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Abstract
Machine learningmethods have been used in identifying omics markers for a variety of phenotypes.We aimed to examinewhether a supervised
machine learning algorithm can improve identification of alcohol-associated transcriptomic markers. In this study, we analysed array-based,
whole-blood derived expression data for 17 873 gene transcripts in 5508 FraminghamHeart Study participants. By using the Boruta algorithm, a
supervised random forest (RF)-based feature selection method, we selected twenty-five alcohol-associated transcripts. In a testing set (30 % of
entire study participants), AUC (area under the receiver operating characteristics curve) of these twenty-five transcripts were 0·73, 0·69 and 0·66
for non-drinkers v. moderate drinkers, non-drinkers v. heavy drinkers and moderate drinkers v. heavy drinkers, respectively. The AUC of the
selected transcripts by the Borutamethodwere comparable to those identified using conventional linear regressionmodels, for example, AUC of
1958 transcripts identified by conventional linear regression models (false discovery rate< 0·2) were 0·74, 0·66 and 0·65, respectively. With
Bonferroni correction for the twenty-five Boruta method-selected transcripts and three CVD risk factors (i.e. at P< 6·7e-4), we observed thirteen
transcripts were associated with obesity, three transcripts with type 2 diabetes and one transcript with hypertension. For example, we observed
that alcohol consumption was inversely associated with the expression of DOCK4, IL4R, and SORT1, and DOCK4 and SORT1 were positively
associated with obesity, and IL4R was inversely associated with hypertension. In conclusion, using a supervised machine learning method, the
RF-based Boruta algorithm, we identified novel alcohol-associated gene transcripts.
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Alcohol consumption is an important lifestyle factor that has
been associated with cardiovascular health. Excessive alcohol
consumption leads to hypertension, dyslipidemia and type 2
diabetes(1,2). Whereas moderate alcohol consumption may
improve cardiovascular health despite that several recent studies
suggest no beneficial relationship with reduction of CVD(3–5).
The use of high-throughput transcriptomic analysis has been
playing a significant role in investigating the pathogenesis of
CVD(6–8). In our previous study, using conventional linear
regression models, we examined associations between alcohol

consumption and transcriptomic markers in the community-
based Framingham Heart Study (FHS)(9).

‘Big Data’ applications such as machine learning approaches
provide new tools to discover novel biomarkers for better
understanding of molecular mechanisms underlying diseases
and to increase accuracy of disease predictions(10). Random
forest (RF) is a supervised machine learning method that scores
the importance of the features in a dataset(11,12). RF is a promising
approach in prediction and classification for bias reduction(11,12).
RF has been successfully applied in analysing different types of
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omics biomarkers(13–15). Boruta is an extensionmethod based on
RF to evaluate the importance of original features by comparing
them with their randomised copies(16). In essence, the Boruta
method is an automatic feature selection method. The Boruta
method has been used in over 100 studies in selecting omics
biomarkers related to diseases or traits(13). A recent study showed
that, using simulated and published datasets, the Boruta method
was a stable RF-based feature selection approach(17).

Analysis using conventional linear regression may experi-
ence issues with multiple testing and cannot effectively handle
high-order interactions among tested biomarkers(18). Compared
with conventional linear regression, RFmethod offers alternative
analytical models that may have several advantages such as
model flexibility(19). RF-based approaches may improve the
handling of high-dimensional data by decorrelating the
classifiers and minimising the influence of over-fitting(20).
However, it is unclear whether using RF with automatic feature
selection algorithms such as the Boruta method can identify
additional alcohol-associated transcriptomic markers. To
address this research question, we aimed to use the RF with
the Boruta method to improve the identification of alcohol-
associated gene transcripts and examine the associations of
these gene transcripts with CVD risk factors in the FHS.

Methods

Study participants

The FHS participants included in the present study are thosewho
attended the eighth examination (2005–2008) of the Offspring
cohort or the second examination (2008–2011) of the Third
Generation cohort(21,22). The study sample of the present study
was the same as that was used in our previous alcohol-associated
gene transcripts analysis using conventional linear regression(9).
Briefly, after excluding participants with missing data on alcohol
consumption and gene expression, we included 5508 partic-
ipants, 2381 from the Offspring cohorts and 3127 from the Third
Generation cohort. The FHS protocols and procedures were
approved by the Institutional ReviewBoard for Human Research
at Boston University Medical Center, and all participants
provided written informed consent. This study was conducted
according to the guidelines laid down in the Declaration of
Helsinki, and all procedures involving human subjects were
approved by the Institutional ReviewBoard for Human Research
at Boston University Medical Center (IRB number: H-41461).
Written informed consent was obtained from all participants.

