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DIFFUSION ON LIE GROUPS (III) 

Dedicated to the memory of Carl Herz 

N. TH. VAROPOULOS 

ABSTRACT. For amenable Lie groups of NC-type the heat kernel satisfies pt ~ t~a. 
We find the exact value of a > 0. 

RESUME. Pour les groupes de Lie amenables de type NC le noyeau de la chaleur 
satisfait/?, ~ t~a. On trouve la valeur exacte de a > 0. 

0. Introduction. 
0.1 Statement of the main result. Let G be some connected real Lie group and let 
A = —T,j=lXj be some left invariant subelliptic sublaplacian, i.e., the Xj are left in
variant fields which, after identification with elements of the Lie algebra g, generate the 
algebra (cf. [10], [21]). Let Tt — e~tA and </>t be the corresponding semigroup and the 
heat diffusion kernel: 

Ttf(x) = J <t>t(y-lx)f(y) dy; f E Cg°(G) 

where dy [resp.: dy = dy~x — m(y)dy] denotes the left [resp.: right] invariant Haar 
measure on G. 

In this paper I shall assume throughout that G is amenable, i.e., that the semisimple 
Lie algebra q/q = 3, where q C g is the radical of Q, is of compact type. Observe that 
we can find $ C Q some Lie subalgebra s.t. g = q x £, 3 = q/q (cf. [15]). 

In [17], [18], [16] I have classified such groups and corresponding Lie algebras into 
two classes: the C-algebras and groups and the Non C-algebras and groups (the latter 
denoted by NC). 

For the convenience of the reader, here is the definition: we consider n C q the 
nil radical and V = q/n, W = n / [n , n] the two corresponding abelian algebras. The 
adjoined action then induces 

ad:F®C-+Endc[JF(g)C]. 

Let Ai • • • \r e Hornet^ ® C, C] be the corresponding roots (i.e., 3 0 ^ w G W®C s.t. 
(adv — A/(v))w = 0 Vv E V®C) and let Lj,j = \,...,s, be the distinct non zero real 
parts (0 ^ L = Re A) L = (Lx,.. .,LS) C H o m ^ R ] \ {0} = V* \ {0}. When L = 0 
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642 N. TH. VAROPOULOS 

we say (following [7]) that g is an /^-algebra. When 0 ^ Conv Hull(X) = {£ ctjLj>; a, > 
0, £ <*,r = 1} we say that g is an NC-algebra. 

/^-algebras are NC-algebras, and if the algebra g is not NC we say that g is a C-algebra 
[in the above definitions, we are exclusively dealing here with amenable algebras]. 

It has been shown in [17] [1] that when G is a C-group we have 

C2(g)e-C2t]/3 < </>t(g) < C!(g>Tc",/3; g E G, t > 1 

where c\,c2 > 0 only depends on G and C\, C2 > 0 depends also on gbut is independent 
of/. 

In this paper I shall prove the analogous result for NC-groups and show that there 
exists v = */(G, A) that depends on G and A and which will be explicitly computed such 
that 

(0.1.1) C2(g)rl/<&(g)<C](g)rl/; g£G,t>l 

with C\, C2 > 0 as before. 

0.2 Some definitions: the Euclidean structure and the cone. Let g be some NC-algebra 
and let ^i, 1)2 C g be two ideals such that g/I), is an /^-algebra. By considering g —•» 
g / *) i x g / fe we see that g /1) i Pi 1)2 is also an /^-algebra and that therefore we can define 
g C g the smallest ideal for which g/g is an /^-algebra. We have g C n for 

(0.2.1) g / n = q / n 0 £ 

(where the sum is actually direct and not only semi direct; cf. [15]). It was shown in [16] 
that 

9 = § x QR 

for some jR-subalgebra QR (in the notation of [ 16] we had g = X\R). I shall refer the reader 
to [16] for a detailed analysis of the situation, but to make the paper self contained I shall 
recall some relevant facts in Section 2.1. What is true in addition (this is evident when G is 
simply connected) is that the analytic subgroup G C G that corresponds to g is closed. It 
is an easy matter to see that G is the intersection of all closed normal subgroups H C G 
s.t. G/H is unimodular. The group G/G can then be defined and the volume growth 
function (cf [21], [7]) 7(0 « P (t > 1) can then be defined with D = 0 , 1 , . . . some 
integer that depends only on G. It will be seen in Section 2.1 that 

G = GxGR 

where G/G = GR C G is some closed subgroup. 
Now let TV C G be the closed nilradical of G. When G is simply connected, by (0.2.1) 

it follows that 
G/N^ VxS 
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where V = Q/N = Rn where Q C G is the radical of G and S is the corresponding Levi 
subgroup. We will see in Section 2.1 that we have in general 

G/N^VxK 

where V = Ra and K is compact. Observe here that quite generally when some Lie group 
/ / ( = G/N in our case) admits some decomposition// = V\ x K\ where V\ = Ra and Â  
is compact (or semi simple!) then for any other similar decomposition / f = ^ x ^ w e 
have K\ = Ki. Indeed if 7T/: H —> Vi(i = 1,2) are the two canonical projections we have 
TTi(Kj) = 0 and therefore Kt C Kj for ij = 1 , 2 . Furthermore 7T/|̂ : ̂  —+ Fi induces an 
isomorphism since 7171̂ . = (Tryl^)-1. From the above it follows that H admits a unique 
maximal compact subgroup K and that H = V x K for some K = IRa. 

The real parts of the roots can be identified to elements of (F)*. This is evident when 
G is simply connected and is easy to see in general [cf. Section 2.1]. Let -K: G —> V the 
composition G —* G/N = V x K —* V and let A0 = dir(A) the corresponding second 
other differential operator on V = Ra. The operator Ao allows us to define a unique 
euclidean structure on V which is given by the unique (up to orthogonal transformation) 
coordinates such that 

d2 

Furthermore if V\ is some other choice of the direct factor V\ x K & G/N then it is clear 
that the above defined isomorphism 6: V <-> V\ is orthogonal for the induced euclidean 
structures and that 0 gives a correspondence between the Z,,- (/ = 1, . . . , s) on V and Fi. 

Let us assume that L ^ 0; the above construction defines a unique euclidean structure 
£ on Ra (= V) and, up to orthogonal transformation, a unique convex non empty cone 

(0.2.2) Tl(L) = {xEE, Lj(x) > 0,y = 1,.. . , * } . 

0.3 The index: and the main theorem. Now let £ = {x E is, |JC| = 1} be the unit sphere 
in the above Euclidean space and let As be the corresponding spherical Laplacian so that: 

-A -Y—-— + ?—±— + - \ 
dx2

t dr1 r dr r2 

where a = dim is is assumed a > 2 and (r, a) E R£ x I are polar coordinates on is. 
Let Els = n Pi Z C I (we assume as before that L ^ 0) and let A be the first Dirichlet 

eigenvalue of the region n s . Thus explicitly 

A = in^-CAj/,/); \\f\\2 = l , / € C8°(nx)) 

where the scalar product and the Z2-norm is taken in L2(L) for the Euclidean volume 
element on E. We then define a = a£ > 0 the unique positive solution of 

a(a + a — 2) = A. 

When L ^ 0 and a = 1 we set a = 1. When L = 0 and G is an i?-group we set a = 0. 
We can then state the main theorem of this paper: 
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THEOREM. Let G be some amenable NC-grow/? and let D = 0,1,2, . . . and a > 0 
be defined as above. Then (0.1.1) holds with v = a+D/2. 

An alternative way to define the index a is the following: a is the degree of homo
geneity of the "reduite" in n , i.e., of the unique, up to scalar factor, harmonic function 

o 

u = u^ in n that is positive and vanishes at dll (cf. [2], and Section 0.5 below). 
From this definition of a it follows that if A is identified with an operator Ai on the 

simply connected cover G\ of G, then the a that corresponds to A on G is the same as the 
a\ that corresponds to Ai on G\. From the original definition, on the other hand, it follows 
that a is a "continuous function" of A, and that if we assume that dim{Zi,. ..,LS} > 1 
then for any p E ] 1, +oo[ there exists some A s.t. a(A) = p. 

0.4 The index a and the Weyl group. The index a = a^ that we used in Section 0.3 can 
not, in general, be "explicitly" computed and varied continuously with L since the first 
eigenvalue A is a "continuous function of the geometry of n n E " . There are some special 
cases worth noting however where an explicit formula for a is possible. For instance this 
is the case when Ra = R2, s = 2 and when 0 the angle between L\, L2 comes from a 
root of unity: 0 = In/k, k— 1,2, The harmonic function we considered at the end 
of the previous section can immediately be obtained from the holomorphic functions z* 
(*= l , 2 , . . . ; z e C ) . 

For our purposes what is more relevant is a type of configuration that naturally arises 
in the context of semisimple groups and the attached Weyl Chambers. We have then 
L = (L\,...,LS) C Rn where the L/s are distinct, and we assume that the set L is 
stabilised by every orthogonal reflexion on each hyperplane [Lt = 0]. Indeed the above 
configuration is a natural generalization of our previous example of the roots of unity 
where n = 2. For n > 2 many natural examples as above rise from abstract root systems 
(cf. [22]). In the above configuration the Lzs are not in general linearly independent (e.g. 
for the roots of unity we have 11/ = 0). In all generality the positive harmonic function 
U£ in ri(X) can be explicitly computed (cf. [8], Chapter III, Section 3.2) and is 

s 

UL(X)= n{Lux). 
/=i 

It follows that we have then a^ = s. 

