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The model eukaryotic microalgae Chlamydomonas reinhardtii is well known for its ability
to generate bioconvection flows that are associated to intricate concentration patterns.
Recently, it was demonstrated that the propensity of these algae to move toward a light
source – a phenomenon termed phototaxis – can be exploited to locally concentrate
micro-organisms and induce (photo)-bioconvection in algal suspensions by inducing a
localised excess of density. In the present study we show experimentally that a cell
population in a thin liquid layer self-organises in the presence of a heterogeneous light field
and displays remarkable symmetry-breaking instabilities that are ruled by both the width
of the light beam and the photo-bioconvection Rayleigh number. Beside circular stable
states, fingers, dendrites and wave instabilities are reported, quantified and classified in a
general phase diagram. Next, we use lubrication theory to develop an asymptotic model
for bioconvection in a thin liquid layer, that includes the influences of both gyrotaxis and
phototaxis. We obtain a single nonlinear anisotropic diffusion–drift equation describing
the spatiotemporal evolution of the depth-averaged algal population. Analytical and
numerical solutions are presented and show a very good agreement with the experimental
results. In particular, we show that the dendrite instability arises as a result of a subtle
coupling between the nonlinearity of the phototactic response, the gyrotactic effect and
the self-induced bioconvective flows. Such complex flow fields might find applications in
photo-bioreactors, through the efficient stirring of the harvested biomass.

Key words: bioconvection, collective behaviour, thin films

1. Introduction

The swimming of flagellated micro-organisms is a timely subject, at the crossroads of
active matter, hydrodynamics and biophysics. In a larger prospective, understanding the
behaviour of semi-dilute to dense suspensions of active (self-propelled) particles is a
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central question of contemporary physics. From a theoretical standpoint, a considerable
amount of work has been devoted to explain the emergence of collective behaviours
(flocking, etc) in such systems.

While in low-concentration suspensions only individual motions prevail (Lauga &
Powers 2009), when the concentration is higher than a few percent in volume, interactions
between neighbouring microbes are no longer negligible. It generally consists in repulsion
or self-alignment and can lead to collective behaviour like, for instance, the so-called
bacterial turbulence (Dombrowski et al. 2004; Dunkel et al. 2013), or the spontaneous
formation of flocks (Bricard et al. 2013) that offer striking similarities with the liquid/gas
phase transition. On the experimental side, however, such a phenomenology is only
observed in highly confined systems.

In a situation of intermediate concentration, typically from 0.1 to a few percent,
fluctuations of concentration across the suspension induce corresponding fluctuations of
the suspension effective density since a perfect density matching between micro-organisms
and the surrounding fluid is seldom achieved. These density gradients in turn generate
pressure gradients that drive macroscopic flows within the suspension, whose typical scale
is much larger than the microbe size, a phenomenon called bioconvection (Childress,
Levandowksy & Spiegel 1975; Kessler 1985; Pedley, Hill & Kessler 1988; Hill, Pedley
& Kessler 1989; Pedley & Kessler 1992; Vincent & Hill 1996; Bees & Hill 1997, 1998;
Janosi, Kessler & Horvath 1998; Ghorai & Hill 2005; Williams & Bees 2011a,b). Such
density fluctuations typically arise from the directional swimming of individual cells.
Directional swimming is generally induced by taxes, i.e. the ability of micro-organisms
to swim along vectorial fields (e.g. gravity, electromagnetic fields, etc.) or gradients of
scalar fields (e.g. concentration of dissolved chemicals, temperature, etc.). For example,
positive gravitaxis denotes the ability of some bottom-heavy microbes to swim with an
average-upward motion (against the direction of gravity). The subsequent accumulation
of microbes on top of the suspension can induce buoyancy-driven instabilities (Hill et al.
1989; Bees & Hill 1997, 1998; Williams & Bees 2011a,b) provided the density gradient is
large enough compared with the action of diffusion and viscosity.

Therefore, the onset and magnitude of these flows are naturally ruled by a direct analog
of the Rayleigh number: H3ρ0βg�c/(Dη), where H is the depth of the suspension (in
the direction of gravity), ρ0 is the density of the medium in absence of the cell, g is
the gravity constant, β = (ρref − ρ0)/(cref ρ0) is the relative difference between cells and
the surrounding fluid (where ρref is the density of a suspension at concentration cref ),
D is the effective diffusion coefficient of randomly swimming micro-organisms, η is the
fluid dynamic viscosity, supposedly independent of the cell concentration, and �c is the
magnitude of the cell density averaged finite difference. Similarly to the classical thermal
convection (Birikh 1966), spontaneous bioconvection then occurs when the Rayleigh
number is larger than a threshold value, typically of a few hundreds, as shown for various
species such as the model phototactic algae Chlamydomonas reinhardtii (CR) (Harris
2009) that is investigated in the present study. On the experimental side however, and
in contrast with thermal convection, the magnitude of �c cannot be directly imposed nor
controlled in a stationary way. Because the Rayleigh number cannot be directly imposed
experimentally, it is convenient to introduce a pseudo-Rayleigh number Ra based on the
initial cell concentration c0 that is readily imposed in experiments. This number is then
rather defined as

Ra ≡ H3βρ0gc0

Dη
. (1.1)
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Pattern formation in photo-controlled bioconvection

While this definition is indeed convenient to compare experimental results and, as we
shall see later, naturally arises from classical models of bioconvection, the threshold values
that control the emergence of symmetry-breaking bioconvective instabilities depend on
the underlying mechanism responsible for the emergence of density fluctuations. While
most previous studies on bioconvection investigated the influence of a global forcing
(e.g. gravity alone or coupled with directional lighting, for instance (Williams & Bees
2011a)), a few recent experimental and numerical studies demonstrated that a thin light
beam could induce efficient (photo)-bioconvection under low Ra conditions (Dervaux,
Capellazzi Resta & Brunet 2017; Arrieta et al. 2019; Ramamonjy, Dervaux & Brunet
2022). In these studies, CR accumulate around a light beam of width w � H, which in
turn induces convective flows that can be as large as the container size, typically a few
centimetres. This accumulation is due to the phototactic properties of the microalgae
that exhibit directional swimming in the presence of a light intensity gradient. Under
appropriate conditions (Ra � 100), the accumulation of CR can also generate secondary
instabilities, where axisymmetric rings of concentration propagate outwards from the
beam at a well-defined velocity (Dervaux et al. 2017), a phenomenon attributed to a subtle
coupling between phototaxis, self-generated convective flows and gyrotactic-induced flow
focusing. Gyrotaxis, which will be introduced in greater detail below, is a physical effect
arising from the coupling between the flow vorticity and the directional swimming of
micro-organisms (Kessler 1985; Garcia, Rafaï & Peyla 2013).