Alcohol consumption

Participants’ alcohol consumption was measured by a techni-
cian-administered questionnaire during the physical examina-
tion in the FHS clinic. Frequency of standard servings of beer,
wine and spirit consumed in a typical week or month were
documented. We calculated the grams (g) of ethanol consumed
each day using the following conversion factors: one 12 oz. beer
has 14 g of ethanol, one 4–5 oz. wine has 14 g of ethanol, and one
1·5 oz. of 80 proof liquor has 14 g of ethanol(23). Based on the
estimated daily alcohol consumption, we categorised our study

participants into three groups: non-drinkers (n 1729), moderate
drinkers (0·1–28 g/d in women and 0·1–42 g/d in men; n 3427)
and heavy drinkers (> 28 g/d in women and> 42 g/d in men;
n 352). We also split the moderate drinkers to light drinkers (0·1–
14 g/d in women and 0·1–28 g/d in men; n 2806) and at-risk
drinkers (14·1–28 g/d in women and 28·1–42 g/d in men; n 621)
and conducted sensitivity analyses separately for the two groups.

Gene expression profiling

We analysed gene expression levels that were measured using
the GeneChip Human Exon 1.0 ST Array as described
previously(24). Briefly, fasting peripheral whole blood samples,
from the same examinations that alcohol consumption was
assessed, were collected in PAXgeneTM tubes. Standard operat-
ing procedures were followed to isolate RNA using a KingFisher®

96 robot, and 50 ng RNA was amplified to create the cDNA
library. The Affymetrix 7G GCS3000 scanner was used to
measure gene expression levels, and the Human Exon 1.0 ST
Array probeset was used to annotate gene transcripts. The final
gene expression profiles were residuals of 17 873 transcripts of
autosomal genes generated using linear mixed models with
adjustment for technical covariates and other factors as fixed
effects as well as batch as a random effect(24).

CVD risk factors

Obesity, hypertension and type 2 diabetes status at the same time
for alcohol consumption and gene expression measurements
were analysed in the present study(25). Obesity was defined as
BMI≥ 30 kg/m2. Hypertension was defined as systolic blood
pressure (SBP)≥ 140 mm Hg or diastolic blood pressure
(DBP)≥ 90 mm Hg or taking antihypertensive drugs for high
blood pressure. We also defined hypertension as SBP> 130 mm
Hg or DBP> 80mm Hg or taking antihypertension drugs(26).
Type 2 diabetes was defined as fasting blood glucose level≥ 126
mg/dl or taking antidiabetic drugs.

Statistical analysis

We performed three main statistical analyses (Fig. 1), including
(1) using the Boruta method to select alcohol-associated gene
transcripts, (2) using RF to examine the prediction capability of
Boruta-selected transcripts for alcohol consumption categories
and (3) examining the cross-sectional associations of Boruta-
selected transcripts with three CVD risk factors (obesity,
hypertension and type 2 diabetes). These analyses were
performed by R studio (version 4.1.2).

Use Boruta algorithm for gene selection

RF method evaluates the importance of variables in the models
by mean accuracy and Gini index(11). However, the regular RF
method does not provide cut-off values for these parameters for
the purpose of variable selection. The Boruta algorithm extends
the regular RF method by reporting the level of the predictors as
‘Confirmed’, ‘Tentative’ and ‘Rejected’(16,27). We therefore used
the Boruta method, implemented with the R Boruta package(27),
to facilitate automatic selection of alcohol-associated gene
transcripts. In this analysis, alcohol consumption (g/d) was
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treated as outcome variable and gene transcripts were the main
predictors, with sex and age as covariates. We used parameter
doTrace= 2 to obtain ‘confirmed’ attributes, that is, alcohol-
associated gene transcripts. To achieve biological and statistical
relevance of the transcripts determined by the Boruta algorithm,
we applied two filtering methods, data-driven and pathway-
based approaches, to choose transcripts to be tested. The first
two sets were selected using the data-driven approach. The first
set included 15 146 gene transcripts with absolute pairwise
Pearson’s r< 0·6 and the second set included 1958 gene
transcripts with false discovery rate (FDR)< 0·2 in the meta-
analysis from our previous alcohol-associated gene transcript
analysis using conventional linear regression models(9). The
third to the fifth sets of gene transcripts were determined based
on well-established gene pathway databases, including
Wikipathways (n 6890), Molecular Signatures Database
(MSigDB) hallmark gene sets (H; 4003 genes) and MSigDB
immunological signature gene sets (C7; 14 580 genes)(28–30). One
at a time, we run Boruta models for these five sets of transcripts.