0.5 Potential theoretic results. Some of the technical tools needed for the proof of the 
main theorem are potential theoretic in nature and represent some independent interest. 
These results will be described in this section. 

Let C C E be an open convex cone (0 ^ C ^ E) as in Section 0.3 where E is some 
Euclidean space of dimension n > 1. It is then well known and easy to prove that there 
exists one and, up to multiplicative constant, only one positive harmonic function u(x) in 
C s.t. it vanishes at the boundary DC. The existence can be seen directly by trying out u(x) 
to be homogeneous of degree a = ac and passing to polar coordinates. The uniqueness 
is more subtle to prove, one could use the Kelvin transformation and [2]. The uniqueness 
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is not really absolutely essential for the understanding of this paper. In what follows, I 
will restrict my attention to cones of the form (0.2.2): 

c = n = n(Li,...,i,) = n(£) 

and I will then denote the corresponding positive harmonic function: 

u(x) = U£(x) x G IT; u(x) = 0 x G SIT. 

We shall also set u(x) = 0 for x £ Yl(L). I shall denote then by pt(x,y) = pt(Tl;x,y) = 
pt(L;x,y) the corresponding Dirichlet heat diffusion kernel in E i.e. the fundamental 
solution of jt — IJ^- with Dirichlet {i.e. vanishing) boundary conditions. 

I shall also denote 

PL(t,x) = P(t,x) = J pt(x,y)dy = Px[b(s) G I~l; 0 < s < t]; x G E, t > 0 

where b(s) G E (s > 0) denotes standard Brownian motion in E. The following estimates 
then hold (and seem to be new!) 

x ^ ^ u(x)u(y) f \x—y\2\ n, x ^ u(x) „ „ 

where 0 < e < 1 is arbitrary, and CE also depends on e. It is of course possible to improve 
upon this "e", but this will not be done and is of no use to us. Together with the above 
upper estimates we also have the following lower estimates: 

P{t,x) > C ^ , Pt(x,x) > C ^ ; x G n , / > C|x|2. 

The same estimates hold for an arbitrary convex conical region C C E and not just the 
pyramidal ones that are considered in this paper (cf. [20]. The convexity, on the other 
hand, cannot be relaxed). This, however, will not be needed here. 

A useful motivation for the above results is supplied by the easily verifiable fact that 
the function 

2 

u(t,x) = ra-n/2u(x)exp(-*-^J 

is a heat function in C, i.e., a solution of the equation ^ — I J ^ = 0 and vanishes at the 

boundary of C x ]0, oo[ except at (0,0). 

0.6 A wedge in a Lie group. Let G be a connected Lie group and let 

TT: G -> Rn D Yl(L) = II 

be a surjective homomorphism and n as in Section 0.2. We shall fix A = — UCj some 
sublaplacian on G as in Section 0.1 and fix the unique Euclidean structure on Rn = E for 
which ^7r(A) = — Z^- as in Section 0.2. To that Euclidean structure we can then define 
oc — au> 1 as in Section 0.3. We shall denote also by {z{t) G G\t> 0} the paths of the 
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diffusion on G that is generated by A so that n(z{i)) = b(i) G Rn is standard Brownian 
motion. We shall abusively also denote 

TT1 [!!(£)] = n G = U(L) = n c G 

the corresponding "wedge" in the group. We can then define 

P&g) = PG(t,g) = Pg[z(s) G IIG;0 < s < t]; t>0,geTl. 

We clearly have: 
P<At,g) = PR*{t,*(gj) 

so that we have for Pc(t9g) the same estimates as before 

PG(t,g) < C ^ [u{g) ^ «(*&)) g € G], t > 0 

PG(t,g)>CU^ t>C\Tr(g)\2. 

Nowlet/7,(^,A) —pt(TlG;g,h), (t > 0,g,h G G) be the Dirichlet heat diffusion kernel of 
the region l ie (i.e., we kill diffusion when it reaches the boundary) with respect to left 
Haar measure dg. In terms of/?,(•, •). We have in particular: 

P(t,g) = JnGPt(nG;g,h)dh. 

What is important is that we have for the above kernel the analogue of the estimates of 
Section 0.5. To be more precise, let us assume that G is a group of polynomial volume 
growth 7(0 & t° (t> 1). We have then 

P,<J\ff,g,g) > C ^ ; I > 1, C-1 < |»fe)| <C,g£G 

where d{-, •) denotes the canonical distance that is induced in G by the fields X\,...,Xk 
of the sublaplacian A (cf. [21]). 

The following refinement will be needed. We shall assume again that G is a group of 
polynomial growth. We have then 

(0.6.1) [ uvt(IlG,xo,x)dx < u(x0)s(A)ra'2; t>l,A>0, \x0\
2 < Ct 

J\x\G>AViz 

where s(A) —> 0 and \X\G = d(e,x) where e G G denotes throughout the neutral 
A—KX> 

element of G. 

0.7 The probabilistic estimates. Let {z(t) G G\t > 0} and n C G be as in Section 0.4. 
We shall normalise the Lj^ G L C E* so that Zy ( (1,0, . . . , 0)) = 1 and we shall denote by 

C(A) = (A,0,... ,0) + U{£) CE A G R 
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and denote again by C(A) = TT"1 (C(A)) C G. 
The first refinement has to do with "curved boundaries" in the sense of [14]. Let/(s) 

(s > 0) some positive increasing function that satisfies/^) = 0(s£) for some e > 0 that 
is small enough. We shall then show that there exists O 0 such that: 

pe[z(s) G c ( - i +/(*));0 < s < t] > crai2\ t > l. 

The above event simply says that as time goes on (and with a "rate/(s)") the diffusion 
penetrates deeper and deeper in the cone n . In fact, a slightly more precise result will be 
needed. Let 

Xj = z(j-irlz(j)eG; 7 = 1 , . . . 

(set also Xo = e) be the integer time increments of the diffusion {z{t\ t > 0}. We shall 
show that there exists a, C> 0 such that 

?e[z{j) E C ( - l +/(/)), \XJ\G < «log1/2(l +y);7 = l, . . . , / i] > Cn-«l\ 

This means that in the above event we require in addition that the increments grow very 
slowly with time. We denote here and throughout \g\ = d(e,g) (g £ G). 

The other probabilistic refinement that we shall need is in some sense "dual" and 
has to do with "sampling" the time parameter. Indeed we can sample at integer times 
t = 1,.. . and obtain the following estimate: 

Ve[z(j) e C(~X),j = l , . . . , n ; \z(n)\G < 1] < C(l + A)c«-a"D/2; n,\>l 

provided that G is a group of polynomial volume growth 7(0 ^ t° (t > 1), where 
C, c > 0 are independent of A and n. We can in fact take c = 2a but this is irrelevant 
for our applications. Surprisingly enough, even for A = Ao fixed the above estimate is 
non trivial to extract from the corresponding continuous time estimate. [If however we 
are prepared to settle with an upper estimate of the form C(A, e)t~a~D/2+£ then the proof 
becomes much simpler]. In fact a further refinement will be needed. Let G be, as before, 
some group of polynomial volume growth 7(0 & t° (t> 1) and let e G A C G be some 
(Borel) subset such that 

P[Z(1) G i < ] = l - r / 

where 0 < r\ <C 1 is small. For every « > l w e shall denote: 

Jn = {jEZ;0<j<n;Xj£A} 

which is a random subset of [0,1,. . . ,«]. We shall then "sample" on that subset and show 
that: 

PeW) € C(-A)J e Jn ; \z(n)\ < 1] < C(l + Xfra-D'2; A, t > 1 

provided that r/ is small enough with C, c > 0 that depend on r/. (We can again take 
C — 2OL but this, being irrelevant, will not be proved here). 
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1. Potential and probability theory. 
1.1 Potential theory on a wedge. Let L = (L\,...) be a finite set of linear functional 
on Rd we still denote by: 

n = U(L) = {xe Rd;L(x) > 0 VI G L}. 

IT is clearly a convex cone and we shall assume throughout that IT ^ 0 and that L is 
minimal under Yl(L) = n (i.e., that there does not exist a smaller set £J C L such that 
U(L) = n(L% I shall denote by: 

Pt(x,y) = pt(L;x9y); t > 0, x,y G n . 

The heat diffusion kernel of that region, i.e., the fundamental solution with Dirichlet 
(: vanishing) boundary conditions on 511. We shall also denote: 

P(t,x) = Jpt(x,y)dy = Px[b(s) £ll;0<s<t]; xell, t>0 

where b(s) G Rd (s > 0) is standard Brownian motion. We shall also denote by u(x) 
(= U£ = ux\\x G n ) the unique, up to positive multiplicative constant, strictly positive 
harmonic function on n that vanishes on 311. The function u is positively homogeneous 
u(\x) = Xau(x) (x G IT, A > 0) with a = aL so that u(x) < C\x\a (x G Rd). Letd>2 
and let us denote by As (Z = {jf G R"; |JC| = 1}) the spherical Laplacian (cf. Section 0) 
[with the sign convention: (Ajf,f) > 0,f G C°°(^)l 

Let us then consider the "first eigenvalue problem" on the region I i n i c Z , k , let 
us consider the unique A > 0, wo G C°° (IT n I ) such that: 

Ax wo = A wo, wo > 0 and wo = 0 on the boundary. 