One of the practical interests to generate light-controlled photo-convective flows with
spatiotemporal instabilities at relatively low Ra can be foreseen in mixing enhancement,
which is often required for an efficient and well-distributed access to nutrients, in
particular in photo-bioreactors. In seeking for a way to generate more complex flow
patterns under low Ra conditions, the present study investigates the situation where the
light beam w is comparable or slightly wider than the suspension depth H. In practice,
three control parameters are varied: the suspension concentration c0, the layer thickness
H and the width w of the laser beam. From these quantities, we define two dimensionless
numbers: the dimensionless beam width w/H, which was varied between 0.5 and 20 as
well as the pseudo-Rayleigh number that was varied approximately between 5 and 1000.
Let us note that above a critical value of the pseudo-Rayleigh number of around 1500, the
cell suspension becomes globally unstable, even in the absence of a light intensity field. As
mentioned above, in this case the bioconvective instability is induced only by gravitaxis
(Plesset & Winet 1974; Childress et al. 1975; Dervaux et al. 2017).

In this paper our experiments reveal up-to-now unreported spatiotemporal dynamical
regimes, where the concentration field is no longer axisymmetric, which presumably
couples with the associated convective flow in a non-trivial way. We first present the
experimental set-up and establish a diagram of existence of the different spatiotemporal
regimes by systematically varying the beam width and the Rayleigh number. At moderate
Ra and large w/H, the concentration field shows a drift of its centre of mass from the
beam centre. At higher Ra and moderate w/H, a dendrite-like pattern of concentration
appears, with remarkable spatial periodicity in the azimuthal direction, for which we
conduct a quantitative study (§ 2). In § 3 a model of bioconvection incorporating both
gyrotaxis and the nonlinear phototactic response is introduced and solved numerically in
two dimensions. In order to gain further insight into the physical mechanisms underlying
the instabilities observed experimentally, and taking advantage of the geometry of our
experimental system, a lubrication approximation is used in §§ 4 and 5 to develop an
asymptotic model of bioconvection in a thin film, once again in the presence of phototaxis
and gyrotaxis. In particular, the full model of bioconvection is reduced to a single nonlinear
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Figure 1. (a) Sketch of the experimental set-up used to measure phototactic response. A petri dish contains
a suspension of CR that are attracted toward a green light beam by phototaxis. A camera acquires the
depth-averaged cell concentration field from above from the measurement of red light transmitted through
the suspension. The experimental set-up is kept in a dark enclosure. (b,c) Images of laser beams reconstructed
from their light intensity profiles. The images shown correspond to the smallest (b) and the largest beam width
w (c). (d) Radial profiles of laser beams intensity for five different widths w, with a fixed maximum intensity
of Imax = 5 W m−2. (e) Phototactic susceptibility χ(I) versus light intensity, from (Ramamonjy et al. 2022).

anisotropic diffusion–drift equation describing the depth-averaged cell concentration in
the thin liquid layer. A physical interpretation of this equation is presented in § 6 before
making a comparison between our experimental results and analytical/numerical solutions
of this equation (§ 7). Finally, we summarise our findings and suggest perspectives for
future studies in § 8.

2. Experimental results

2.1. Set-up
In this work we investigate the collective behaviour of a suspension of CR under
heterogeneous light fields. The experimental set-up, already used in previous studies
(Dervaux et al. 2017; Ramamonjy et al. 2022) is summarised in figure 1(a). A levelled
petri dish (inclination ≤0.1◦) is filled with a layer of thickness H (typically of the order
of a millimetre) of a suspension of CR at concentration c0 (typically of the order of
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106 cell ml−1). A radially symmetric green laser beam shines the suspension in order
to create a heterogeneous light exposure (see figure 1b,c). The shape of the light beam
can be approximated by a Gaussian core supplemented by an exponential tail, as shown
in figure 1(d). In order to control the beam width, we add one or several diffusing layers
between the laser and the petri dish while its intensity can be tuned using a pair of crossed
polarisers. The diffusers only have a minor effect on the width of the Gaussian part of
the light beam: the beams of figure 1(b,c) are barely distinguishable from each other.
However, they significantly change the width of the exponential tail, as shown in radial
profiles of figure 1(d). No difference in the cell response could be observed between
polarised and non-polarised light. More details on the experimental protocol are provided
in Appendix A.

At time t = 0, the laser is switched on. Because of their phototactic properties, CR cells
move toward the light beam where they accumulate over time and form a well-defined
concentration pattern that can be, as we shall detail below, stationary, periodic or
continuously growing over the time scale of an experiment, roughly 90 min. The algae
drift toward the light source with a velocity vdrift proportional to the light intensity
gradient: vdrift = χ(I)∇I. The proportionality coefficient, χ(I), is called the phototactic
susceptibility and has been demonstrated to be a highly nonlinear function of the light
intensity (Ramamonjy et al. 2022); see figure 1(e).

Because CR cells exhibit a negative phototactic response (χ(I) < 0) above a critical
light intensity Ic � 100 W m−2, i.e. cells swimming away from the light source, the
maximum light intensity was kept at a constant value of 5 W m−2 in all experiments in
order to elicit only the positive phototactic response (χ(I) > 0). Recent results revealed
that the maximum sensitivity of the phototactic response of CR to light intensity gradient
was found at a very low light intensity (Ramamonjy et al. 2022), typically around Ith �
10−3 W m−2, a value also close to the detection threshold. Furthermore, the susceptibility
χ(I) decreases monotonically with increasing intensity I before changing sign (i.e. CR
cells move away from the light source) at Ic. Let us note that a qualitatively similar
behaviour has also been reported for Euglena gracilis (Giometto et al. 2015). Consistently
with the measured susceptibility χ(I), we define the width w of the light beam as the
distance from the centre of the beam where the light intensity falls below an arbitrary
threshold of 0.5 % of the maximum light intensity (i.e. around 5 × 10−2 W m−2). This
highly nonlinear susceptibility suggests that a significant – and possibly dominant –
contribution of the phototactic flux of algae should occur along the tail of the light beam,
i.e. in the region of relatively weak intensity where I is slightly higher than Ith. Hence,
besides the pseudo-Rayleigh number Ra, another presumably important control parameter
is the width of the light beam. In the present study, both parameters are varied within a
large range in order to better understand the crossed influence of these quantities.