Gene ontology analysis

A web-based gene ontology (GO) analysis (http://geneontology.o
rg/) was performed to evaluate the biological process relevant to
the Boruta method-selected transcripts(31). Fisher’s exact tests were
conducted using the default reference gene list. Similarly, GO term
with FDR< 0·05 was considered statistically significant.

Exam prediction capability of selected gene transcripts

We used the RF models to examine whether the Boruta method-
selected gene transcripts can distinguish different levels of
alcohol consumption. Three comparisons were performed,
including non-drinkers v. moderate drinkers, non-drinkers v.
heavy drinkers, and moderate drinkers v. heavy drinkers. The R
randomForest package was used to perform these compar-
isons(32). We randomly divided our study participants into a
training set, which included 70 % of the entire participants, and a
testing set, which included 30 % of the entire participants. The
training data were used to train the RF model by default
parameters: ntree (number of trees to grow)= 500 and mtry
(number of variables randomly sampled as candidates at each
split)= square root of number of attributes tested. The out-of-
bag error rate in the training set was used to determine the
performance of the RF model, and the area under the receiver
operating characteristic (ROC) curve (AUC) derived from the
testing set was used to evaluate the prediction capability of the
selected predictors.

Four sets of predictors were analysed, including 1958
transcripts with FDR< 0·2 in meta-analysis (set 1) and twenty-
five alcohol-associated genes with significant Bonferroni-
corrected P values (set 2) in our previous alcohol-associated
gene transcript analysis(9), Boruta method-selected gene tran-
scripts (set 3) and 144 alcohol consumption-associated CpG
(DNA methylation sites) identified from a previous epigenome-
wide association analyses and meta-analysis (set 4)(23). We

Fig. 1. Study flow chart. FDR, false discovery rate; FHS, Framingham Heart Study; MSigDB, Molecular Signatures Database.
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examined these four sets of predictors one at a time. In addition
to these omics predictors, sex and age were covariates in all
models. To determine the optimal threshold value for AUC
calculation and avoid over- or under-sampling misclassification,
we iterated each model ten times. The first iteration used default
values. In the second iteration, using the coords function in R
pROC package(33), we calculated the maximum value of the sum
of specificity and sensitivity using the Youden method based on
the initial AUC calculation. This maximum value was used to
derive the threshold for AUC calculation in this iteration. This
process was repeated in the rest of iterations. We reported the
AUC corresponding to the lowest out-of-bag error rate after the
initial iteration. Also, we compared the AUC calculated for the
four different sets of predictors using the DeLong algorithm,
implemented using the R pROC package. Code for Boruta
method and AUC calculation using RF are in Supplemental
materials.

Association analysis between the expression level
of selected genes with CVD risk factors

We performed cross-sectional analyses between the Boruta
method-selected transcripts and obesity, hypertension, and type
2 diabetes. Covariates included age, sex, current smoking status,
cohort (Offspring or Third Generation cohort), estimated blood
cell compositions(24) and BMI (only in analyses for hypertension
and type 2 diabetes). Generalised estimation equations were
used to account for familial relationships. Bonferroni correction
(i.e. 0·05 divided by the number of transcripts selected times
three CVD risk factors) was applied to determine statistical
significance.

Interaction analyses and stratification analyses

We examined potential interaction between alcohol consump-
tion and sex and age (in continuous scale) in relation to gene
expression for transcripts identified by the Boruta method.
Linear mixed regression was performed accounting for family
structure in FHS. A product term of alcohol consumption and sex
or alcohol consumption and age were added in models.
Covariates included sex, age, current smoking status, the FHS

cohort index (Offspring v. Third Generation) and blood cell
counts (counts of white cell, red cell, and platelet and proportion
of neutrophils, lymphocytes, monocytes, basophils and eosin-
ophils)(9). We also performed interaction analysis between
transcripts selected by the Boruta method and sex and age in
relation to the three CVD risk factors. In these analyses, we used
the same generalised estimation equation modelling described
above in themain effect analysis to test the statistical significance
of the product term of transcripts and sex or age. Further, we
stratified our study participants by sex and age (below or above
median age 55 years) and reran the association analysis between
transcripts and CVD risk factors in each stratum.