By the use of the polar coordinates it is then clear that u(x) = rawo(cr) (x = (r, &)) with 
a(a + d — 2) = A. We clearly have a — 1 if d — 1. It follows from the above that for 
fAf C X we have a ^ < a^ [4]. We also have: 

(1.1.1) u(x) < C\x\a~x dist(jc,an); x G RJ. 

Both members of (1.1.1) have the same homogeneity and the above inequality is a stan
dard fact from the theory of the boundary behaviour of harmonic functions on Lipschitz 
domains [2], [13]. For the convenience of the reader and just to give a flavour of things 
to come, I will outline an "elementary proof: let xo G dU(L), |x0| = 1 and let M C L 
be minimal undergo G dn(fW). Then by the above eigenvalue argument it follows that 
Uctf(x) = O ^ i s t ^ f l ^ g ^ ^ k ^ ^ a n d w e h a v e o f c o u r s e a ^ > 1.TheHarnackbound
ary principle (cf. [2] and (1.1.10) below) allows us to compare U£(x) with w^(x) and the 
homogeneity does the rest. The above type of argument, which will be repeated a number 
of times in what follows, has the advantage that is "elementary" and only relies on the 
Harnack boundary principle. The drawback however is that it only works for "polygonal 
boundaries". With a little more knowledge of potential theory we can of course deal with 
arbitrary convex cones (cf. [20]). 
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For the heat diffusion in n we shall prove the following upper and lower estimates 

( ' • • • 2 > ^ > < C « ^ e , p ( - t i ) , « , . , ) < < $ ; ,>0,x,yeU 

where e > 0 in the above estimate is arbitrary but CE > 0 depends on e > 0. Getting rid 
of the s is non trivial but unnecessary for us. We also have: 

(1.1.3) P(t,x) > C ^ ; p,(x,x) > C ^ | ; x G II, t > C\x\2. 

We shall need to generalize the above notions and estimates. Let G be a connected 
real Lie group of polynomial volume growth 7(0 ~ P (t > \\D = 1,2,...) and let 
7r: G —> RJ = K be some surjective group homomorphism. Further, let A = — UCj 
be a subelliptic sublaplacian on G and let us fix coordinates on Rd (cf. Section 0.2) for 
which d7r(A) = — IJ^-. Further, let L — (L\,...) a set of linear functions as above on 

V and n = IT(X) C Rd the corresponding wedge. I shall denote by Tig = TlG(L) = 
7T_1 (n(X)) C G (and more often then not I will drop the index G). I shall denote by 
Pt(x,y) = pt(TlG,x,y) (t > 0,x,y G YIG) the corresponding heat diffusion kernel for the 
sublaplacian A (with Dirichlet boundary conditions in n^) and by: 

PG(t,x) = Jpt(TlG;x,y)dy = P#(tMxJ) = Ws) eUG;0 <s <t]; t>09xeU 

where z(s) G G (s > 0) denotes the diffusion generated by A. I shall also denote uG(x) = 
UL{^(X)) (X £ nc) . From the definition of PG and (1.1.2) (1.1.3) we have the following 
upper and lower estimates 

(1.1.4) PG(t,x) < C ^ , t>0,xeG; PG(t,x) > C^-\TT(X)\2 < Ct. 

We also have: 

d.1.5) ^ . * ) < C . ^ « p ( - ^ ) ; tkcG.00 

(1.1.6) p,(g,g) > Cra-D/2u2(g); geG,t>l, c< |*fe)| < C. 

The proof of the above estimates depend on the parabolic boundary Harnack principle 
{cf. [9], [6]). Both P(t, x) and u(x) are positive solutions of | - Z j | in ri(i:) and they 
both vanish on 8H. It follows therefore (cf. [9]) that there exists a constant (depending 
on the normalisation of u) s.t. 

(1.1.7) Crxu(x) < P{\,x) < Cu(x) \x\ < C. 

If we apply this to a subset !M C L we obtain also: 

(1.1.8) C - ' M ^ W < PM(l,x) < Cuu(x)\ x G n(5Vf), 

dist(x,f?Vf ^0)) < 1 
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where we denote M~x(0) = f l i e ^ L l (0) and where we use the fact that: 

We shall also make use of the obvious fact that 

(1.1.9) Pitt**) < PM&X) < i; * > °> x e Rd, M c L 

and for every subset M C X we shall fix once and for all some normalisation of u^(x). 
Now let xo E fA^_1(0) and let us assume that *o & fWf *(0) for every M C M\ C. L. 

It is clear then geometrically that there exists xo E Q some Nhd of XQ s.t. 

(l.i.io) nnan(fWi) = nnan(fW); fWciWl c i . 

If we apply the (elliptic) Harnack boundary principle it follows therefore that: 

(1.1.11) C~lu%(x) < uM{x) < Cu^ix); x E Q, <M C Mx C X. 

From this and the fact that a ^ < aL we deduce that: 

(1.1.12) UM(X) < CuL(x)\ x E AQ, A > 1. 

From this we shall deduce by induction on the dimension d and on card(X) that there 
exists C > 0 s.t. 

(1.1.13) P(l,x)<CuL(x)\ xeTI(L). 

Indeed we can cover 3E(ZUII) by a finite number of Q\,..., Q^ as in (1.1.10), (1.1.11), 
and (1.1.12). For every x E U that lies in AflJHy) (A > 1) the estimate (1.1.13) holds 
by induction on the dimension d and on Card(X). In the complement of that region the 
estimate (1.1.13) follows from (1.1.8) and (1.1.9). 

This together with the obvious scaling property P(X2t, Ax) = P(x, t) (x E n , A, t > 0) 
gives the second estimate (1.1.2). If we combine that estimate with (1.1.9) we can also 
obtain the following improvement: 

P(t,x) < C inf ( ^ T ) ; x E n , t > 0. 

The first lower estimate (1.1.3) is obtained from (1.1.7) by scaling. Now for every fixed 
x E II, h(t,y) = hx(t,y) = pt(x,y) is also a solution of the heat equation. Let us fix 
yo E n and 0 < t\ < tj < h < U and A > 0. Then the Harnack boundary parabolic 
principle says that there exists C = C(ti91 < / < 4;yo,A) s.t. 

( M 1 4 ) ^ , _ ^ < i ^ < c _ ^ L ; t€[t2,hlM<A,x£TL 
hx(t4,yo) u(y0) hx(tuy0) 

These estimates clearly imply: 

Pt(x,y) < Cu(y)plJ2(x,x)p]/2(y0,yo) < Cu(y)plJ2(x,x) 
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which, together with the fact that/?,(*, x) is a decreasing function oft, gives for* = y 

(1.1.15) p]%,y) < Cu(y); \y\<A,te [t2,t3]. 

Similarly, by setting x = y or yo on the right hand side inequality of (1.1.14), we have 

Pti(y,yo)u(y) < Cpt(y,y); Ptl/2(yo,yo)u(y) < Cptl(y,y0) 

which finally gives 

Pt(y,y) > Cu2(y); \y\ <A,t€ [fe, h]. 

From this the second estimate of (1.1.3) immediately follows by the scaling: 

pxit(Xx, Xy) = X~dpt(x, y); t, X > 0, x,y G n . 

If we make the same analysis that we made before with the subsets *M. <Z L\cf.(\.\ .7)-
(1.1.13)] and bear in mind thatp\(x,x) < C (x G IT) we deduce as before from (1.1.15) 
that 

P\(x,x) < Cu2(x); x G n . 

This by scaling and polarisation gives 

Pt(x9x) < CraH//2«2(jc); pt(x,y) < Cra-d/2u(x)u(y); t > 0, x,y G n . 

The Gaussian estimate (1.1.2) is then obtained by general (and by now) standard methods 
(cf. [5]). We can also, of course, improve as before that upper estimate by replacing the 
cofactor of the Gaussian by inf^(r~a^~J/2w^(jc)«^(y)). 

A new idea is needed for the proof of (1.1.5), (1.1.6). We have: 

/?,(ric;x,j/) = JJpt/3(UG',x,z)pt/3(nG;z,u)pt/3(IlG',u,y)dzdu 

and sincep^(11(7;z, u) < pf/3(z, u) < Ct~Dl2(t > 1), where we denote here by pf (•, •) 
the heat diffusion kernel on G, we deduce (for x = y) that: 

/?,(nG,jc,jt) < crD/2P2
G(t/3,x) < cra-Di2u2{x)\ t > o, x G nG . 

But then the same abstract procedure (cf. [5]) as before applied this time directly to the 
operator A on G gives the proof of the estimate (1.1.5). 

It is of some interest to observe that the above argument applied to a unimodular group 
G of exponential volume growth gives the estimate (1.1.5) where D is an arbitrarily large 
number this time. The proof of the lower estimate (1.1.6) is more involved. Observe 
however that this lower estimate is not needed for our applications. The only thing that 
is needed is Lemma 2 below. For that lower estimate we shall need some additional 
technical estimates: 
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LEMMA 1. Letpt(L;x,y) x9y £ T1(L) C Rd, u = uL be as above. Then there exists 
6(e) > 0 (e > 0) s. t. 6(e) —* 0 (e —-» 0) and for which we have: 

L^p'{L^x)dx * 8{e)Uw' xo e n(A' > °-JH<eMVi™ ' "' ' - ' V / 2 ' 

I ^ Dt(L,x0,x)dx < 8(e$$; x0 e n (£ ) , f > 1, |JC0|
2 < O. 

