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THE HEREDITY MEASURE OF AN ALGEBRA

VLASTIMIL DLAB

To Professor B.H. Neumann
in honour of his eightieth birthday

The concept of the heredity measure of a semiprimaty ring (or finite-dimensional algebra)
is introduced and some of its elementary properties are studied.

0. INTRODUCTION

The concept of a quasi-hereditary algebra was introduced by Cline, Parshall and
Scott [1] in connection with their study of highest weight categories arising in the
representation theory of complex Lie algebras and algebraic groups. More recently,
these algebras have been linked to the structure of the categories of perverse sheaves
by Miroilo and Vilonen [6] and Ringel and the author [3]. Some of the basic features
of these algebras can be found in [2]. In the present note, we define for every finite-
dimensional algebra, or more generally, for every semiprimary ring A, a rational number
fi(A) satisfying 0 ^ I*{A) ̂  1- We call it the heredity measure of A and formulate
some of its elementary properties.

THEOREM 1. Let A be a semiprimary ring. Then

(i) f*(A) > 0 if and only if A is quasi-hereditary.
(ii) fi(A) = 1 if and only if A is hereditary.

THEOREM 2. Let A and B be semiprimary rings. Then

(i) p{AxB) = rtA)p{B);
(ii) f*{A) — 1/n ^ /j,(A/I), where J denotes the set of all minimal heredity

l€l
ideals of A and n is the number of non-isomorphic simple A-modules.

THEOREM 3. Given a rational number r, 0 < r < 1, there is a finite-dimensional
algebra A such that fi(A) = r.

In Section 1, we introduce the notation, the definition of the hereditary measure
and some examples. The proofs of Theorems, together with additional remarks, will be
given in Section 2.
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190 V. Dlab [2]

1. PRELIMINARIES

Let A be a semiprimary ring, N its (Jacobson) radical and £ = {ei,e2,-- • ,en}
a fixed complete set of primitive orthogonal idempotents of A. It is well-known that
there is a bijective correspondence between the set of all idempotent (two-sided) ideals
of A and the subsets of the set £. Indeed, every idempotent ideal V can be written
in the form / ' — AeA with an idempotent t and the above mentioned correspondence
can be expressed as follows

1 < > c = | e j j , e j j , . . . , e<( j C- c ,

where £' = {e 6 £ \ ee ^ 0} and / ' = A{ei^ + e,-2 4- . . . + e{t)A. As a consequence, we
can formulate the following statement.

PROPOSITION. There is a bijective correspondence between the set of all saturated

chains of idempotent ideals of A

(*) 0 = Jo C / i C . . . C It-i C It C.C In = A, Jt_j / It for 1 < t ^ n,

aiiti tiie set o/aii permutations of £.

PROOF: The bijection is given as follows: The saturated chain (*) corresponds to
the permutation

( * • ) (c w ( i ) , e f f ( 2 ) , . . . ,e,r(n)) ,

where It = A (en(n_t+1) + en{n_t+2) +... + eff(n)) A.

Following [2], an idempotent ideal J = AeA, e2 = e, of A is said to be a heredity
ideal if the eiidomorphism ring of the right module eA is semisimple and the (right)
A-module AeA is projective. Furthermore, a chain of idempotent ideals

0 = Jo C Ji C . . . C Jt-i CJtC.CJi = A

is called a heredity chain if for every t, 1 ̂  t ^ £, Jt/Jt_1 is a heredity ideal of A/ Jt-\.

Trivially, every idempotent ideal J' contained in a heredity ideal J is alone a heredity
ideal, and thus every heredity chain can be refined to a saturated heredity chain of the
form (*), that is, such that no proper refinement of the chain is possible. The length
of such a chain is n and, by the Proposition, an ordering (**) of £ is attached to it. 0

DEFINITION: A permutation (**) of £ such that

{A (ew(n_t+]) + en{n_tn) -f . . . + eT(n)) A | 1 ^ t ^ n}

defines a heredity chain will be called a heredity sequence of A.
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In view of the fact that there is a bijection between the heredity sequences and the
heredity chains of A, the following concept is well-defined.