Results

Study participants

About 54·3 % participants were women, and the average age of
the participants was 55·4 (Table 1). We classified the participants
into three categories based on alcohol consumption levels: non-
drinkers, moderate drinkers and heavy drinkers. Non-drinkers
tended to be older in age, followed by heavy drinkers and
moderate drinkers. Men tended to drinkmore alcohol compared
with women. More heavy drinkers were current smokers (19 %)
compared with non-drinkers (9 %) and moderate drinkers (7 %).
The proportion of participants with obesity and type 2 diabetes
was higher in non-drinkers (38 % and 16 %, respectively), while
the proportion of participants with hypertension was higher in
heavy drinkers (53 %).

Use Boruta algorithm for gene selection

The Boruta method selected six gene transcripts (SORT1, ODC1,
CTSG, IL4R, MPO and CYTH1) from the Wikipathways set, ten
transcripts (IFI44L, P2RY14, PLAGL1, DOCK4, GAPVD1,
IFITM1, UTP20, MPO, ATP5F1D and RBM38) from the
MSigDB hallmark pathway set and eleven transcripts
(FCGR1A, IFI6, ABCA13, DOCK4, LCN2, DDX58, OLFM4,
CTSG, MPO, CEACAM8 and BPI) from the MSigDB immuno-
logical signature sets (Table 2). Among transcripts that were
associated with alcohol consumption at FDR< 0·2 in our

Table 1. Participant characteristics

Total (n 5508)
Non-drinkers
(n 1729)

Moderate drinkers
(n 3427)

Heavy drinkers
(n 352)

n % n % n % n %

Age
Mean 55·4 60·8 52·5 56·6
SD 13·1 12·6 12·6 11·5

Men 2516 45·7% 676 39·1% 1653 48·2% 187 53·1%
Obesity 1707 31·0% 657 37·9% 956 27·9% 94 26·7%
Hypertension 2112 38·3% 842 48·7% 1080 31·5% 190 53·0%
Type 2 Diabetes 487 8·8% 272 15·7% 193 5·6% 22 6·3%
Alcohol consumption (g/d)
Median 4·7 0 9·1 51·3
IQR 15 0 12·2 27·6

Values are represented as mean ± SD or n (%); alcohol consumption is presented as median (IQR).
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previous analysis using linear regression models(23), the Boruta
method selected four transcripts (OLFM4, CTSG, MPO and
CEACAM8). From those with absolute pairwise r< 0·6, the
Boruta method selected three transcripts (SORT1, DOCK4 and
TNFSF13B). After removing duplicated transcripts (Table 2), we
found twenty-five alcohol-associated transcripts using the Boruta
method.We compared the differences of gene expression levels in
moderate and heavy drinkers relative to non-drinkers (online
Supplementary Fig. 1). We found no substantial evidence
supporting non-linear relationships between alcohol consumption
and these twenty-five transcripts. Also, we found no significant
statistical interaction between the twenty-five transcripts and sex
and age at P< 0·002 (Bonferroni correction for twenty-five
transcripts; online Supplementary Table 7).

Among these twenty-five Boruta method-selected transcripts,
twelve transcripts, (MEIS1, ODC1, ABCA13, OLFM4, CTSG,
CEACAM8, LCN2, UTP20, DOCK4, IL4R, MPO and BPI) had
P< 2·9e-6 (Bonferroni correction for 17 176 genes) in our
previous meta-analysis based on linear regression models(9). In
these twelve transcripts, six (MEIS1, ODC1, ABCA13, OLFM4,
CTSG and CEACAM8; Table 2) were also among those (n 25)
significant using discovery and replication strategy (P< 8e-4 in the
discovery analysis and P< 1·9e-4 in the replication analysis)(9).
The correlation between the thirteen unique transcripts identified
by the Boruta method and those identified by the conventional
linear models (either using discovery and replication or meta-
analysis; n 101) was largely modest, 97% pairs with Pearson’s
|r|< 0·3 (online Supplementary Fig. 3). The pairwise correlation

of the twenty-five Borutamethod-selected transcripts ranged from
0 to 0·84 (Pearson’s |r|) (online Supplementary Fig. 2). There
were 240 pairs of transcripts with |r|< 0·3, 38 pairs of with |r|
between 0·3 and 0·6, and 22 pairs with |r|> 0·6. In these twenty-
two pairs with |r|> 0·6, there were three clusters of transcripts
(online Supplementary Fig. 2), including (1) IFI6, DDX58 and
IFITM1, (2) MPO, CTSG; LCN2, BPI, CEACAM8, ABCA13 and
OLFM4, and (3) ODC1 and RBM38.