Jdist(jc,dn)<£ x tri 

LEMMA 2. Le*/?/(]!(;; *,j>) with WQ C G be as before then there exists 6(A) > 0 
(A > 0) swc/* that 6(A) —> 0 

v4—xx) 

"(go) 
l | > ^ M l l G ; g ' g ( ) ) * " ̂ } ^ ' > h g° e ° G ' | g° | 2 ~ Q' 

Finally let/?°(x,x), t > l,x,y e i?e(co\/0 be the heat kernel with Dirichlet boundary 
for the ball Bt = B(c0^/t) = {g e G; \g\ < coy/i} (i.e. we "kill" diffusion when it 
reaches the boundary of the ball). Then for any c$ > c\ there exists C > 0 (cf [21], 
8.3.3) s.t. 

(1.1.16) p°(x,y) > CrD/\ x,y E G, \x\, \y\ < cXyfu 

An alternative way to prove (1.1.16) would be to consider the semigroup 7^ attached 
to/7^ and to use ^(7^ft, ft) where f(-) = dist(-, dBt). This can be estimated immediately 
from below by —1| V/Jl^. 

For the proof of Lemma 1 we can scale and assume that t = 1. The first estimate 
follows then from (1.1.2) and the elementary estimate 

/ , , , u(x)exp(-c\x0 -x\2)dx < C^|x0 |^ exp(-c|x0|2). 
•>|*|<q*o| 

For the second estimate we have |*o| < C and if we use (1.1.2) we see that it suffices to 
show that 

/ w(x)exp(—c\x — xo\2)dx = + / = h+h < 6(e). 
Mjc,5n)<e|jc| W F V ' ' ' i\x\<2 i\x\>2 ~ V ' 

On I\ we replace exp(- •) by 1 and on h we replace it by exp(—C|JC|2). The result follows. 
A simple use of the estimate (1.1.5) shows that Lemma 2 is a consequence of the fact 

that uniformly in t > 1 we have: 

ra/2-D/2 / w > ^ «(*&)) e x p ( - c ^ L j dg = o{\) as A -» oo. 

To see this we recall that u(n(g)) < C\g\a and we integrate along "spherical shells" in 
G. This reduces the integral to 

Cr°-'M-^ 
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and the estimate follows at once. 
If we put together (1.1.4) and the two lemmas it follows that for e small enough there 

exist C, c > 0 such that: 

JR^)Pt(Uc;go,g)dg > C - ^ i ; t > 1, c < \g0\ < C 

where now R£(t,go) is the subregion of YIG obtained by requiring that: 

kfe)l > ey/i\«go)\; d(g,dIlG) > e\*(g)\9 \g\ < l/£y/i 

where we shall assume, by changing if necessary go to some other point on go ker 7r, that 
|go| ~ K(go)|- By obvious volume considerations it is clear then we can cover R£(t,go) 
by C metric balls 

B„(co) = {g;d(g,gu) < coVt} C n G (£) v = 1,...,C 
c 

Re(t,g0) C | J Bv(Ci) 

where co, c\ are chosen small enough and so that (1.1.16) is satisfied. The conclusion is 
that we can find some VQ (depending on / and |go|) such that Z?o = BVo{c\) satisfies: 

JBMnG;g0,g)dg>C^l. 

We are finally in a position to prove (1.1.6). We have: 

Pt(nG;g0,g0) > JB JB pt/i(TlG;go,h)ptii(nG;h,k)pt/3(TlG;k,go)dhdk 

> C _ L ^ _ ! Z MPl/i(UG;h,k) 

where we clearly hzvept(TlG; h, k) > p°t(h, k),p° being the heat kernel for the ball i?0(co). 
It suffices therefore to apply (1.1.16) and (1.1.6) follows. 

1.2 The lower probabilistic estimate. We preserve all the notation of Section 1.1 and 
we normalise and rotate the Lj E L so that Lj(\) = Lj(l, 0 ,0, . . . , 0) = \,j = l,...,s. 
We shall also set: 

L(x) = MLj(x), x e R"; A(0 = Z,[TT(Z(0)], t > 0 

where {z(s) G G; s > 0} is a diffusion induced on the Lie group G by the sublaplacian A 
and 7r: G —> W1 is some (surjective) group homomorphism. Observe that here, contrary 
to what was done in Section 1.1, G is not assumed to be of polynomial volume growth. 
The estimate (1.1.3) has the following equivalent probabilistic formulation: 

P[A(J) > - 1 ; 0 < s < t] > Cr01'2 
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where we denote throughout P = fe (or Po when G = Rn). This is the key to the lower 
estimate of our theorem. Before it can be used, however, it has to be somewhat refined. 
The first type of refinement refers to the "curved boundary" (cf. [14]). So that we shall 
prove 
(1.2.1) 

P[A(J) > - 1 +f(s),0< s<t]f* P[z(s) e 7T-lC(-\ + / ( s ) ) , 0< s < t] > Cr"/2 

where/(5) > 0 will be assumed increasing but "slowly enough" with/(0) = 0 and where 
we shall adopt the notation 

C(A) = (A,0,0,...) + n(X) cR" ; XeR 

Th = inf{/;z(0 £ C(-h)}; heR. 

With the above notation the estimates (1.1.2), (1.1.3) say that: 

CTX min[r a /2 ,1] < P[Ti > t] < Cmin[r a / 2 ,1] ; t > 0 

where to obtain the lower estimate for 0 < t < 1 we use the additional (trivial) fact that 
P[TX > 1] = c > 0. If we use the dilatation properties of 7r(z(f)) = &(0 € Rn that take 
h — * 1, f —»t/h2 we deduce that 

(1.2.2) ¥[Th >t]P* mm[(hr^2)a, 1]; t,h > 0. 

We shall first consider the event: 

Wm = [\b(s)\ < 2w/2A(m);2w-1 < s < 2m] 

for some appropriate X(m) —•+ oo. We shall show that: 

P[K II Tx > 4N] <p(m); N > 2m'\ m > 1, 

where the p(m) can be made to go to zero so fast that 

(1.2.3) X>("0<+°°-
m>\ 

To avoid unnecessary complications let X(m) = 2Xm for some 0 < A < 1 and let 

C/m,„ - [ sup \b(s)\ € [2(,/2+A)(n-i)52(i/2+A)n] = h(n)l 
2"'i<s<2'" 

So that: 

K = U um,n. 
n>m+\ 

It clearly is only a matter of showing that for A > 0 small enough we can find an estimate 

nUm,n || Tx > 4N] = p(m, n); n > m, N > 2m~l 
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that is independent of TV and such that: 

(1.2.4) £ p(m,n)<+00. 
n,m 

n>m 

To see this let 
r = mf[tG[2m-\2m];b(t)eIx(n)}, 

and note that r < +00 on Umi„ We then have: 
(1.2.5) 
P[l/m,» n (T{ > 4N)] < P[(r < +00) H (Tx > 47V)] = EP[(r < +00) n (^ > 4N) || jfT] 

< P(r < +oo)sup[P€[r, > 4JV]; |£| G JA(/i)]. 

For the first factor of the right hand side of (1.2.5) we use the standard Gaussian estimate 
for the maximal Brownian motion [11]: 

P(T < +00) < Cexp(-c22Aw+(A7~m)). 

For the second factor we use the estimate (1.2.2) that gives 

(1.2.4) clearly follows. 
We shall now consider the event: 

(1.2.5) Vm = {z(s) e C ( - l +/(2W-1));2W~1 <s<2m) 

and for N > 2m~l we shall show that: 

(1.2.6) P [ ^ f W m || Tx >4N]<Cf(2m-l)2-m/2X(m)a-\ 

Let us consider: 

Qw = C( - l ) \ C ( - l +/(2/w"1)); r = infp"-1 < t < 2w;z(0 G Qw n Wm\ 

We can condition then on % and obtain: 

Po[^»n^n(7! >4A0] = EP[JFMnrwn(r, >4N) \\ %\ 

which by strong Markov gives (since r < +00 on the event in question) 

<P[Tl>2m~l] Sup Fx[z(s)eC(-\);0<s<N]. 
xenmnwm 

The estimate (1.2.6) is therefore an immediate consequence of the fact that because of 
(1.1.1) and (1.1.2) the above sup can be estimated by: 

( Sup uL(x))N-a/2 < C[\(m)]a-lf(2m-l)2m?2{a-l)N-a'2. 
xenmnwm 
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We shall now assume that/ satisfies 

m>0 
^2- w / 2 / (2 ' w ) (A(m)) a " 1 <+oo. 

It follows then from (1.2.3) and (1.2.6) that for all e > 0 there exists wo [depending on 
/ and A among other things] such that for all M > mo we have: 

M 

(1.2.7) £ P ( ^ | | r 1 > 2 M + 1 ) < 6 
m=mo 

which implies that: 
/ M \ 

P( PI Vm\\Tx>2M+x)>\-e. 

This, by (1.2.2), in turn implies that: 

P(A(J ) > - 1 +/W;2m o < s < t) > cra'2; t > 1. 

The above argument is an adaptation to higher dimensions of an argument in [14] for 
random walks. We almost but not quite have a proof of the estimate (1.2.1). 