DEFINITION: Let £ = {ei,e2 ) . . . , en} be a (fixed) complete set of primitive or-
thogonal idempotents of A. Denote by h(A) the number of heredity sequences of A
and by fi(A) heredity measure of A:

Thus, n(A) is a rational number and 0 < n(A) ^ 1.

Example 1. Let Tn be the (infinite dimensional) path algebra of the "complete" graph
on n vertices {1,2,... , n}; denote by a^ the arrow from the vertex i to the vertex j .
Let Dn, Pn and Sn be the deep, peaked and shallow algebras over this graph (see [4,
5])

Dn = Tn/(aili2ai2i3 ••.ait_lit \ {3r,s,l ^ r <s ^i)

{ir = i,)^{ij < i r ) ( V r <j<s)),

Pn = Tn/(ailiJai2i3 ...<Xitlit | ( 3 r , l < r < <)(tr_i > ir < M i ) )

and Sn = Tn/(aili2ai2i3...ait_lil \ ( 3 r , l < r < t)(ir < m a x ( i r _ i , t r + i ) ) ) .

Let ei be the (primitive) idempotent corresponding to the vertex i,l ^ i ^ n and
£ = {e{ | 1 ^ i < n} for each of these algebras. Then, in each case, (ei,e2, • • • ,en) is
the only heredity sequence. It follows that

Example 2. Let An be the path algebra of the graph

1
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over a field k, modulo the ideal generated by the element £) at0t • Thus,
t=i

0
12 . . . n

(n
n 9 (n+1)

(n + 1)

(n — 1) — times

Again, write £ — {eo ,e i , . . . , e n , e n + i } . Clearly, dim* An — An + 1. It is easy
to verify that, for n = 1, (eo,ei,e2), (ei,e2,e0) and (e2 )e i ,e0) are the only heredity
sequences; thus h{A\) = 4 and /^(Ai) = 2 /3 . Assume, by induction, that

n - i ) = (n - l)!(n - l ) (n + 2) and thus I) = .
n(n + 1)

Now, for .An, there are ( n + 1 ) ! heredity sequences ( . . . , en+i) , (n + 1)! heredity
sequences (. . . ,eo) and, for each i, 1 < i ^ n, /i(^4n_i) heredity sequences ( . . . ,e ;) ;
consequently,

/i(i4n) = 2(n + l ) ! + n /i(>4n_!) = n!n(n + 3),

which imph'es fi(An) = (h(An))/({n + 2)!) = (n(n + 3))/((n + l)(n + 2)), as required.

E x a m p l e 3 . Let Bn be the path algebra of the graph

n+ 1

over a field k, modulo the ideal generated by the element J ] atPt7t • We have

0
12 . .

1'2'..
(n + 1)...

( " - ! ) -

.n

• n ' €

(n + 1)

limes

1

D 1'

(n +
(

1) (n

n

n'

+ 1)

B 1 '
(n + 1)

D • • • © n'

(n + 1)

i) ;

https://doi.org/10.1017/S0004972700004299 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004299
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write £ = { e o , e i , . . . , e ^ e ^ , . . . , e n / , e n + i } . Clearly dim* Bn = 8n + 1. As in the
previous example, we are goiug to calculate fi{Bn) by induction. For n — 1, the
heredity sequences are ( e o , e i , e 1 / , e 2 ) , (eo,e1»,ei ,e2) , (e i ,eo ,e1<,e2) , ( e i , e 1 / , e 0 ) e 2 ) ,
{ei,e1i,e2,e0), ( e i , e 2 ) e 1 i , e 0 ) , ( e 1 / , e 0 , e i , e 2 ) , (ej/ , e i , e o , e 2 ) , (ei»,ei ,e2 , e0),
(e 1 / , e 2 , e 1 , e 0 ) , {e2,el,e1i,e0) and (e2, ex,,eue0). Thus, fc(^i) = 1 2 a n d