Gene ontology analysis

We found that the twenty-five Boruta method-selected tran-
scripts were enriched in ten GO biological processes (online
Supplementary Table 1). The ancestor charts of these significant
GO terms were shown in online Supplementary Fig. 4. These
significant GO terms are primarily for defence response to
bacterium (GO:0042742; P= 2·9e-5; FDR= 0·04) and immune
response (GO:0006955; P= 1·4e-6; FDR= 0·004). We observed
that several transcripts with |r|> 0·6 were among the enriched
genes, for example, IFI6 andDDX58 from the first cluster (online
Supplementary Fig. 2).

Exam prediction capability of selected gene transcripts

In Fig. 2, we showed the ROC curves for the four sets of
predictors derived from the present analysis and our previous
studies, including 1958 transcripts with FDR< 0·2 based on
conventional regression(9), twenty-five transcripts using

Table 2. Boruta algorithm-selected genes

Gene sets

Gene Chr Start Stop P Wikipathways
MSigDB
hallmark

MSigDB immunological
signature

Association
FDR< 0·2

Pairwise Pearson’s
r< 0·6

IFI44L 1 79086136 79108668 9·6e-1
p

FCGR1A 1 149718521 149765367 5·8e-2
p

IFI6 1 27992587 28359029 5·3e-1
p

SORT1 1 109850942 109940573 3·4e-4
p

MEIS1 2 66653313 66800441 7·2e-13 ×
ODC1 2 10568023 10688889 8·4e-11 ×
P2RY14 3 150929912 150996391 2·3e-4

p
PLAGL1 6 144261449 144385677 3·9e-6

p
ABCA13 7 48237836 48700550 5·7e-10 ×
DOCK4 7 111365666 111846508 1·8e-7

p p p
GAPVD1 9 128022911 128191972 7·2e-1

p
LCN2 9 130893682 130915718 4·2e-9

p
DDX58 9 32455306 32732887 4·7e-1

p
IFITM1 11 310891 315260 2·4e-3

p
UTP20 12 101640624 101780384 2·2e-7

p
OLFM4 13 53584428 53708870 5·1e-13 × ×
TNFSF13B 13 108897127 108960825 5·0e-6

p
CTSG 14 25042724 25045559 8·1e-16 × × ×
IL4R 16 27325194 27385797 1·3e-10

p
MPO 17 56347222 56358430 6·1e-11

p p p p
CYTH1 17 76670136 76778378 4·2e-2

p
ATP5F1D 19 1239851 1244813 1·3e-1

p
CEACAM8 19 43084395 43224500 3·6e-9 × ×
BPI 20 36932545 36965907 5·0e-10

p
RBM38 20 55966449 55984369 6·4e-5

p

MSigDB, Molecular Signatures Database; FDR, false discovery rate.
×: transcripts have been identified using conventional linear regression models (see ref. 9).
P values are from meta-analysis in ref. 9.
Transcription start and stop positions are based on GRCh37.
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discovery and replication strategy based on conventional
regression(9), the twenty-five Boruta method-selected transcripts
and 144 alcohol-associated CpG(23). In addition, we integrated
predictors from the latter three sets to test whether additively
combining transcripts and CpG might improve prediction. We
calculated the AUC based on the lowest out-of-bag error rate and
the largest AUC from the ten iterations (online Supplementary
Table 2). For all predictors, the AUC based on the lowest out-of-
bag error rate was slightly better in the analyses for non-drinkers
v. heavy drinkers (0·73–0·77) compared with that for non-
drinkers v. moderate drinkers (0·66–0·70) andmoderate drinkers
v. heavy drinkers (0·65–0·70). In analysis to compare non-
drinkers and heavy drinkers, the AUC of the twenty-five Boruta
method-selected transcripts was comparable (0·73) to that based
on the conventional linear regression (0·74 for the 1958
transcripts and 0·73 for the twenty-five transcripts) and lower
than that using the 144 CpG (0·77). We found the combining-
predictors approach had a slightly better AUC than transcripts-
based approaches and similar as that for CpG. However, no
significant statistical difference was detected between the
twenty-five Boruta method-selected transcripts and other sets
of predictors using Delong tests in the above comparisons
(online Supplementary Table 3). The AUC from analyses based
on light drinkers was not substantially different from that in the
primary analyses combining light and at-risk drinkers (online
Supplementary Table 4).