2.2. Phase diagram
In this section we classify the various patterns observed in the ∼100 independent
conducted experiments. Four main patterns are identified and their domain of existence
in the parameter space are represented in figure 2. At relatively small beam width and
pseudo-Rayleigh number, only round patterns are observed. They are stationary and
circular and closely follow the light beam (figure 2a and pale blue region in figure 2 f ). As
we already showed in a previous work (Dervaux et al. 2017), when the pseudo-Rayleigh
number is increased at low w/H, wave emission occurs: round patterns become unstable
and stationarity is lost (figure 2b and pale pink region in figure 2 f ). While they remain
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Figure 2. (a–e) Cell concentration fields imaged from the top view of the different types of patterns
observed in photo-bioconvection experiments. Images are centred around the light beam. Colourmap with
low concentrations in dark blue, high concentrations in dark red and maximum brightness for intermediate
concentrations. The three main patterns are round, waves and dendrites. (a) Stationary round pattern.
(b) Waves of concentration ‘rings’ propagating radially from the centre to the periphery. (c) Dendrite-like
pattern with branches of high concentration continuously splitting and merging, and a stationary radial
extension. (d,e) Unsteady directional growth (or fingering instability) from a initially round pattern (d) and
from dendrites (e). ( f ) Occurrences of the different pattern types are plotted in a phase diagram with
pseudo-Rayleigh number Ra and relative beam width w/H as control parameters. Boundaries are a guide for
the eye to delimit the domains of existence of round, waves and dendrites patterns that are respectively coloured
in pale blue, green and violet.

approximately axisymmetric, waves of high algae concentration are periodically emitted.
At a larger relative beam width w/H, a very different short wavelength instability is found,
also above a critical threshold in Rayleigh number. These patterns consist of periodic thin
dendrites that grow radially and exhibit splitting until a final state is reached (figure 2c
and pale green region in figure 2 f ). In this dendrite instability the orthoradial invariance
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Figure 3. (a–g) Concentration pattern in green pixel level, showing the time evolution from an initial
homogeneous culture (a), for two values of beam width w = 2.7 mm (snapshots b–d) and w = 7.5 mm
(snapshots e–g). (h) Stationary cell concentration radial profile (w = 7.5) and definition of median
concentration c1/2 = (c0 + cmax)/2 and corresponding radius R1/2 (also represented in panel g). (i, j) Time
evolution of cmax and R1/2 (same conditions as in panel h). (k,l) Normalised maximum concentration cmax/c0
and pattern size R1/2 versus pseudo-Rayleigh number Ra for different beam widths w. Each point corresponds to
a single experiment. Error bars take into account both the accuracy of the local cell concentration measurements
by red light transmission, and the variability when averaging cell concentration profiles over time and along
θ = [0; 2π]. Lines: theoretical predictions from the asymptotic model, obtained from (7.2) with A = 26 ± 6
and α0 = (1.5 ± 0.2) × 10−4.

is lost but we can anyway extract stationary time-averaged physical quantities from the
depth-averaged concentration field c̄(r, θ, t). Finally, at intermediate Rayleigh number and
large enough w/H ratio, a fingering instability with directional growth is observed. In
this regime a single finger (or bulge) grows from the initial – and transient – circular
cell aggregate (figure 2d). Note that we also observe a mixed state in which the fingering
directional growth and the dendrite instability occur together (figure 2e).

2.3. Global properties of the cell patterns
Two typical experiments are shown in panels (a) to (g) of figure 3 and illustrate
how an initially homogeneous culture subjected to the light beam (figure 3a) becomes
progressively inhomogenous and ultimately forms spatially structured patterns. At a
large beam width and high Rayleigh number (figure 3e–g), transient dots are sometimes
observed (figure 3e). They are millimetre-sized structures that move toward the centre
of the beam and merge to form the final pattern. Next, let us focus on the global
properties of the cell concentration patterns: in figure 3 we report the maximum cell
concentration and the pattern size as a function of both the Rayleigh number and the
beam width. As shown in figure 3(h), the pattern size R1/2 is defined as the distance from
the centre of the beam where the cell concentration is halfway (median value) between the
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maximum concentration cmax and the initial concentration c0: c1/2(R1/2) = (c0 + cmax)/2.
Experiments that exhibit a fingering instability are excluded from this analysis since this
quantity is then not well defined. Let us note that the maximum cell concentration is
always located at the centre of the beam. In panels (i) and ( j) of figure 3, it can be seen
that the maximum cell concentration and pattern radius in a typical experiment increase
monotonically in time before reaching a saturation value after ∼1 h. The stationary values
(or the average value for time-dependent periodic wave patterns) are recorded in panels
(k) and (l) of figure 3 as a function of both the Rayleigh number and the beam width R1/2.
While the maximum cell concentration strongly decreases when the Rayleigh number is
increased, no significant dependence of cmax on the beam size could be detected. The
pattern size on the other hand strongly increases with both the beam size and the Rayleigh
number.

2.4. The dendrite pattern
The so-called dendrites regime denotes a concentration field that self-organises into a
pattern of branches, see figure 2(c) and shown as green star symbols in the phase diagram
(figure 2 f ). It is found to occur at a rather large beam width (it does not appear for the
smallest value of w = 2.7 mm), and it requires a relatively large pseudo-Rayleigh number.
The phase diagram indicates that the critical Rayleigh number above which the dendrite
pattern appears depends on the relative beam width w/H.

While the centre of mass of this pattern roughly remains at the centre of the laser spot,
the depth-averaged concentration c̄(r, θ, t) is no longer axisymmetric. The formation of
dendrite patterns follows a transient regime where spots of larger concentration form in
the suspension within the first tens of minutes (figures 3e and 4b) after the laser light
is turned on. This pattern of dots, appearing in a region around the light beam of area
increasing with both w and Ra, is reminiscent of spontaneous bioconvective instabilities
that originate from the upward swimming of micro-organisms (Bees & Hill 1997; Williams
& Bees 2011b). During this transient stage, the maximum cell concentration near the
centre increases in time while the overall concentration field self-organises in radially
growing branches of relatively high concentration (figure 4c). The evolution of branches
with time exhibits a complex dynamics involving the merging and splitting of dendrites.
This dynamics is shown with a kymograph depicting the time evolution of the angular
concentration profiles at a fixed distance from the beam centre (figure 4e). Despite these
dynamical events, the average spacing between branches remains fairly well defined. The
pattern eventually reaches a stationary state of maximum radial extension (figure 4d) from
which we measured the spacing between branches (see Appendix A). The normalised
orthoradial wavelength λ/H is plotted versus Ra for different w in figure 4( f ). Error
bars are mainly a consequence of the circular geometry that prevents a strictly constant
interbranch distance. Although the domain of existence of dendrites patterns in the phase
diagram depends on w, no effect of w could be noticed on λ. Also in the range of the error
bars, the value of the normalised wavelength, measured as λ/H = 0.63 ± 0.08, is largely
independent of Ra.