Assume that

i) = (2n ) !^—^, and thus ^ ^i) ( ) ,
n

Again, count the number of the heredity sequences of Bn ending in en-|_i,eo,ej
and e^/, 1 ^ i ^ n . One can see easily that there are (2n + 1)! heredity sequences
( . . . en-t-i),(2n + 1)! heredity sequences ( . . . eo), (2n + l)/i(jBn_i) heredity sequences
( . . .e j ) and (2n + l ) / i ( 5 n _ i ) heredity sequences ( . . .e; /) for each 1 ^ i ^ n . In
the last two cases, we get all heredity sequences by taking a heredity sequence of the
(canonically embedded) algebra f?n_i (on the subgraph with the vertices 0 , 1 , . . . ,
(n — 1), 1 ' , . . . , (n — 1) , (n + 1)) and inserting the remaining idempotent ey , or e<, into
any of the possible 2n + 1 positions; this way, we get the numbers (2n + l ) / i ( i? n _i ) .
From here, it turns out that

h(Bn) = 2(2n + 1)! + 2n(2n + l)/i(Sn_!) = (2n + l)!2n

and consequently,

2. PROOFS

In this section, we present the proofs of Theorems formulated in the introduction.

PROOF OF THEOREM 1: The statement (i) is trivial.
In order to prove (ii), assume first that A is hereditary. Since the quotient of a

hereditary ring by an idempotent ideal is again hereditary, it is sufficient to show that,
for every primitive idempotent e of A, AeA is a (minimal) heredity ideal. However,
this is obvious.

To complete the proof, assume that fJ-(A) = 1. Let £ = {ei,e2 ) . . . ,en} be a
complete set of primitive orthogonal idempotents of A and write P(i) = e{A. Observe
that, due to the fact that every ideal AefA, 1 ^ i ^ n, is a heredity ideal, the set £
is partially ordered by setting e< -< e;- whenever e{Nej ^ 0, 1 ^ i, j ^ n. Indeed,
since there is no proper embedding of P(i) into itself, e{Nej ^ 0 implies ejNei = 0 for
any i, j(l < i, j < n). Throughout the entire proof, we shall assume that the order
(ei ,e2 l . . . ,en) is a completion of this partial order.

We are going to give an indirect proof. Recall that A is hereditary if and only
if the radical eiN of every indecomposable projective P(i), 1 < i ^ n, is projective.
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194 V. Dlab [6]

Assume that A is a non-hereditary semiprimary ring with fi(A) = 1 which is minimal
in the sense that the quotient ring A/AeiA is hereditary for every i, 1 < t ^ n.

It follows immediately that e\N is not projective; for, Ae\A = e\A and thus, by
minimality, all the remaining e.-TV, 2 < i < n, are projective. Moreover, P(n) is
simple; in fact, it turns out that P(n) is the only projective module which is simple.
For, if Q = Q2 © Qa © . . • © Qn is a projective cover of eiN, where Qi denotes, for
each i, 2 ^ i ^ n , a (possibly zero) direct sum of copies of P(i), then the kernel in the
respective short exact sequence

0-> K ->Q->eiN -> 0

is, by minimality, a semisimple homogeneous -A-module. Thus, making use of the fact
that all eiN, 2 < i ^ n , are projective, if is a direct sum of copies of P(n) and there
are no other simple projective ^-modules P(i), i^n.

Now, since every Ae-iA is a heredity ideal, we may write

e1N = Q'2 + Q'3 + ...+ Q'n with Q\ ~ Qu 2 < i ^ n.

Denoting the right ideal Q'3 + ... + Q'n by X and considering the quotient A =

AjAe2A, we observe that

e i ^ / ( e i i V D Ae2A) = (Q'2 + X)/Q'2 ~ X/(Q'2 n X);

for, there is no homornorphisrn from P(2) into P(i) for i, 3 < i < ra. Furthermore,

clearly

Q'2DXCeiN
2,

and thus Q = Q3©.. -®Qn is a projective cover of the .A-module X. Now, both Q and
X are, in fact, ^-modules and, moreover, X is, by minimality, a projective .A-module.
Thus, the respective short exact sequence

0 -> K' - Q -> X -> 0

is a split sequence of A-modules. Hence, Q has a direct summand isomorpliic to K'

which is contaiiied in rad Q, and consequently K' — 0. This yields

Q'2 0 X = 0;

therefore, by minimality, X — Q'3 + ... + Q'n is the direct sum Q'3®.-.®Q'n, and thus

eiN = Q'2(BQ'3...(BQ'n,

a contradiction. The proof of Theorem 1 is completed. U
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R e m a r k . Let us point out that the property ft(A) = 1 which means that any order of
a complete set of primitive orthogonal idempotents defines a heredity chain is clearly
equivalent to the property that every chain of idempotent ideals can be refined to a
heredity chain. Hence, the above argument provides an alternative proof of Theorem 1

of [2].