Before we go any further we shall go back to the original diffusion z(t) E G and prove 
some technical estimates. For s < t/2 we have: 

fu < m* < .• 11 * > fl -
 p i i 'w iv,r;' i ; r i a" 

r, , nsupcP<[r, >t-s] 

by the Markov property where the sup runs through [̂  E R"; |^| < a + 1]. Because 
s < t/2 from our estimate (1.2.2) we see that the second factor in the right hand side of 
(1.2.8) is bounded by C(a + l ) c . We can use the standard Gaussian estimate for the heat 
diffusion on G (cf. [21]) to estimate the first factor and we finally obtain the estimate 

2 

Cexpl— c— +ca) 

for the left hands side of (1.2.8). The factor eca comes from the modular function and 
the, at most exponential, volume growth of the group G. 

The next technical estimate has to do with the increments Xs = z(s)~lz(s + 1) G G of 
the diffusion. Let 5+1 < t, we have then: 

P[M0>*l|r,>o<ffiM^il 
by the definition of the conditional probability and by conditioning on [z(r), r < s — 1]. 
If we assume that s > ct for some c > 0 then because of (1.2.2) the above conditional 
probability can be estimated by 

P[MG| > a] < Ce~ca2+ca 
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where the factor eca comes again from (the possibly exponential) volume growth of G. 
The same estimate holds in general, i.e., for the case s < \0~l0t but the proof is less 

direct. Indeed, with the notation of Section 1.1 what we have to show is: 

(1.2.9) [ fps(nG;g0,g)pl(g,h)PG(hj-s)dgdh<Ce-ca2r(x/2 

JdG(g,h)>a J 

where pt{-, •) denotes the heat diffusion kernel on G and go € G is some fixed point 
s.t. that ir(g0) = 1 = (1,0,. . . ,0) <E Rn. Because of (1.1.4) the estimate (1.2.9) is a 
consequence of 

jd(gh)>J'ps(UG,go,g)Pl(g,hMh)\a dgdh < Ce-™2. 

We shall first prove the estimate: 

(1.2.10) j^h)>apx(gM<hWdh < Ce-ca2(\7r{g)\a + 1). 

We can clearly find some g G G s.t. ir(g) = 7r(g) and \g\G = \ir(g)\ so using the left 
translation by the elements of Ker n we see that it suffices to show that 

L M > Pi(g,h)Hh)\adh < Ce-^(\g\a + 1). 

If we now use the standard Gaussian estimate 

P\(g,h) < exp(-cd2(g,/*)); g,heG, 

we see that we can replacep\(g,h) by exp(—ca2 — ccP(g,h)) and integrate over G. It 
suffices therefore to verify that: 

[exp(-cd2(g,h))\h\adh = f + / < C(\g\a + 1). 

In the first integral we replace \h\* by |g|a and in the second we replace d(g, h)by\h\ and 
the estimate (1.2.10) is a consequence of the obvious estimate 

Je-^\\g\a+l)dg<C. 

To finish the proof of (1.2.9) we are therefore left with proving the estimate: 

JGPs(nG;go,g)(\n{g)\a + l)dg< C. 

This clearly reduces to the corresponding estimate on R" namely: 

/ ps{L;\,x)\x\adx < C 
JTT(L) 

which is clearly an easy consequence of the estimate (1.1.2). 
By the above considerations we have finally proved that we have in general: 

(1.2.11) P[|Ai| = \z(sTlz(s+ 1)1 > a || Tx > t] < Ce~cal 0<s<t-l 
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with constants C, c > 0 that are uniform in a, s, t. 
If we combine the considerations that led to (1.2.7) together with the above estimate 

of (1.2.8) and (1.2.11) it follows that for all e > 0 we can find m,a>0 s.t. 

r M , 

0 Vp;\z(2m-l)\ <a;\(z(f)Y z(/+ 1)| < a log1/2/, 2 " - ' <j <2M || r , > 2M+] 

p—m 

> l-e;M>m. 

If we rewrite this estimate in terms of E(- \\ z(2m~')) we obtain: 
(1.2.12) 

/ P[z(2m-') G </A] 
JAeG,|A|<a 

• P[A(7') > - 1 +/(/"), k(/T'z(/ + 1)1 < a\ogl2j;2m-x <j < 2M || z(m) = h] 

>CN~a/2; N=2M~\ 

The final observation is that for all n,a,b> 0 there exists O 0 such that: 

V[z(n) E dh] 

< CF[z(n) e dh; A(/') > - 1 +/(/"); |(z(/))"^(/' + 1)1 < bj = 0 , 1 , . . . , n - 1]; 

heG, \h\G < a. 

If we insert that last estimate in the integral (1.2.12) we finally deduce that: 

(1 2 13) P [ A W ^ ~ 1 + / ( / % | ( ^ 
> CN~al2, N > 1 

for some appropriate p > 0. 

1.3 Technical lemmas. Let G be some Lie group of polynomial growth (7(0 ~ t°) and 
as before let {z(t) G G; t > 0} be the diffusion generated by the differential operator A. 
We have then: 

(1.3.1) P[sup \z(s)\G> A] < C e x p ( - c — ) ; A > cV^ > C > 0. 

The proof is clear: the above event is the union of the following two events: 

(1.3.2) [|Z(0|G > eoA]; [\z(t)\G < s0X ; Sup \z(s)\G > A]. 
0<5</ 

The probability of the first event (1.3.2) has the correct bound (cf. [21]). To estimate the 
probability of the second event (1.3.2) we condition on Z(T) G dBe(X) the first exit point 
from the ball of radius A and obtain the estimate 

(1-3.3) / f Sup p,(t,g)do(Odg 
Jg£B(E0*) J(,£dB(\) 0<s<t 

where cr(^) e P(dB) is the harmonic measure on OB. The ps(x,y) can be estimated by 
s - Z ) / 2 e x p ( - ^ ^ ) (cf. [21]). For A > y/i it is clear that the sup inside the integral 
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(1.3.3) is obtained for s = t. This gives the estimate (A2 jifl2 exp(—c\2/t) for the ex
pression in (1.3.3) and finishes the proof of (1.3.1). Observe that this type of argument 
applies to groups (or more generally to manifolds) of exponential volume growth, but 
the information that one then obtains is less precise. 

We shall define now: 

?Mt+\)£dy\ inf d(z(s)9()<\\=Pt(x9y\Ody\ x9y9£ G G 
L t<s<t+\ v ' J 

and we shall prove the estimate: 

(1.3.4) Pt(x^0<ctexp^-c^^-cd2(y,Oy t>\ 

where Ct<C (in fact Ct = 0(rD/2) but this will not be proved). 
Let B be the unit ball centered at £ and let r be the first entry time in B after /: 

B = {g G G;d(g,Q < 1}; r=mf[s;s > t,z{s) e B\. 

With this notation it is clear that 

Pt(x9y,0 = Ex[pt+l-T(z(r),y);r< /+ l] 

where ps(-, •) is as before the heat kernel on G, and we obtain the estimate 

(1.3.5) (E*[ /£ ,_ T (Z(T) ,>>) ] ) 1 / 2 (P , [T< t+ l]) '/2 . 

The second factor can be estimated by exp( ^ ) because of (1.3.1). To estimate the 
first factor in (1.3.5) we distinguish two cases: 

CASE (i). d(y9Q > 1010. Then clearly d(z(r\y) > \d(Z9y) and we can estimate 

/?,+I_T(Z(T),}>) < Cexp(—cd2(£,y)). The estimate (1.3.4) follows 

CASE (ii). d(y, £) < 1010. We have in general: 

Pt(x,y; 0 <P»i(x9y) < e x p ^ - c - ^ j ; t>\ 

and in our case we can replace d(x,y) by d(x, £) by the triangle inequality. Our estimate 
(1.3.4) follows again. 

With n as in Section 0.5 and n: G —-> IR̂  as in Section 0.6 we shall now introduce the 
notation 

Dig) = D(7r(g)) = (\7r(g)\a-1 + i)(dist(7r(g),an) +1) , ge G. 

The use of that function lies in the following estimates (cf. (1.1.1)): 

u(g)<CD(g\ gEG. 
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It is furthermore clear that we have 

(1.3.6) D(hg) = D(gh)<C(l + \h\a)D(g); g,heG. 

For further use we shall need the estimate 
(1.3.7) 

J D(x)exp(-d ^ , X ) - Cd2(h,x)\ dx 

<C Dig) exp(-cd2(g, hj) + D(h) e x p ( - c - ^ j t>\,g,h£G. 

To see this we split the integration in the following two regions: R — [x;d(g,x) < 
ed(g, h)] and Rc = G \ R for some appropriately small e. The integral on R can clearly 
be estimated by: 

Cexp(-cd2(g, hj)[l + d{g, h)f supD(x) 

and since by (1.3.6) the above sup can be estimated by (l + da(g, h))D(g) we obtain one 
of the two contributions on the right hand side of (1.3.7). The contribution of the integral 
on Rc can be estimated by: 

expf-c l£>h)\ JGD(hx)exp(-c\x\2)dx 

< Qxp(-cd ^^Dih) JG(\ + \x\a)exp(-c\x\2)dx 

<CD(h)exp ( - ^ ) 

and this gives the second contribution on the right hand side of (1.3.7). 
In actual fact what will be needed is not the estimate of the above integral but a cor

responding discrete variant that we shall now describe. We shall consider Z = {g\9..., 
gn,...} C G some discrete subset that has the following two properties: 

(1.3.8) d(g,;gk)> 10, j^k;d(g,Z)< 10, g e G. 