2.5. Directional growth or budding instability
The regime of directional growth denotes a situation, observed at high beam width
(w/H > 1), where the concentration field progressively and continuously destabilises
into a unique finger (or bud) drifting from the centre of the beam; see figure 2(e). This
directional growth occurs either from initially round patterns at low pseudo-Rayleigh
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Figure 4. (a–d) Cell concentration field imaged from the top view at different times during a typical
experiment showing the formation of dendrites. The light beam at the centre is turned on at t = 0. From
an homogeneous cell concentration field, (a) aggregate dots of intermediate concentrations move towards the
centre (b) where branches split and grow with increasing concentration at the centre (c) before reaching a steady
state (d). (e) For the same experiment, kymograph of the cell concentration as a function of time and the angular
coordinate θ at a fixed distance 5 mm from the beam centre. Arrows show splitting events while merging events
are circled. Here Ra = 1100 (H = 0.51 mm, c0 = 2.6 × 106 cells mL−1), w = 20 mm. ( f ) Relative averaged
wavelength of the dendrite pattern as a function of the pseudo-Rayleigh number.

number Ra, or mixed with dendrites at higher Ra. In both case, the same phenomenology is
observed. The cell concentration pattern is initially centred but gets destabilised, as a finger
grows in a given direction while the pattern (and, thus, part of the algal biomass) remains
centred around the light beam. For w/H > 1, directional growth occurred indifferently
along the whole range of Ra. Still, based on our repeated systematic experimental runs, it
is more likely to occur for low to intermediate values of Ra (typically below 300).

Figure 5 summarises the main findings concerning the regime of directional growth
and, in particular, the time evolution of the pattern. In experiments the concentration field
pattern first evolves into a pseudo-elliptical shape; see panels (a)–(c) of figure 5. This
ellipse is delimited by the location of the isoconcentration line cmax/2, from which we
extracted the minor and major axes lengths 2a and 2b, the aspect ratio a/b as well as its
growth rate ν (figure 5d,e). The quantity ν, which has the dimension of an inverse of time,
is extracted during the late phase as the length of the minor axis 2b reaches a constant
value while the major axis 2a continues to grow. The values of ν are plotted versus Ra
in figure 5( f ) for all situations where such a quantitative extraction was possible, with
and without dendrites. Since the typical pattern size is roughly ∼10 mm, this corresponds
to physical drift velocities of the order of a few μm s−1. This is much smaller than the
velocity of the primary convection roll that typically exceeds 100 μm s−1 with these
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Figure 5. (a–c) Concentration field at different times during an experiment showing directional growth. Cells
accumulate around the light beam (a), reaching a maximum concentration at the centre (b). The pattern
eventually grows toward a well-defined direction θ0 away from the centre (here towards the left of the image)
with an aspect ratio quantified by its growth rate ν > 0. (c– f ) The region for which c(r, θ, t) > cmax(t)/2 can
be described by an ellipse of orientation θ0 and of major and minor axes lengths 2a and 2b. The evolution
of axes lengths (d) and aspect ratio (e) with time allows us to quantify the kinetics of directional growth.
For t > t1, the slope estimate and standard deviation of a linear fit of the aspect ratio gives an anisotropy
growth rate ν = (7.2 ± 0.6) × 10−3 min−1. Here Ra = 95 (H = 0.24 mm, c0 = 2.2 × 106 cells mL−1) and
w = 7.5 mm. ( f ) Anisotropy growth rate showing directional growth versus pseudo-Rayleigh number. Each
point corresponds to a single directional growth event. (g) Statistics of directional growth events in intervals of
pseudo-Rayleigh number for beam widths w ≥ 5.0 mm. Labels ‘unstable’ and ‘stable’ respectively correspond
to the occurrence and non-occurrence of directional growth. (h,i) Experiments of directional growth of
photo-bioconvection patterns with a slight inclination of the suspension. (h) Principle of the tilting experiment.
An inclination 0.1 ± 0.05◦ ≤ α ≤ 1.0 ± 0.05◦ of the petri dish with respect to the horizontal is imposed and
induces directional growth towards the lower side of the petri dish. (i) Anisotropy growth rates as a function of
the petri dish inclination for different beam widths w at fixed pseudo-Rayleigh number Ra = 140. The numbers
in the legend indicate the thickness of the diffusing layer. Here 1, 2 and 4 correspond to beam widths w of 5,
7.5 and 20 mm, respectively.

experimental conditions (Dervaux et al. 2017). We observed a decrease of the anisotropy
growth rate with Ra, consistent with our finding that the directional growth instability is
favoured at low to moderate pseudo-Rayleigh numbers.

Figure 5(g) plots the number of occurrences of stable (symmetric pattern, without
directional growth) and unstable (directional growth) situations for different intervals of
Ra, clearly showing that the instability is more likely to appear at relatively low Ra.

To better apprehend the underlying mechanisms from which directional growth
originates, we carried out experiments by slightly tilting the petri dish, with an angle
α from the horizontal, as sketched in figure 5(h), in order to check whether or not the
directional growth could be induced by minor imperfections of the dish horizontality.
These experiments were operated at fixed Ra = 140 with three beam widths w = 5.0,
7.5 and 20 mm. We found that directional growth was indeed promoted by such a slight
inclination of the dish. Patterns grew towards the lower side of the petri dish, i.e. the side
where the layer thickness is the largest. Furthermore, we measured their anisotropy growth
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rate ν for various α. For w = 5.0 mm, we measured ν < 4.0 × 10−3 min−1. For w = 7.5
and 20 mm, ν increased from 1.5 × 10−2 to 1.7 × 10−1 min−1 for α increasing from 0.1
to 1.0◦. The value of 1.5 × 10−2 min−1 for α = 0.1 ± 0.05◦ is indeed close to the upper
limit of the values of anisotropy growth rate measured with a petri dish levelled with the
best possible accuracy. This is consistent with a possible departure from horizontality of
angle �0.1◦ in the main experiments. To summarise, although the mechanism behind this
instability is not fully pinpointed at this stage, the directional growth instability reveals a
striking increase of the system sensitivity to any slight asymmetry when the beam gets
larger.