Cross-sectional association with CVD risk factors

With Bonferroni correction for the twenty-five Boruta-selected
transcripts and three CVD risk factors (i.e. at P< 6·7e-4), we
observed that thirteen transcripts were associated with obesity,
one transcript with hypertension and three transcripts with type
2 diabetes (Table 3). In analysis for hypertension defined as
SBP> 130 mm Hg or DBP> 80mm Hg, the association was
largely consistent. Nonetheless, two transcripts, RBM38
(P= 1·7e–4) and DOCK4 (P= 1·7e-4), remained significant at
P< 6·7e-4. Thus, taken together, nineteen transcript-CVD risk
factor pairs were observed. Among these nineteen pairs, five
pairs have been reported in our previous study(9), and the other
fourteen pairs were unique in the present study (Table 3; online
Supplementary Table 5). In the FHS, we have observed that
alcohol consumption was inversely associated with the risk of
obesity and type 2 diabetes and positively associated with the
risk of hypertension(25). Therefore, if a transcript is positively
associated with alcohol consumption, we expect that this
transcript is inversely associated with obesity and diabetes and
positively associated with hypertension, or vice versa. For the
fourteen novel pairs, the direction of the associations for four
transcript–obesity pairs and one transcript–hypertension pair
were consistent with our hypothesis. The association between
alcohol consumption and these five transcripts were shown in
online Supplementary Table 6. For example, alcohol consump-
tion was inversely associated with the expression of DOCK4,

Fig. 2. ROC of selected predictors. (1) Boruta method was based on the twenty-five Boruta method-selected transcripts; (2) 1958 transcripts and (3) twenty-five
transcripts were from alcohol-gene expression analyses using conventional linear regression (see ref. 9); (4) 144 CpG were from meta-analysis of alcohol-associated
DNA methylation markers (see ref. 21); (5) combined predictors from sets 1, 3 and 4. ROC, receiver operating characteristics.
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IL4R and SORT1, and regression coefficients were−0·0017 (95 %
CI: −0·0024, −0·0011; P= 1·8e-7), −0·0016 (95 % CI: −0·0021,
−0·0011; P= 1·3e-10) and −0·0007 (95 % CI: −0·0011, −0·0003;
P= 0·0003) per 10 g/d higher alcohol consumption, respec-
tively. Consistently, DOCK4 and SORT1 were positively
associated with obesity and IL4R was inversely associated with
hypertension (Table 3).

We found no significant interaction between the twenty-five
transcripts and age (online Supplementary Table 8). We
observed significant interaction between sex and three tran-
scripts, including DOCK4 (P= 5·5e-5), RBM38 (P= 2·9e-4) and
MPO (P= 2·9e-5), in relation to obesity. Stratified analyses by sex
and age are presented in online Supplementary Table 9–12. For
all the three transcripts, their association with obesity was in the
same direction in both sex; however, the association strength
varied in male and female participants. In male participants, the
OR for obesity was 1·30 (95 % CI= 1·03, 1·64; P= 0·03) for
DOCK4, 1·66 (95 % CI= 1·38, 2·00; P= 7·9e-8) for RBM38 and
1·46 (95 % CI= 1·09, 1·96; P= 0·01) forMPO. Whereas, in female
participants, the OR was 2·48 (95 % CI= 1·98, 3·11; P= 2·0e-15)
for DOCK4, 2·65 (95 % CI= 2·17, 3·23; P= 7·9e-22) for RBM38
and 0·65 (95 % CI= 0·42, 1·00; P= 0·05) for MPO.

Discussion

In the present analysis, we used the Boruta method and
demonstrated that twenty-five gene transcripts were associated
with alcohol consumption in FHS participants. Compared with
our previous study based on conventional linear regression
analysis, the present study identified thirteen additional alcohol-
associated transcripts. Several of the thirteen transcripts such as
FCGR1A and SORT1 were further linked to CVD risk factors. We
also showed that the Boruta method-selected transcripts have
comparable prediction capabilities as the transcripts identified
by conventional linear regression analysis in the testing set (30 %
of entire study participants). Taken together, the present analysis

suggests that the Boruta method can contribute to a better
understanding of alcohol-associated transcriptomic changes.
Taken together, the present analysis expanded the candidate list
of gene transcripts for future validation studies, suggesting that
the Boruta method can contribute to a better understanding of
alcohol-associated transcriptomic changes.