The existence of such a subset is ensured by taking a maximal subset under the first 
condition (1.3.8). The estimate (1.3.7) will be used in the following obviously equivalent 
form: 

d2(g,x) 
^ x ; e x p i — 

xez 

Let us now consider the region 

RA = [g <E G;dist(7rfe),an) < A] C G 

for some fixed A and let 

7#(0 = Card{g e Z; |g|G < t;g e *A}-

(1.3.7)' ^ Z ) ( x ) e x p ^ - ^ ^ - C ^ , x ) j < 
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In the next section we shall need the estimate 

T ^ O ^ Q l + A ) ^ " 1 , t>\. 

This estimate, because of the first condition in (1.3.8), is a consequence of the following 
estimate: 

(1.3.9) Vt = Wo\G[RK PiBt] < C(l + Aft0"1 

Bt = \g;\g\<t]. 

To see (1.3.9) let us denote by: 

£(JC, 0 = Haar measure [7r_1 (JC) n Bt]; x E Rd, t > 0 

where the Haar measure is of course taken on the unimodular group Ker ir C G that is 
identified with coset 7r-1(x). We then have (cf. [3]) 

Vt = [ £(x, t)I[x; dist(jc, an) < A] dx, t>0 
J\x\<t 

and our estimate (1.3.9) is a consequence of the estimate 

(1.3.10) £(JC, 0 < CP~d\ x G ^ , / > 0 . 

To prove (1.3.10) observe that l(x, t) = 0if \x\ > t. So it suffices to prove that for |x| < / 
we have £(x, t) < l(x, \0t) < CP~d. On the other hand, by the triangle inequality we 
have: 

crli(x2,100 < t(x\, io50 < Cl(x2, io
100; xux2 e Rd, |JCI|, |X2| < t 

and since: 

(1.3.10) follows. 

1.4 Upper probabilistic estimate. Let n = T[(JC) where we normalise as before by 
1/(1,0,...,0) = 1. We shall fix also [0,/] a time interval and we shall consider the 
subset of Brownian paths 

Qo = {u(s) £Rd;0<s<t, u(0) = 0, \u;(t)\ < 1}. 

We shall define the following two random variables 

A = A(a;) = sup{A E R;(A,0,... ,0) + n D UJ] 

r = T(u) = inf{s; 0 < ^ < t, u(s) € 3[(A,0,... ,0) + n ]} . 

Clearly A < 0 on Q0. Let us define v = 0 , 1 , . . . ; £ G Td (resp.: a,b E Zd) by the 
conditions that [ i / < r < i / + l ] and the fact £ (resp.: a, b) is the (or one of the) closest 
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lattice points to u{r) [resp.: UJ(V\ U(I/ + 1)]. The above "parameters" give a partition (or 
to be more precise a covering) of Qo into the subsets 

S(i/o9€o,ao,b0) = {LJ eO.0; i/(u) = i/0, £(u) = Co, a(u) = a0, b(u) = b0}. 

The reader should observe geometrically that £ determines u(r) up to bounded distance 
and therefore it determines A(a;) up to a finite additive constant. 

For every £ G Zd there exists a unique A(Q = A s.t. £ E 3[(A,0,... ,0) + n ] . We 
shall then set Ac = (A - Q , 0 , . . . , 0) G R*, so that Ac + n is essentially the "largest" 
{i.e. more to the right) translate of n containing all the sets S(-, £,...). Here and in what 
follows I denote by Q > 0 a constant that only depends on the dimension d and on the 
shape of the cone C. 

We shall condition now on OJ(V) and u(v +1). The outcome is that we can estimate 
P[S(i/, £, a, b)] by the product of three probabilities PxPiPi (cf. Section 1.1). We have: 

Px < 0 / - a -^ 2
W ( -A c )u(a - A^Qxpl-^-]; v > 1 

P3 < C(t - vTa-dl2u(b - A4) w(-A^)exp 

which are respectively the probabilities that starting at 0 at time 0, we are close to a at 
time v while staying in the Wedge A^ + n and starting at b (or somewhat close) at time 
i /+ lwe are close to 0 at time t while staying on the Wedge. When i/ = 0we have a = 0 
and then we make the trivial estimate P\ < 1. When \v — t\ < 2 the above estimate (or 
even the definition of S(- • •) or of P3) does not always make sense; we shall set t — v — 1 
in the above formula and as we shall see in the considerations that follow, "all will be 
well." We have to multiply P\P3 with P2 which is the probability that starting at a (or 
somewhere close) at time v we are close to b at time 1/+1 and that for some v < s < v+1, 
z(s) has been very close to £, i.e., 

P2 = Pa[ inf \LU(S) - £| < 1, M l ) - b\ < 1]. 
0<s<\ 

As we have already seen in Section 1.3 P2 can be estimated by: 

Pi < Cexp(-c|C - a|2)exp(-c|£ - b\2). 

Let us now assume that t = n is an integer and consider the subset of Qo that consists of 
the paths which satisfy 

(1.4.1) J W ) > - A ; y = 0 , l , . . . , / i 

for some fixed A > 0. What condition (1.4.1) essentially amounts to is that for the 
discrete times t = 0 , 1 , . . . , n we have 

l c(t-v) 

LJ(0), OJ(1), •• •, uj(n) £ - A + n . 
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Our aim is to estimate the probability of the above paths by: 

(1.4.2) A2an-a-d'2. 

This estimate simply means that we do not lose anything in estimating the probability 
(1.1.2) of Section 1.1 if we restrict ourselves to discrete integer times. The way that we 
shall obtain the estimate (1.4.2) is the following: we shall multiply the above estimates 
for P\,Pi, P3 and sum over the following range of the parameters 

n 4 3 x 0 < I / < / I - 1 ; a,Z>£-A + n 

Afl, A^ > A^ - Cd\ A^ < Cd 

We shall then verify that above summation can be estimated by (1.4.2). This verifi
cation is an exercise in summing infinite series and it will be carried out presently in a 
more general setting. 

The generalisations of the above estimate that we shall need are twofold. First we 
shall consider IT: G —• Rd where G is a Lie group of polynomial growth 7(0 ~ P 
(t —> oo) as in Section 1.1. We shall generalise the above estimate in that setting. The 
other complication is more subtle, and we already had to deal with it in [19]. To be 
specific let e G A C G be some subset that satisfies P[Xj G A] > 1 — 77 (for some small 
j] > 0) where^ = (z(/))_1z(/ + 1) G G and {z(t) G G; / > 0} is the diffusion on G that 
is controlled by the sublaplacian A. The estimate that we shall need is the following: 
(1.4.4) 
P[z(v + 1) G 7T_1 ( -A + YI(L)) for all 0 < v < n - 1 that satisfy JG G A; \z(n)\G < l] 

< C ( l + A ) V - a - D / 2 . 

We can even set c = 2a but this refinement will not be proved. Here, a priori, C, c depend 
on j] > 0, IT, G etc. but are independent of A and /. The proof of this new estimate follows 
the same lines as before, but before we give the proof we have to refine somewhat the 
notions involved. We shall consider as before: 

Qo = {z{s) G G , 0 < 5 < t,z(0) = e, \z(t)\G < 1} 

and we shall define A = A(u;) = A(u/), r = T(UJ) = r{uJ) and v < r < v + 1 exactly as 
before on J = 7r(a;) where 7r: G —* Rd and J is the projected path on Rd. Together with 
v we shall need to use another integer time parameter 0 < j < v defined by the condition 

XjeA; Xj+U...9XV$A. 

lfXv G A we sety = v. If for ally = 0 , . . . , v we have Xj £ ^ we agree to sety = 0. 
Instead of the lattice points Zd C Rd, we have to use Z = {g\ ,g2 , . . .} C G the "net" in G 
that was defined in Section 1.3 [cf. (1.3.8)]: £, a,b,E Z are defined as (one of) the nearest 
elements in Zto LJ(T)9 LJ(J), UJ(V +1) respectively {i.e. £ ~ o;(r), a ~ LJ(J), b ~ UJ{V + 1)). 
The "partition" (or more exactly the covering) of Qo is now done by the set S{i/ j , £, a, b) 
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where we specify the corresponding values of the above parameters. The probability 
of S(isj\ £, a, b) is again estimated by conditioning on u(f), u(y + 1) and we obtain the 
estimate P[S{yJ, £, a, b)] < P\PIPT> where clearly as before, by the use of Section 1.1, 
we have 

(1.4.5) PX < Cra-D'2u(-Az)u(a - A 4 ) e x p ( - ^ L ) 

Pi < Of - vTa-D,2u(b ~ AC)n(-A£)exp(- J ^ j 

with the convention that a, b and £ inside u{- • •) actually are 7r(a), 7r(ft) and 7r(£) (the 
same convention as before is used when/ = 0 or |f —v\ < 2). What is more subtle is the 
estimate of Pi that comes from the trajectory between timey and time v + 1. Section 1.3 
gives us already an estimate of that probability but we also have P2 < Crf~-> for obvious 
reasons. We obtain therefore: 

P2 < C M i n f i j ^ e x p f - c — ^ 4 ~ cd2(^b))] 
L V (y-j) J\ 

< ift expf-c ^a} - cd\i,b)\ < Cf]u-JQxp(-cd(^a) - Cd2(^b)) 

where in the last inequality and also in further considerations we have changed 77 to a 
new (larger, but still very small) r\'. 