3. Model

3.1. Fundamental equations
Let us now write the general equations describing the collective behaviour of a suspension
of CR cells in the presence of a heterogeneous light field. We shall use a fairly general
continuum deterministic model of bioconvection with gyrotaxis (Childress et al. 1975;
Pedley & Kessler 1990, 1992), supplemented by an equation of the Keller–Segel form
(Keller & Segel 1971) describing the conservation of the total number of cells in the
presence of advection, taxis and diffusion:

Incompressibility, ∇ · v = 0;
Momentum conservation, ρ0

Dv

Dt
= η�v − ∇p − ρ0βcgez;

Gyrotaxis,
∂q
∂t

= 1
2B

[ep − (ep · q)q] + 1
2
ω × q;

Cell conservation,
∂c
∂t

= ∇ · ( D∇c︸︷︷︸
diffusion

− c|vdrift|q︸ ︷︷ ︸
drift due to taxis

− cv︸︷︷︸
advection

).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

Here ω = ∇ × v is the flow vorticity associated with the flow field v. The vector q is the
average orientation of the swimming micro-organisms. Let us note that the Boussinesq
approximation (Tritton 1988) has been used to obtain the first two equations of (3.1). As
a reminder, the quantities ρ0 and η respectively stand for the density and viscosity of the
ambient medium. The coefficient β stands for the normalised density mismatch between
microbes and the ambient medium, and g stands for the gravity constant. The quantity
D is the diffusion coefficient of the microbes; its value is 0.85 ± 0.15 × 10−7 m2 s−1 for
CR (Polin et al. 2009; Dervaux et al. 2017). We assume that D and η are independent
of the local concentration c, although such a dependence may become significant at larger
concentrations than those used in our experiments (Rafaï, Jibuti & Peyla 2010; Garcia et al.
2011). The unitary vector ep is the preferred swimming orientation of the micro-organisms
and should arise from a combination of factors, as discussed below. The parameter B
is interpreted as the typical time scale for the mean swimming orientation to return to
ep when the flow is suddenly stopped (ω = 0) (Durham, Climent & Stocker 2011). The
phototaxis-induced drift velocity is denoted as vdrift. Cell growth is neglected in the cell
conservation equation since the typical time scale of an experiment (∼1 h) is much smaller
than the typical time scale of the population doubling time within our experimental set-up
(∼10 h).
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Figure 6. (a) The axisymmetry enables us to work within a cross-section in a vertical (er, ez) plane and to
reconstruct the three-dimensional fields by revolution around the vertical axis. (b) Side view of the stationary
cell concentration field. The colourmap brightness increases in steps from white for low concentration to
black for high concentration. Contour lines are isocell concentrations. (c) Radial profile of the depth-averaged
scaled concentration c/c0. (d) Details of the streamlines of the principal toroidal convective roll near the light
source. The second counter-rotating toroidal roll can be seen further away from the centre of the light source.
Red portions of the streamlines correspond to high velocities and blue portions correspond to low velocities.
(e) Side view of the stationary velocity field. White arrows: local velocity vectors. The colourmap brightness
increases from blue for low velocity to yellow for high velocity. ( f ) Vertical profile of the radial velocity at a
fixed distance away from the centre (corresponding to the dashed red line in panel e).

3.2. Structure of the primary convective roll
Let us first show that the formation of the primary instability associated with symmetric
stable states can be addressed with the continuum model for bioconvection recalled above
without including gyrotaxis. We only consider a phototactic drift that steers cells along the
imposed light intensity gradient ∂I/∂r, where in the absence of gyrotaxis, cells are strictly
oriented, on average, along their preferential orientation ep,

|vdrift| =
∣∣∣∣χ ∂I

∂r

∣∣∣∣ ,
q = ep and ep = sign

(
χ

∂I
∂r

)
er.

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

The nonlinear system of (3.1) restricted to the (er, ez) plane (i.e. a radial cross-section of
the petri dish) and under the conditions (3.2) describes the evolution of four scalar fields
(pressure p, concentration c, velocity v in (er,ez)). They can be solved numerically with
the green light intensity radial profile I(r) used in the experiments as an input, together
with the nonlinear phototactic response χ(I) presented in figure 1(e). An example of such
a numerical resolution with the commercial software Comsol is presented in figure 6.

The formation of the main toroidal flow structure is recovered. Numerical simulations
give access to data that cannot be measured in the experiments: data of the cells
concentration field along the suspension depth (figure 6b) and spatial profiles of the
velocity field (figure 6d– f ). The toroidal structure of the primary convection roll is shown
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Figure 7. The magnitude of convection is controlled by three values of the pseudo-Rayleigh number. From top
to bottom: 0.1, 1 and 100. The magnitude of gyrotaxis is controlled by two values of the gyrotactic time scale.
On the left column, B = 0 s corresponds to the case without gyrotaxis; on the right column, B = 1 s. Contours
lines show isocell concentration lines.

in figure 6(d). Due to the density mismatch between the microbes and the ambient medium,
the flow is directed downward at the centre of the light source and, as a result, the
cell concentration field is pushed towards the bottom. As illustrated in panels (a)–(c) of
figure 7, this effect is enhanced at high Rayleigh number and the magnitude of the flow
velocity increases with the Rayleigh number. When Ra is low on the other hand, the cell
concentration is almost constant across the thickness of the suspension (figure 7a). Far
enough from the centre, the vertical velocity vanishes and the flow is almost horizontal
(figure 6e).

The 2-D model above without gyrotaxis is stable within the range of parameters
explored in the experiments. In a previous study (Dervaux et al. 2017), it was found
that waves emission could be reproduced in 2-D numerical simulations by introducing
gyrotaxis and a deviation of the cells orientation with respect to their preferential direction
q /= sign(χ(∂I/∂r))er. While gyrotaxis only has a weak effect on both the fluid flow and
the depth-integrated cell concentration field, it does impact significantly the repartition
of a cell across the thickness of the suspension, as seen in panels (d)–( f ) of figure 7.
Qualitatively, in the presence of gyrotaxis, the dense layer of cells induced by the primary
convective roll is slightly shifted above the bottom of the petri dish. More precisely, the
dense layer is located around the local maximum of the flow velocity (see panel f of
figure 7). Because this cell-rich layer has a higher density than the cell-poor layer below,
it eventually undergoes a buoyancy-driven instability above a critical Ra, as illustrated in
figure 8. Because this secondary instability is advected by the primary convective roll,
it manifests itself as rings of high concentration propagating outward from the centre
of the petri dish. The wave velocities predicted by these numerical simulations were
found to be in good agreement with experimental results (Dervaux et al. 2017). Best
fits to experimental cell concentration profiles led to an estimate of the time constant
B = 1.2 ± 0.2 s, in agreement with previous models (Williams & Bees 2011a; Garcia et al.
2013).
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Figure 8. Side views of the cell concentration fields obtained in 2-D numerical simulations with gyrotaxis.
Contours lines show isocell concentration lines. (a) In the presence of gyrotaxis there is a gap between the cells
dense layer in the lower part of the suspension and the bottom of the petri dish. (b) Later, waves are emitted. The
dense layer is buoyantly unstable and breaks into clusters of high cell concentration advected by the flow. Here,
Ra = 125 (H = 2.5 mm and c0 = 1.8 × 106 cells mL−1), w = 2.7 mm. The image is adapted from Dervaux
et al. (2017).