RF is a commonly performed supervised machine learning
method for transcriptomic data(34). The RF-based Boruta method
has been used in studies analysing both array- and RNA-
sequencing (RNA-seq)-based transcriptomic data(34–36). We used
the Boruta method because of its stable feature selection
capability relative to other approaches, for example, a study
reported that the Boruta method could identify important genes
and achieved the highest ratio of self-consistent selections(17).
However, a recent study compared three feature selection
algorithms, Boruta, Vita, and AUC-RF, and showed that the three
approaches had a comparable performance regarding identi-
fication of transcriptomic signatures predicting colorectal
cancer(37). A recent study also compared several machine
learning methods and showed the LASSO method identified
more transcripts predicting asthma than the Boruta method(38). It
is difficult to directly compare these studies because of different
study designs, data distribution and phenotypes. Future studies
to compare multiple machine learning methods are needed to
explore at what conditions a certain method can perform better.

Because of the high dimensionality of the transcriptomic data,
we applied two filtering methods, data-driven and pathway-
based approaches before running the Boruta algorithm. Overall,
the pathway-based approach performed better than the data-
driven approach because the former identified more transcripts.
This suggests that embedding biological knowledge may lead to
a better performance of the Boruta method. To the best of our
knowledge, machine learning approaches (such as RF with
Boruta method) have not been extensively examined to study
alcohol consumption-related transcriptomic changes. The
present study contributes novel information to the current
literature; however, future studies are needed to establish a

Table 3. Cross-sectional analysis of Bruta method-selected genes with CVD risk factors

Obesity Hypertension Type 2 diabetes

Gene OR 95% CI P OR 95% CI P OR 95% CI P

FCGR1A 1·54 1·38, 1·72 3·0e-14
SORT1 2·65 2·04, 3·45 3·7e-13
ODC1 2·04 1·72, 2·41 2·2e-16 1·80 1·32, 2·44 1·6e-4
ABCA13 2·29 1·73, 3·01 4·5e-9
DOCK4 1·84 1·56, 2·16 2·0e-13
GAPVD1 3·02 2·31, 3·93 3·3e-16
LCN2 1·71 1·54, 1·90 6·7e-24 1·32 1·14, 1·54 3·5e-4
IFITM1 1·32 1·13, 1·54 5·3e-4
UTP20 2·24 1·58, 3·18 5·9e-6
OLFM4 1·51 1·33, 1·71 1·7e-10
IL4R 0·49 0·38, 0·62 3·3e-9
CEACAM8 1·58 1·42, 1·76 2·1e-17
BPI 1·31 1·17, 1·47 4·4e-6
RBM38 2·05 1·79, 2·35 6·7e-25 1·72 1·35, 2·21 1·5e-5

FHS, Framingham Heart Study.
Generalised estimation equations with adjustment for age, sex, current smoking status, FHS cohorts (theOffspring or Third Generation cohort), estimated blood cell compositions and
BMI (only in analyses for hypertension and type 2 diabetes).
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critical process for using machine learning methods in this
research area, such as performing data harmonisation and
transformation, selecting appropriate machine learning meth-
ods, and conducting external validation.

In our previous study using conventional linear regression
models(9), we reported significant associations between twenty-
two alcohol-associated transcripts and three CVD risk factors.
The present study also showed several additional transcript–
CVD risk factor pairs, particularly five pairs (for five transcripts;
online Supplementary Table 6) were in line with our previous
observations on alcohol consumption and CVD risk factors(25).
Three of the five transcripts (FCGR1A, IFITM1 and SORT1) are
among the thirteen unique transcripts identified by the Boruta
method. The three transcripts had low to moderate correlation
with those identified by our previous study using conventional
regression models(9). GO analysis showed that FCGR1A (Fc
gamma receptor Ia) and IFITM1 (interferon-induced trans-
membrane protein 1) were enriched in nine GO terms related to
defence or immune response (online Supplementary Table 1),
suggesting that alcohol consumption may trigger chronic
inflammation and then affect CVD risk. A genetic variant
(rs4970843-C) at intron of SORT1 (sortilin 1) was associated with
height(39), which is consistent with the present observation on
the SORT1 and obesity (i.e. increased BMI). However, a study in
the Danish PRISME study showed that heavy alcohol drinking
was associated with an increased sortilin, which is opposite to
the present observation on a negative association of alcohol
consumption with SORT1 expression levels (online
Supplementary Table 6). This may be due to most of our study
participants (93 %) are non-drinkers and moderate drinkers.
Nonetheless, because of the cross-sectional and observational
nature of the present analysis, we cannot infer causality. Future
studies with large sample size and in diverse populations are
warranted to validate the present findings.