To obtain the required estimate (1.4.4) we have to sum Y,P\PiPi as before over the 
values of the parameters 

0 < 7 <v<n- 1; a E - A + n,Ai > A C - Q , A C <Cd 

with the same tacit understanding that A^ = A^) • • •. What remains then to be done 
is to use the above estimates to show that this summation can be estimated by the right 
hand side of (1.4.4) and this will clearly complete the proof of (1.4.4). In the summation 
range (1.4.3) it is crucial to observe that: 

| A c | < C ( l + r ) ( l + A ) ; r = d&a). 

It follows that modulo factors of the form (1 + A)c, that will tacitly be dropped in every
thing that follows, we have (cf. Section 1.3) 

(1.4.6) «(-A<i) < C(l + rf; u(b - Ae) < CD(b)(l + rf; 

D(0<C\ti\a-l(l+r). 

If we use these estimates and sum P2P3 over b we obtain (cf. Section 1.3) 
(1.4.7) 

T,p2p3 < c(* ~ v)~a-D/2il'/-Jexp{-cd(£,a))(l+r)c 

b 

•^D(b)exp{-^7)-cd2^b)) 
< C(l +r)c(t-v)-a-D/2ril'-Jexp(-cd(£,a))\(>\a-i e x p f - c - ^ - V 
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We shall multiply the right hand side of (1.4.7) with the estimate of Pj in (1.4.5) and sum 
over £, a. We must therefore estimate 

d.4.8) [ ( ' - ^ r ^y - 'Eo^ r 1 exP(-c^,a))exP(-c^ - J^). 
To analyse the summation that appears in (1.4.8) we shall split it over the following two 
ranges: 

RANGE (i). |£|, |a| < 1010r - \0l0d(^a). 

RANGE (ii). |£|, \a\ > lOr - 10d(£, a) 
where r denotes here the closest integer to <i(£, a). 

IN THE RANGE (i). Yla,t, can clearly be estimated by Y,rc°e~cr < C for some large 
enough Q > 0 and we are left with estimating: 

D rf-j[{t-v)rra-DI2-
\<j<V<t 

IN THE RANGE (ii). We can replace D(a) by (1 + r) c | £ I" - ' (cf. (1.4.6)) and since we 
have the factor e~cr at our disposal it suffices to estimate 

•12 It 12 

P^(-f^) 

t-v+jYa-DIMI2 

Kt-v) 

and multiply it with another factor (1 + r)c to account for the a summation with fixed r. 
In terms of the growth function 7# (cf Section 1.3) we can therefore estimate the above 
sum by 

E E I ^ 2 - P ( - ^ I 2 ^ ) 

= £ C2<^2«-3>A e x p f - C ^ ^ 2 2 A ] 

The final summation overy, v gives then the estimate 

^ r],-l(t-^jTa-D/2+3/2 

i</<"« ( / • ( ; - 1 / ) ) 3 / 2 

which by setting v —j — k can be rewritten: 

E u*« - hy0-0'2*!2 E [/'(' - * - i ) l~ 3 / 2 < c £ tftf - jfe)-"-*/2 ~ r a - ° / 2 . 
A: 0<j<t-k k 

Before we finish the proof of the estimate we still have to examine the trivial cases v > 0, 
j = 0. In that case we estimate P\ < 1. The estimate ofPjPi does not change nor does 
(1.4.7). The expression (1.4.8) is then replaced by: 

( , _ l / ) - « - * / y £ | ^p -2 exp(-C |£ | - c ^ ] 
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where now a — 0. By an even simpler argument than before, the above can be estimated 
by ra~D/2 and the proof of (1.4.4) is complete. 

1.5 The integrated upper estimate. Let L\, Li,... be as before and we shall use here all 
the notation of Section 1.4. Let us denote 

Aj(t)=mf<tQxp(-Lj[b(S)]). 

What will be needed for our applications are estimates of the form: 

(1.5.1) E[{^(fM2(0 • • -} r ; \b(t)\ <\] = 0(ra-d'2)r > 0; 

or more generally, for the diffusion z(t) G G in a group of volume growth 7(0 ^ P and 
7r(z(/)) = 6(0 (7r: G —• Rd as before), we shall need an estimate of the type: 

(1.5.2) E[{^,(^2(0---}r; WOIG < l] = 0(r"-D/2). 

These estimates follow immediately from what we have. Indeed observe that since b(t) & 
—b(t) we can replace in (1.5.1) (1.5.2) all the L/s by —L/s and consider the correspond
ing Aj(f) but we clearly have 

AY(t)A2(t)~> < e~cA = e'cA{t) 

where A (= A(o/)) is as in Section 1.4. But then the estimates (1.5.1) and (1.5.2) follow 
immediately by integrating: 

(1.5.3) £° <rcAP[A < A] dX = 0 ( r a " D / 2 ) . 

The estimate (1.5.3) (at least for G = Rd, D = d) does not need all the machinery 
developed in Section 1.4, it simply follows (by scaling as in (1.2.2)) from the estimates 
in Section 1.1. A little more work is needed for the general case 7r: G —> Rd, but again 
the argument is straight forward (cf. proof of (1.1.5)). 

Where the argument becomes more involved is when we sample the inf in the defini
tion of Aj(t) only on integer times / = 1,2,... or even the random set Jn of Section 0.6, 
Section 2.4 so as to have instead 

An(Li) = inf exp(-LI-(6y)); A*(L() = inf exp(-L /(^)), 
0</<n v ' j€J„ v ' 

where we denote bj = b(j), (J = 0,1,...). To obtain the corresponding estimates for 
these new expressions of^'s the full thrust of Section 1.4 seems to be needed. 

Observe however that if we are prepared to settle with a "loss of an e" i.e. have on the 
right hand side of (1.5.2) 0(ra~D/2+E) for an arbitrarily small e then the proof becomes 
very simple. Here is how one can go about giving that simplified proof: First of all, if 
we are prepared to "lose an e", already (1.5.1) (1.5.2) can be obtained directly with an 
elementary construction that does not use the boundary Harnack principles. The reader 
with some knowledge of elementary probability theory can write this down for himself. 
To obtain from this the corresponding estimates for^n or A*n one can then use a standard 
"maximal oscillation" technique as in [17]. 
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2. Lie groups. 
2.1 The structure ofNC-groups and the roots. To read this section the reader will have 
to refer to [16] Chapter 1.1 shall preserve here all the notation of [16] where in particular 
Q was denoted by X\R = g. Let us assume first that G is a simply connected NC-group 
Lie group. We can then write: 

G = NRx(QRxS) = NxiGR 

where I denote by NR, N, NO,Q,S the analytic subgroups that correspond to X\R, n , . . . , S 
of [16]. Q (resp.: TV) is in particular the radical (resp.: nilradical) and S a Levi subgroup. 
I shall denote by [NR,NR] the analytic subgroup that corresponds to [X\R, X\R] and by 
H = NR/[NR,NR] = W1 so that the above semi direct product induces canonically (by 
inner automorphisms) 

TT: QR x S = GR -> Aut(//) ^ GL„(R) 

dir:qR x $ = QR —• gI„(R). 

One should recall here some other facts and notation from [16]. We have X\R = x\\ © 
• • • 0 x\k and q/n = q/?/no = V(= Rd) and the subspaces ny (1 <y < A:) correspond to 
the distinct non zero real parts of the roots L\, ...,Lk G HOIIIR[F; R]. This decomposition 
of XIR is stable by the action of q# x 3. 

We shall denote by A/o the (clearly closed cf. [15]) analytic subgroup that corresponds 
to no and identify V = QR /N0 = Q/N. The above (direct) decomposition of X\R induces 
a decomposition 

n*/[n*,n*] = ni + --- + n5 

which is also direct. Indeed each subspace if is stable by dir(x) (x G q# x ^) and the real 
parts of the roots of d7r(q) (q G q/j) on riy is L7. By the standard Jordan-Holder argument 
[12], it follows therefore that 

(nffl + • • • + riap)n(f\0l + • • • + n A ) = {0}; a,- ^ ft, i j = 1,2,.... 

We obtain therefore a direct decomposition that is stable by the action of TC(GR). 

Now let z = ng G Z(G) be an element in the center of G. We shall show that z £ GR. 
Indeed with the standard notation xy = y~xxy (x,y G G) we have 

z = zh = (ng)h=nhgh'9 heGR 

andnh ENR^ G GR; this implies that n = nh (and g = g*1). But the real parts of the roots 
of the action of GR on X\R are non zero and we have: n = Exp(i/) = Exp(Ad(/*)z/) = nh 

for some unique z/ G n/? (c/ [15]). This implies that v — 0 and n = e. Our assertion 
follows. 