4. Hypothesis for the development of the asymptotic model

Numerical simulations restricted to the (er, ez) plane cannot reproduce the breaking of
axisymmetry observed in dendrites or in directional growth. Still, attempting a numerical
computation of a full tridimensional model with gyrotaxis and nonlinear phototaxis would
require heavy code optimisation and/or numerical resources to explore the phase space. In
order to make further progress, we shall take advantage of the fact that our experiments
are carried out in a thin-layer geometry H � L. In all generality, this horizontal scale L
in our experimental set-up can be related to either the typical lateral scale of the primary
convective roll (which is typically of the order of a few centimetres, see Dervaux et al.
2017) or to the effective width of the beam. Because of the very high sensitivity of the
phototactic effect, the effective width of the beam (where the light intensity is larger
than 10−3 W m−2) is in the range ∼1–5 cm, as seen in figure 1. Consequently, either
scale is significantly larger than the liquid height H. We will therefore choose to simplify
the model by developing an asymptotic model, adapted to describe the limit H/L � 1,
which is somewhat similar to the lubrication framework in viscous-driven thin film flows
(Reynolds 1886). As we shall see, this approach, together with additional simplifying
hypotheses that we introduce in this section, allows us to reduce the systems of vectorial
equation shown above to a single nonlinear partial differential equation describing a
single scalar field: the depth-averaged cell concentration in the suspension defined as
c̄(r, θ, t) = (1/H))

∫ H
0 c(r, θ, z, t) dz.

4.1. Dimensionless equations
We first rewrite in a dimensionless form the general equations (3.1) that describe the
spatiotemporal evolution of the flow velocity, pressure, concentration and orientation
fields. The thin film approximation will be exploited later and we first scale all lengths
by the liquid height H, time by the diffusion time scale H2/D, concentrations by the
global cell concentration c0, velocities by D/H and pressure by ηD/H2. To simplify
the writing, we keep the same notations for both dimensioned and dimensionless
space–time coordinates (r, θ, z, t), fields (v, c, p, ω) and operators (∂/∂t, D/Dt, ∇, �).
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Dimensionless equations take the following form:

Incompressibility, ∇ · v = 0; (4.1)

Momentum conservation,
1
Sc

Dv

Dt
= �v − ∇p − (Ra.c)ez; (4.2)

Cell conservation,
∂c
∂t

= ∇ · J with J = ∇c − |Tdrift|cq − cv; (4.3)

Gyrotaxis, Gy
∂q
∂t

= 1
2

[ep − (ep · q)q] + 1
2

Gy(ω × q). (4.4)

They reveal that in this model the system is governed by the following dimensionless
numbers:

Pseudo-Rayleigh number, Ra = ρ0gβH3c0

Dη
;

Drift number, Tdrift = vdriftH
D

;

Gyrotactic number, Gy = BD
H2 ;

Schmidt number, Sc = η

ρ0D
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

We already defined the pseudo-Rayleigh number Ra as the ratio of the time scale of
diffusion to the time scale of convection. We see here that it quantifies the coupling
of the velocity v and pressure fields p with the concentration field c. The drift number
Tdrift compares the ratio of the time scale of diffusion to the time scale of the cells
phototactic-induced drift. It increases as the cells swimming is more biased. The gyrotactic
number Gy compares the time scale of reorientation by shear stress to the time scale of
diffusion. It is alone hard to relate to any physical effect because the algae reorientation
time scale B is usually compared with a characteristic time scale of the flow. Later, we
will in fact see that, indeed, the gyrotactic effect is controlled by the product GyRa that
compares the time scale of reorientation to the time scale of convection. Finally, the
Schmidt number Sc is the ratio between momentum and cell diffusivities.

4.2. Effective drifts
In the dimensionless cell conservation (4.3) and gyrotaxis (4.4) equations, we need to
specify the drift term and the orientation vectors. We consider two drifts: a phototactic
drift due to the light intensity gradient of the preferential radial direction and an additional
drift of preferential vertical direction. We shall discuss the origin of this vertical drift later
in this section. We thus replace the generic single drift term with two drifts terms and
make the hypothesis that they are additive. Each drift term has its own dimensionless drift
velocity and orientation unit vector,

|Tdrift|cq → |T‖|cq‖ + |T⊥|cq⊥. (4.6)

The dimensionless phototactic drift number T‖ is space dependent via the light intensity
gradient and the dependence of χ(I) of the light intensity. For simplicity, the second term
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T⊥ is assumed not to depend either on space or on time. We shall obtain its value from
comparison of the model with experimental results. We have

T‖(r) = χ(I(r))
∂I
∂r

(r)
H
D

and T⊥ = v⊥H
D

. (4.7a,b)

Here q‖ and q⊥ are respectively the radial and vertical vectors in the absence of flow.
However, it is essential to figure out that in the presence of complex flows (i.e. when
the symmetry of the primary toroidal flow has been broken), they can have non-zero
θ components due to gyrotaxis. Parameter q⊥,θ originates from the r component of
the vorticity acting on the vertical drift whereas q‖,θ originates from the z component
of the vorticity acting on the radial drift. To further simplify the analysis, we write
those θ components as perturbations around known preferential horizontal and vertical
orientations. Thus, the radial and vertical components are known and we have

q‖ = sign(T‖)er + q‖,θeθ , |q‖,θ | � 1,

q⊥ = sign(T⊥)ez + q⊥,θeθ , |q⊥,θ | � 1.

}
(4.8)

In the perturbative limit where |q‖,θ |, |q⊥,θ | � 1, q‖ and q⊥ are quasi-unit vectors.
Finally, we construct a total unit orientation vector qtot on which to apply the gyrotaxis
equation as the weighted sum of the two orientations unit vectors q‖ and q⊥:

qtot = |T‖|
T q‖ + |T⊥|

T q⊥ with T =
√
T 2

⊥ + T 2
‖ . (4.9)

By construction, we have a similar expression for the total preferential orientation
ep,tot appearing in the gyrotactic equation (4.4). Then qtot can also be rewritten with a
perturbation on ep,tot. We have

ep,tot = |T‖|
T sign(T‖)er + |T⊥|

T sign(T⊥)ez, (4.10)

qtot = ep,tot + qtot,θ︸︷︷︸
|qtot,θ |�1

eθ with qtot,θ = |T‖|
T q‖,θ + |T⊥|

T q⊥,θ . (4.11)

Note that such an additive decomposition for the total preferential orientation ep,tot
has already been used in the literature (Williams & Bees 2011a). In addition, we restrict
ourselves to the perturbative limit (|qtot,θ | � 1) where nonlinear effects, which may arise
from the nonlinearity of the gyrotactic equation, can be neglected.

4.3. Time scales of the problem
Additional simplifications can be obtained by evaluating the characteristic time scales
involved in the problem. The diffusion time scale is the longest time scale in the problem
with H2/D � 10 s with H � 1 mm. The viscous time scale is H2ρ0/η � 1 s. Finally, the
time scale for the gyrotactic reorientation is B ∼1 s. The respective ratios of the viscous
and gyrotactic reorientation time scales over the diffusion time scale are thus Sc ∼ 10,
Gy � 0.1.

