conse­
quence is the fact that a Sacks construction cannot be used to produce an r.e. 
set with a property such as maximality which implies that A has high r.e. 
degree. The following method has often appeared in the literature after being 
introduced by Yates [18]. 

Given a nonrecursive r.e. set C, let h be a 1 : 1 recursive function which 
enumerates C. Following Yates, we will insure T ST C by allowing 
x Ç Ts+l — Ts only if x ^ h(s + 1), in which case we say that C permits 
x £ Ts+1 — Ts. To meet Sacks' requirement Re we cannot immediately 
enumerate Fr in T when (Fr, HT) Ç Re, but must wait for some stage /, where 
h(t) S min FT. (For a finite set 5, max 5 and min 5 denote the largest and 
smallest elements in S.) In the meantime we add r to a set Ke indicating that 
the elements of Fr are "candidates" for meeting Re, and we search for a new 
pair (Fs, Hs) Ç Re. Meanwhile we refrain from appointing any x S ke = 
max Hr as a candidate for any requirement Ru i ^ e. The modified construc­
tion yields an r.e. set T which meets every ^-dense requirement, because the 
least /-dense requirement not met would leave an infinite r.e. sequence of 
candidates witnessing corresponding initial segments of C which have settled, 
thereby showing C recursive contrary to hypothesis. In the following con­
struction of T, we say that the requirement Re is satisfied through stage s if at 
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some stage r + 1 ^ s, F Q Tr+1 - TT for some (F, H) Ç Re and H C\ Ts = 0. 

THEOREM 3. Let t be a recursive function which enumerates requirements in the 
sense of Sacks. Let C be an arbitrary nonrecursive r.e. set. Then there is an r.e. 
set T such that 

(0 T ^ T C, 
(ii) for every t-dense requirement Re, there exists s, such that Re is satisfied 

through all stages r ^ s. 

Proof. At stage s in the construction of T we will define for each e, a finite 
set Ke

s and a number k(e, s), which correspond to the Ke and ke intuitively 
described above. Recall that at stage r, t enumerates (Fr, HT) in Rey where 
e = g(r)- I n the following construction we appoint new candidates at odd 
stages, and permit elements to enter T at even stages. 

Stage s + 1 where s + 1 is odd. Let Ts+1 = Ts. Let g(r) = e, where 5 + 1 = 
2r + 1. Define Kjs+1 = Kj8, and k(j, s + 1) = k(j, s) for all j unless: 

(i) Re is not satisfied through s> 
(ii) min FT > k(i, s), for all i ^ e, and 

(iii) Fr £ Ts and Hr P Ts - 0, 
in which case define Ke

s+1 = Ke
s KJ {r}, and 

k(e,s+ 1) = m a x ^ U i ? r U {k(e,s)})9 

K/+1 = 0, k(j, s + 1) = 0 for a l i i > e, and 

K^ = Kf, k(j, s + 1) = k(j, s) for all j < e. 

Stage 5 + 1 where s + 1 w even. Let Ts+1 = Ts, i £ / + 1 = i £ / and 
&0\ s + 1) = &(i» s) f° r aH J unless there exists r < s/2 such that: 

(i) r G i £ / , where j = g(r), and 
(ii) A ( ( s + l ) /2 ) ^ minF r , 

in which case let e be the least such j and u the least r corresponding to e. 
Define T s + 1 = P U P , i£e

s+1 = 0, and êfo s + 1) = jfe(e, s). For all 7 ^ e, 
define i £ / + 1 and &(j, 5 + 1) as above. Let T = U™=oTs. 

Definition. If the second alternative holds at stage s + 1, we say that 
requirement Re receives attention at stage s + 1. 

LEMMA 1. / / Fu C Ts+1 - Ts and u £ K%(u), then Ts+1 P Hu = 0, so that 
Rg(u) is satisfied through s + 1. 

Proof. Suppose Fu C r s + 1 — Ts and w G i £ / , where e = g(w). Let v be the 
least r such that u G i £ / for all r, v ^ r ^ 5. Then & (e, z/) ^ max i7M, but 
for all x g k(e, v), x G i s if and only if x G ̂ 4p, since otherwise for some 
i ^ e requirement Rt received attention at some even stage r, v rg r < s, in 
which case Ke

T+1 = 0. 
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LEMMA 2. Each requirement receives attention at most finitely often. 