Now let G be a general connected, but not necessarily simply connected, Lie group 
and let: 

6: G = NR x GR -> G 
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be the simply connected covering group and the covering map. It follows from the above 
that ker 0 C GR and that therefore 

(2.1.1) G = NRxGR 

where NR is the analytic subgroup that corresponds to X\R = q which is thus simply con
nected and closed. Let us now consider G/N where N C G is the (closed) nilradical. The 
Lie algebra of that group is q / n © £ (cf. [ 15]). Let N9 Q, S denote the simply connected 
groups that correspond to n, q and £. Further, let V = Q/N. We have then covering maps 

a:VxS-*G/N; V->Q/N = K/(KHKera) 

where Q C G is the (closed) radical of G. It follows in particular that Q/N = Ra x lb 

and that we can factor a: 

K x S-> F / (FHKera) x S —• G/N 

where now we can identify 

(2.1.2) (3: Ra x lb x 5 -» G/iV; Ker/3 n (Rfl x T6) = {0}. 

Since, however, Ker/3 is central (J3 being a covering transformation), it projects by 
V/(Vn Ker a) x 5 —> 5 to a subgroup of the finite center of 5; this together with (2.1.2) 
implies that Ker f3 is finite. Let us finally consider the canonical projection 

Ra xlb xS->R f l . 

By that projection Ker/3 (being finite) has to go to 0 and therefore it follows that: 

Ker/3 C Jb x 5. 

We finally conclude that we can identify: 

GR/(GRnN) = G/N= VxK=Ra x [(T* x S)/Ker/?|. 

As already observed in Section 0.2, the above factorisation uniquely determines K. On 
the group GR we can therefore define 

Tr:GR-+V^Ra. 

The final thing to observe is that the inner automorphisms induce 

GR -+ Aut(NR) - * Aut(H) 

and that the real parts of the roots of that action (E Hom^(qR/n; R)) with the obvious 
identification factor through IT and can thus be identified with elements of (V)*. To see 
this last point we shall show that the roots that are defined on V are all purely imaginary 
on S = FHKer a and therefore all the Lh i = 1,2,..., s, vanish on the subspace spanned 
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by S. Indeed the elements in V D ker a come from central elements of G that induce a 
trivial Ad() action on X\R. It follows that 

exp(L/(0) = 1 £>eVnKera = Z 

and our assertion follows (the actual roots need not of course reduce to zero on E; they 
could take the values 2niri, n £ Z). 

2.2 The lower estimate. The best way to present the proof of the lower estimate is 
through probabilistic considerations on the diffusion (z(t) G G, t > 0) that is generated 
by A (cf. [16], 18]). Indeed let A C G be arbitrary. We then have 

Me) = jG hmfe~x)<rg = j <t>t(g)<t>t(g-x)dg = JG tf(g)crg 

pe[z(t)eA] = jA<i>t(g)drg. 

A simple use of the Holder inequality then gives 

<t>2t(e)l/2>Uz(t)£A]\A\;l/2 

where | |r denotes the right Haar measure of the set. To obtain the lower estimate in 
the theorem it suffices therefore for every integer valued t > 1 to find the appropriate 
A = At C G for which 

Pe[z(t) GA]> Cra'2; \A\r < CPI2. 

We shall follow very closely the argument of [18] Section 3. Let us write 

z(0 = Z, = 7i72---7/; 

7/ = nJ V i € G\ 7j e GR; nj e NR 

Zt = 7i72 * * • it+\ J Zt — KZt 

At = ninl2-..n!r""fj'-'; j= 1,2,... (setii = e). 

Here G = NR X GR is as in (2.1.1) and we use the standard notation xy = yxy~x (JC, y G G). 
Because of the standard exponential distortion of the distance between NR and G (cf. [18], 
[16]) we have: 

K k < C e c ^ K y=l ,2 , . . . . 

Let us further denote by 

lj•= inf UZj), y = l , 2 , . . . 
1<KA: 

where, as explained in Section 2.1, we use the canonical projection TT = GR —* F to 
identify the real parts of the roots with functions on GR. We shall consider then the event: 

(2.2.1) \Zt\ <A{t
1/2; lj > - 1 + / , 

(2.2.2) \lj\G<plogl'2(l+jy, y = l , . . . , / 
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where the p is as in (1.2.13). We shall show that the probability of this event is > Ct~al2. 
If we use the methods and the results of [18] (The reader will have to carry the details 
out himself), we see that on the event (2.2.1), (2.2.2) we have 

Z, G [x £NR;\x\ < C] • [g G GR\\g\Gk < Ctl'2]=At 

and that therefore \At\r < Cr°l2. This will complete the proof of the theorem. The proof 
of the above probabilistic estimate is a consequence of (1.2.13) and (0.6.1). Indeed we 
consider the projections 

G —>GR —> V 
7T] 7T2 

so that 7r(z(s)) = zR(s) G GR (s > 0) and we shall consider the event in Section 1.2 
[cf 1.2.13] that is obtained "at the G —> V level" with/(^) ~ s£ (e small enough). Then 
delete the event (0.6.1) that is obtained "at the GR—>V level" for some large enough^. 
We thus obtain an event on which all the estimates (2.2.1), (2.2.2) hold and which has 
the required probability. 

The probability theory needed to obtain these estimates in Section 1.2 was quite in
volved. That probability theory simplifies considerably if we are prepared to "settle" with 
the "weak lower estimate" <f>t(e) > C£t~

a~D/2~£ (for an arbitrary small e > 0). Indeed 
we can then replace Q, (i = 1,2) in (2.2.1), (2.2.2) with Ctf and it is then very easy to 
see that the probability of the corresponding event is > Ct~al2~e. 

2.3 A general estimate for the heat kernel Let us preserve all the notation introduced in 
Sections 2.1 and 2.2 and let us denote by G = Gj [NR,NR] = Hy\GR. Let us fix A some 
driftless Laplacian on G and let A the Laplacian on G obtained by canonical projection. 
We shall denote by <j>t the corresponding heat diffusion Kernel on G. Here I shall shift 
to the estimates and the notation of [17]. By following closely the argument in [17] (this 
the reader has to do for himself) we obtain the basic estimate: 

(2.3.1) ^n.l(e)<CEe[An(Ll)--'An(Ls);d(zR(xle) < l] 

where [zR(t) G GR; t > 0] is the diffusion on GR induced by AR (= the projection of A 
by G —> GR) with: 

(2.3.2) An(Li) - inf exp(c|z*(/ - \yxzR{j)\GR - L^bj)); i = 1,2,... ,s, n > 1 
1 <j<n v ' 

where we use the same notation as in [17]. To be more explicit we recall that Lt G V* and 
we denote by bj = b(J) (j = 1,2,...) the canonical projection of zR(j) G GR on V which is 
standard Brownian notion (at integer times) with respect to the standard Laplacian A^ = 
E Jg (cf. Section 0.2). We must also recall that G/N = GR/N0 = Q/N xK= VxK 
a direct product so that if we denote by s/ G GR/NQ the canonical projection of zR(J) we 
have 

Sj = (bj9<Tj)9 gj&(Xj,crj)e VxK; Sj=gi--gj9 bj=Xx+---+Xj (j > 1) 
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which is the same notation as in [17]. Finally the constant c > 0 that appears in the 
definition of An(Li) in (2.3.2) can be assumed arbitrary small. As explained in [17] this 
last fact relies on the strict Gaussian nature (cf. [16] for definitions) of the heat diffusion 
kernel and is highly non trivial to prove. Fortunately as we have already explained in 
[16] and as we shall see here also, we do not have to make essential use of this fact. 

2.4 The upper estimate. In this section we shall preserve all the notation of the previous 
section. Under the NC-condition on the real roots L\,...,Lswe shall estimate the right 
hand side of (2.3.1). Towards that let: 

An(Li) = inf cxp(-Lt(bj)); Bn = sup cxp(C\zR(j - \yxzR(j)\2). 
*></<" V ' \<j<n 

If we bear in mind that 

P[ sup \zR(j-iylzR(j)\ >X}< Ozexpt-dA2); n = 1,2,..., A > 0 
o</<« 

where C, C\ > 0 are numerical constants, we see that, as long as the c > 0 in (2.3.2) has 
been chosen small enough we have: 

lis-ll, = o(«1/p) 
for any preassigned/? > 1. 

It is clear on the other hand that 

An(Lt) < BjH(Li). 

An obvious use of Holder inequality shows therefore that we can estimate the right hand 
side of (2.3.1) by: 

W
1^(E[{A(Z1).--iw(I5)}^4z/?(«),^) < l])17* 

where \/p + l/q — 1,1 < /?, q < +oo are conjugate Holder indices. As we saw in 
Section 1.5, for every q > 1 the above expectation is 0(n~a~D/2). For any e > 0 if we 
chose p > 1 large enough we obtain therefore the estimate 0(n~a~D/2+£) for the right 
hand side of (2.3.1). This is the required estimate with a loss of an e. To "get rid of the 
£-" we have to use the full thrust of Section 1.4. Let 

J = Jn = {j\\ <j < n, \zR(j - \TxzR(j)\ < C}. 

J is of course a random subset of {1,2, . . . , n) that depends on C > 0 which is some 
appropriate positive constant. Let us denote 

A*n(L,) = inf exp(-I,(A,)). 

We can estimate again the right hand side of (2.3.1) by: 

E[Al(Ll)--A
#

n(Lsy,d(zR(n%e)<\}. 

We shall now invoke the much harder estimate of Section 1.5 to deduce that the right 
hand side of (2.3.1) can be estimated by 0(«-a-D/2). 

This finishes the proof of our upper estimate for the group G and therefore also by the 
standard local Harnack estimate for the original group G. 
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