We can thus drop the time-derivative terms in both the flow and pressure fields equation
(4.2) as well as in the gyrotaxis equation (4.4). In other words, we consider that the pressure
p, velocity v and orientation fields q‖, q⊥, qtot instantaneously adjust to the slowly varying
concentration field c.
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At this stage, we can rewrite the dimensionless equations as

Incompressibility, ∇ · v = 0; (4.12)

Momentum conservation, �v = ∇p + (Ra c)ez; (4.13)

Cell conservation,
∂c
∂t

= ∇ · J with J = ∇c − c|T‖|q‖ − c|T⊥|q⊥ − cv; (4.14)

Gyrotaxis, (ep,tot · qtot)qtot − ep,tot = Gy(ω × qtot). (4.15)

Let us note that this simplification implicitly assumes that gyrotaxis (via the vorticity
term) is weak enough to allow the existence of stationary solutions of the gyrotaxis
equation (4.4). Indeed, at large enough vorticity, no such solutions exist and cells rotate
continuously.

4.4. Boundary conditions
Here we specify the boundary conditions of the model. At the bottom and at the free
surface, we have

v(r, θ, z = 0, t) = 0 no slip condition at the bottom, (4.16)

∂vr

∂z
(r, θ, z = 1, t) = ∂vθ

∂z
(r, θ, z = 1, t) = 0 vanishing shear at the free surface,

(4.17)

vz(r, θ, z = 1, t) = 0 constant thickness. (4.18)

Given that the distance from the centre at which the convective flow vanishes is much
smaller than the container size, we assume that the system is infinite in the radial direction,
so that the following conditions also apply:

lim
r→∞ v(r, θ, z, t) = 0 and lim

r→∞ c(r, θ, z, t) = Cst. (4.19a,b)

Here the constant appearing in (4.19) above will be determined by the conservation of the
total number of cells.

4.5. Thin film geometry H � L
We now take advantage of the geometry to reduce the dimensionality of the model, noting
that the thickness H (typically 1–5 mm in the experiments) is much smaller than the
lateral extension L of the flow defined above. The lubrication approximation consists in
developing the model equations in powers of the small parameter H/L and to retain only
the first term in this development. Higher-order terms are neglected in the following.
In order to reflect the fact that lateral lengths scale with L and vertical lengths with
H, we make the following substitution for the dimensionless variables r → (L/H)r. For
consistency, we also make the substitutions t → (L/H)t, p → (L/H)p and c → (L/H)c.
At leading order in H/L, the incompressibility condition, together with the condition of
constant thickness of the fluid layer, implies that the vertical component of the fluid flow
vanishes,

vz = 0. (4.20)

In practice, this lubrication approximation is only valid for distances from the centre r > H
(see primary convection roll toroidal structure in figure 6d). We also assume that the cell
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concentration field is stationary in the vertical direction with vanishing vertical mass flux,

Jz = 0 ⇔ ∂c
∂z

− cT⊥ = 0, (4.21)

which integrates to

c(r, θ, z, t) = c‖(r, θ, t) ezT⊥ . (4.22)

The next step in the development of an asymptotic model consists in integrating the
model equations over the liquid thickness (

∫ 1
0 · · · dz), as in classical lubrication theory

(Reynolds 1886). Before proceeding to this step however, let us briefly discuss the physical
origin of the vertical drift T⊥ introduced in our model.

4.6. Physical origin of the vertical drift T⊥
In classical continuum models for bioconvection, vertical drift terms account for taxes
in the vertical direction that are typically gravitaxis, phototaxis due to an homogeneous
top or bottom light, or aerotaxis toward/away from the free surface. For gravitaxis of
CR, the upward vertical velocity v⊥ is of the order of ∼1 − 10 μm s−1 and, thus, we
typically have T⊥ ∼ 0.01 − 0.1. In our experiments, possible causes of cells vertical
swimming can be gravitaxis, upward phototaxis in the direction of propagation of the green
widened light beam, or possible weak phototaxis due to bottom red light illumination.
These vertical taxes were neglected in the previous section modelling the structure of the
primary convective roll and the emission of waves, since the radial fluxes – phototaxis and
convection driven – were stronger than the vertical one.

In the proposed asymptotic model with gyrotaxis and a vertical drift |T⊥|q⊥, the first
effect of T⊥ is seen in the inhomogeneous cells repartition along the vertical direction for
T⊥ /= 0, as seen from (4.22). Cells accumulate at the top (respectively bottom) for T⊥ > 0
(respectively T⊥ < 0) in a region of size ∼ 1/|T⊥|. In this model with vz = 0, the vertical
drift term |T⊥|q⊥ enables us to take into account at a phenomenological level the effect
of the neglected vertical velocity (vz = 0 assumed). As shown in the previous section, this
effect is clearly visible on the cells distribution in the vertical direction when the full model
is solved numerically (figure 7). However, to distinguish between an effect of advection by
the flow and a genuine vertical cell migration (i.e. with a vertical swimming orientation),
two vertical drifts T⊥,flowez and |T⊥,taxis|q⊥,taxis have to be included in the model. For
simplicity, we take a unique effective vertical drift |T⊥|q⊥ with q⊥ taken into account in
qtot, whether T⊥ originates from the flow or from a vertical taxis. Thus, in this simplified
model the vertical downward flow beneath the beam centre can also orient the cells in the
direction of gravity, in addition to pushing them towards the lower part of the suspension.

5. Derivation of the asymptotic model

In this section we derive the asymptotic model using the hypotheses presented in the
previous section, to describing the evolution of the depth-averaged cell concentration
field c̄(r, θ, t). We first obtain the pressure p and velocity fields v as a function of the
concentration field c. Then, we find the orientation fields q‖, q⊥, qtot deducing the vorticity
ω from the flow field. Finally, the solutions for v, q‖, q⊥, all expressed in terms of the
cell concentration field c, are injected in the cell conservation equation that is integrated
over the vertical coordinate z. We obtain a nonlinear drift–diffusion equation for the
depth-averaged cell concentration field, given at the end of this section.
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5.1. Pressure and velocity fields
Using the simplifications of the previous section, equations (4.2) describing the flow and
pressure fields reduces to, at dominant H/L order and projected on (er, eθ , ez),

∂2vr

∂z2 = ∂p
∂r

, (5.1)

∂2vθ

∂z2 = 1
r

∂p
∂θ

, (5.2)

∂p
∂z

= −Ra c. (5.3)

Using the boundary conditions (4.16) and (4.17), we find that

p(r, θ, z, t) = − Ra
T⊥

c‖(r, θ, t) ezT⊥ + c1(r, θ, t), (5.4)

vr(r, θ, z, t) = −Raf (z)
∂c‖
∂r

(r, θ, t) + z(z − 2)

2
∂c1

∂r
(r, θ, t), (5.5)

vθ (r, θ, z, t) = −Ra
r

f (z)
∂c‖
∂θ

(r, θ, t) + z(z − 2)

2r
∂c1

∂θ
(r, θ, t), (5.6)

where f (z) = ezT⊥ − zT⊥ eT⊥ − 1
T 3

⊥
.