In approximately 30 % of our study participants (i.e. the
testing set), we tested the prediction capabilities of the twenty-
five Boruta method-selected transcripts. Compared with the
transcripts identified by conventional regression models, the
twenty-five Boruta method-selected transcripts had a compa-
rable prediction capability. Although no statistical significance
was detected, the overall prediction capabilities of selected gene
transcripts were relatively weaker than DNA methylation
markers (AUC 0·73 v. 0·77). These DNA methylation markers
were selected based on a large meta-analysis in thirteen
population-based cohorts(23); therefore, this set of DNA
methylation markers may be less noisy than the gene transcripts.
The analysis combining gene transcripts and DNA methylation
markers did not substantially increase the AUC, which also
suggests that DNA methylation markers may have better
prediction capabilities. However, the additive approach that
was used to combine selected gene transcripts and CpG may be
biased because the potential interaction between different types
of omics markers is not considered(40). Thus, novel analytical
approaches to integrating multiple omics markers are needed to
comprehensively identify alcohol-associated markers. In addi-
tion, compared with array-based transcriptomic data, RNA-seq
has a better resolution and enables the identification of non-

coding RNA. Future studies utilising RNA-seq data are needed to
examine the alcohol-associated transcriptomic changes.

The advantages of the present study include using a well-
established machine learning method and comprehensive data
(alcohol consumption, transcriptomics and clinical risk factors)
collected from the well-characterised community-based FHS.
However, in addition to several weaknesses described above,
other limitations warrant discussion. First, all study participants
were Europeans, and most study participants were non-drinkers
ormoderate drinkers. This limits the generalisability of the present
study to other more diverse populations. Second, interpretation of
the transcripts selected by machine learning approaches is
challenging. We explored their cross-sectional association with
CVD risk factors. However, transcriptomic profiles may change
over time. Prospective association analyses are therefore needed
to provide more robust data regarding the relationship between
alcohol, gene expression and CVD risk factors. Third, different
types of alcoholic beveragesmay have different responses in gene
expression levels. Future studies with larger sample size are
needed to examine specific transcriptomic characteristics asso-
ciated with consumption of each type of alcoholic beverage.
Fourth, questionnaires were used to collect self-reported alcohol
consumption. Measurement errors may exist and affect transcript
selection and prediction accuracy. Nonetheless, this also high-
lights the needs for future studies to comprehensively investigate
surrogate markers for alcohol consumption.

The association of alcohol consumption and cardiovascular
health is complex, mainly due to the uncertainty related to the
potential impact of moderate alcohol drinking on cardiovascular
health(3–5). Majority of study participants are non-drinkers or
moderate drinkers. Our previous study using conventional
regressionmodels did not find a clear protective effect of alcohol
consumption on CVD risk factors through transcriptomic
biomarkers. In the present study, we used a different analytical
approach, yet the findings echo those from our previous study(9).
It should be noted that the present analysis only examined one
commonly used machine learning algorithm. Other machine
learning and deep learning algorithms(41), together with
profound bioinformatics knowledge, may facilitate the identi-
fication of true causal transcriptomic markers and improve the
discrimination capacities of alcohol-associated transcriptomic
biomarkers.

In conclusion, we applied a supervised machine learning
approach, the RF-based Boruta method, and identified addi-
tional alcohol-associated gene transcripts, compared with
analysis using the conventional linear regression models.
These additional transcripts expand the candidate list for future
validation studies; thus, our findings support the notion that
machine learning approaches can contribute useful information
to unravel the complex relationship between alcohol con-
sumption and CVD risk. Our findings support the notion that
machine learning approaches can contribute useful information
to unraveling the complex relationship between alcohol
consumption and CVD risk. The present study also highlights
that future studies in large and diverse samples are needed to
comprehensively investigate the impact of alcohol consumption
on transcriptomic changes and subsequent disease burden.
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