R e m a r k . It may be worthwhile to note that every hereditary semiprimary ring, and,
more generally, every quotient of a hereditary semi primary ring has a heredity sequence
(e i , e2 , . . . , e n ) such that the respective Weyl modules

A(i) = eiA/eiA(ei+1 + ei+2 + ... + en)A

are all simple. In fact, the latter property is equivalent to the fact that the (oriented)
graph of A has no cycles, that is, arrows define a partial order on the set of its vertices.

PROOF OF THEOREM 2: (i) If {ejt, e*,,... , e<n} is a heredity sequence of A and
{fh )/«>••• > fjm } a heredity sequence of B , then a sequence {gi, g2,... , gn+m} which
is a permutation n of the sequence

(***) {(ei1 ,0) , (e i j ,0) , . . . , (e in ,0) , (0, / i J , (0, / i , ) , . . . , (O,/im)}

preserving the order of e; 's as well as of fj 's is a heredity sequence of A x B, and every
heredity sequence of A x B is obtained in this way. In order to be more specific, let
us formulate the phrase that n preserves the order of ê  's and fj 's explicitly: Every
permutation 7r of (* * *) defines two integral functions p from {r|l ^ r ^ n} and q
from {s|l < s < m} to {t\\ < t < n + m} by

"•(etr) = 9P(r) and •x{fj.) = 9q(.),

and these functions are required to be increasing. The number of the sequences obtained
in this way is

here, we have made use of the elementary fact that the number of the subdivisions of a
sequence of length in into n + 1 segments is (mjj"n) • Now, we may easily complete the
calculations:

B) =
+ n)\ {Tn + n)\ V ' V ' m\n\

(ii) If I = AetA is a minimal heredity ideal of A, then h(A/I) — fi(A/I) • (n — 1)!
is the number of the hereditary sequences of A ending by e,-. Thus h(A) =
(n — 1)! 53 n{A/I), where X is the set of all minimal heredity ideals of A, and therefore

n /ex
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196 V. Dlab [8]

Finally, let us turn our attention to Theorem 3; we are going to present a proof
using the algebras An of Example 2 in Section 1, and then simplify it by using the
algebras Bn of Example 3. D

PROOF OF THEOREM 3: Denote by R the set of the heredity measures of all (finite)
products of algebras An,n ^ 1 (allowing repetitions). Thus, in view of Theorem 2, R

is the set of all possible products of the numbers

n(n + 3)
rn = fi(An) = -————'•—.

We claim that R = {r £ Q| 0 < r < 1}. Indeed, firstly

( n 4 l ) ( n? n l ...
rn = with qn =

qn

Secondly, if a — I/a 6 R, then

Now, since qn+i — qn — n + 2, there are both even and odd numbers amongst any three

consecutive qn,qn+1,qn+2, and thus (a - l ) / s G R for all a ^ 2. Finally, if 0 < p < q,

P _ P P ) 1 9 — 2 q — 1
q p+l p + 2 " q - l q '

and we conclude that any rational number r, 0 < r < 1, belongs to R. D

Remark. We might have used the algebras Bn of Example 3 to facilitate a shorter
(and more explicit) proof of Theorem 3. Again, using Theorem 2,

(i{Bp x Bp+1 x ... x Bq-2 x # , - i ) = -
q

for any 0 < p < q. Hence, if r is a rational number, 0 < r < 1, then writing

r = p/q, (p,q) = 1, there is a A;-algebra A whose heredity measure fi{A) = r and

q-l

dim* 4 = J|(8< + 1).
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