Proof. Suppose e is the least i, such that requirement Rt receives attention 
infinitely often. Choose s0 so that no Ru i < e, receives attention at any stage 
5 + 1 ^ s0. Now Re never receives attention at an even stage 5 + 1 ^ s0, 
else by Lemma 1, Re is satisfied through 5 + 1 , and clearly remains satisfied 
thereafter. Hence, Ke

s+1 2 Ke* for all s ^ s0, and Re receives attention at 
infinitely many odd stages 5 + 1 > s0, at which some u G Ke

s+l — Ke
s. For 

such an s, 

(7) Cs/2 r\ [0, min Fu] = C C\ [0, min F«\ 

else Re receives attention at some even stage r > s + 1. Furthermore if 
u, v G Ke

s and u 9^ v, then Fu C\ Fv = 0 by the definition of k(e, s + 1) and 
condition (ii) for s + 1 odd. Hence, 

{min Fu : (3 s)^so[u G KJ+1 - Ke
s]} 

is an infinite r.e. set which by (7) implies that C is recursive, contrary to 
hypothesis. 

LEMMA 3. For every t-dense requirement Re, there exists s, such that Re is 
satisfied through all stages r ^ s. 

Proof. Let Re be /-dense. By Lemma 2, choose 5 such that all Ru i ^ e, 
have ceased to receive attention at any stage r ^ s. Then Re is satisfied 
through all r §; s, because otherwise Re receives attention at some odd r ^ s 
by the construction and the definition of T being /-dense, where 

L = {n : n ^ max^e&(i, s)}. 

4. Further comments . It is natural to ask under what conditions a 
"maximum degree principle" like Theorem 2 holds for the Yates permitting 
constructions of Theorem 3. For example, if a construction satisfying the 
hypotheses of Theorem 2 is combined with the method of Theorem 3 to produce 
T ST C, does C ST F automatically follow? In general the answer is no. 
For example, it fails for the Friedberg construction in Theorem 1, contrary to 
our announcement [17, Theorem 2], although the counterexample is fairly 
complicated. 

The principle does hold, however, for certain special constructions where 
there is no negative restraint, that is, where a Sacks' requirement Re contains 
only pairs of the form (T7, 0). In this case the construction of Theorem 3 may 
be simplified by not cancelling candidates Kt

8 of lower priority than Re, 
e < i, whenever Re receives attention. For example, Yates [18, Theorems 1 and 
2] used this method to produce a simple set 5 and semicreative set A recursive 
in C, an arbitrary nonrecursive r.e. set. He then took joins of 5 and A with 
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sets of degree C to produce such sets of the same degree as C. Jockusch and 
Soare [3, Lemma 5.1] have shown the latter to be unnecessary since Yates' 
original sets S and A automatically satisfy C ST S, C ST A. Jockusch 
modified the method to give a simple proof of Martin's theorem [10] that there 
is a maximal set in any high r.e. degree. 

In a permitting construction of T ST C, if the recursion theorist cannot 
achieve C ST T automatically (or by later taking a join) he may want to 
code C into T during the construction. In general this is impossible even if the 
unmodified construction produces a complete r.e. set. For example, Ladner [9] 
has produced a nonrecursive r.e. degree which contains no non-mitotic r.e. 
set. However, if the requirements admit a bound on negative restraint (for 
example, if there is a recursive function h such that for all e, (F, H) 6 Re 

implies that H has Sh(e) members) then frequently C can be coded into T 
during the permitting construction of T S T C. By such a method we have 
shown that for every non-recursive r.e. set C, there exists an r.e. set A = T C, 
such that Â is regressive but not retraceable, answering a question of 
McLaughlin [11]. 

Acknowledgement. The author is grateful to M. Lerman for posing the 
question answered in Theorem l(i), and particularly to C. G. Jockusch Jr. for 
several valuable suggestions and corrections. 
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