The integration constant c1(r, θ, t) is determined by first integrating the continuity (4.1)
over the suspension depth to yield

�c1(r, θ, t) = Ra
3[2(1 + T⊥) + eT⊥(T 2

⊥ − 2)]

2T 4
⊥︸ ︷︷ ︸

h(T⊥)

�c‖(r, θ, t) (5.7)

and then, using the boundary conditions of an infinite system (4.19), we obtain

c1(r, θ, t) = Ra h(T⊥)c‖(r, θ, t). (5.8)

Finally, the pressure and velocity fields can be expressed as

p(r, θ, z, t) = Ra
(−ezT⊥

T⊥
+ h(T⊥)

)
c‖(r, θ, t), (5.9)

v(r, θ, z, t) = Ra
(

−f (z) + z(z − 2)

2
h(T⊥)

)
∇c‖(r, θ, t). (5.10)

It is worth noting that, because the pressure field is linearly related to the concentration
field, the lubrication approximation yields a Darcy-like model where the horizontal
velocity field is proportional to both the pseudo-Rayleigh number and the horizontal cell
concentration gradient:

v ∝ Ra∇c‖. (5.11)

Note that this Darcy-like relation holds in the region where the flow field is essentially
2-D. As seen in the numerical simulation shown in figure 6(e), this occurs at a distance
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from the beam centre which is of order H. In addition, while the vertical component of the
fluid flow can safely be neglected in this region, the magnitude of this approximately 2-D
flow is still fully controlled by buoyancy, as expected in bioconvection. This is reflected
by the linear dependence of the flow velocity on the pseudo-Rayleigh number Ra that is
proportional to the density mismatch between the microbes and the surrounding fluid. Of
course the description of this purely radial flow field breaks down near the beam centre
where the vertical velocity becomes comparable and even larger than the radial velocity.

5.2. Orientation field
We then solve the gyrotaxis equation for the total cell orientation qtot. At first order in
qtot,θ , the gyrotaxis equation (4.15) reads

qtot,θeθ = Gy · ω × ep,tot. (5.12)

On the right-hand side of (5.12), the vorticity is

ωr = −∂vθ

∂z
, (5.13)

ωθ = ∂vr

∂z
, (5.14)

ωz = 0. (5.15)

The absence of vorticity along the ez axis (5.15) is noticeable at this order of
approximation. Thus, the only contribution to the θ component of the total orientation
qtot is q⊥,θ and originates from the interplay between the vorticity along the axis er and
the vertical drift:

q‖,θ = 0, q⊥,θ /= 0 and qtot,θ = |T⊥|
T q⊥,θ . (5.16a–c)

Then the gyrotaxis equation yields

qtot,θ = Gy
∂vθ

∂z
T⊥
T and q⊥,θ = Gy

∂vθ

∂z
sign(T⊥). (5.17a,b)

5.3. Depth-averaged cell concentration field
The next step is to determine an analytical expression for the depth-averaged cell
concentration field. This quantity c̄ is directly measured from the top view of red light
absorption experiments, with very good accuracy in space and time; see e.g. Figures 2(a–e)
and 3(a–g). From (4.22), we have

c̄(r, θ, t) =
∫ 1

0
c(r, θ, z, t) dz = eT⊥ − 1

T⊥
c‖(r, θ, t). (5.18)

The cells diffusion–advection equation is integrated using the solutions for the velocity
(5.10) and orientation fields ((4.16), (4.17)) and also from (5.18). This yields a nonlinear

971 A29-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.402


Pattern formation in photo-controlled bioconvection

diffusion–drift equation

∂ c̄
∂t

= ∇ · [(1 + αc̄)∇c̄ − c̄νeff ], (5.19)

where

α = Ra

(
1 + e2T⊥(3 − 2T⊥) − 4eT⊥

2T 3
⊥(eT⊥ − 1)

+ 3[eT⊥(T 2
⊥ − 2) + 2(T⊥ + 1)]2

4(eT⊥ − 1)T 6
⊥

)
, (5.20)

νeff = T‖er + RaGy

(
eT⊥ − 1

2T⊥
+ 3(T⊥ − eT⊥ + 1)(eT⊥(T 2

⊥ − 2) + 2(T⊥ + 1))

2(eT⊥ − 1)T 4
⊥

)

×1
r

∂c‖
∂θ

eθ . (5.21)

It is remarkable that the drift term νeff has a θ component proportional to ∇c‖ · eθ (and,
thus, to ∇c̄ · eθ ). Therefore, (5.19) can be rewritten with an anisotropic nonlinear effective
diffusion matrix,

∂ c̄
∂t

= ∇ · (D · ∇c̄ − c̄T‖er), (5.22)

D =
(

1 + αc̄ 0
0 1 + (α − γ )c̄

)
=
(

1 + α0Ra c̄ 0
0 1 + (α0 − γ0Gy)Ra c̄

)
, (5.23)

with

α0 = 1 + e2T⊥(3 − 2T⊥) − 4eT⊥

2T 3
⊥(eT⊥ − 1)

+ 3[eT⊥(T 2
⊥ − 2) + 2(T⊥ + 1)]2

4(eT⊥ − 1)T 6
⊥

(5.24)

and

γ0 = eT⊥ − 1
2T⊥

+ 3(T⊥ − eT⊥ + 1)(eT⊥(T 2
⊥ − 2) + 2(T⊥ + 1))

2(eT⊥ − 1)T 4
⊥

. (5.25)

Therefore, in the asymptotic limit H/L � 1, the model with gyrotaxis and vertical
drift reduces to a single nonlinear anisotropic diffusion–drift equation in (r, θ, t).
Equation (5.22) describes the time evolution of the depth-averaged concentration field c̄.
The contribution of the swimming in the vertical direction is contained in the dependence
of the nonlinear coefficients of the effective diffusion matrix on the vertical drift T⊥; see
(5.24) and (5.25). The physical meaning of coefficients α0 and γ0 shall be explained in the
next section.

6. Physical interpretation of the model

Before proceeding to the analysis of the model, let us first provide a physical interpretation
of the nonlinear diffusion–drift equation describing the evolution of the depth-averaged
cell concentration,

∂ c̄
∂t

= ∇ · (D · ∇c̄ − c̄T‖er). (6.1)
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6.1. A nonlinear diffusion–drift equation
The time evolution of c̄ results from the competition between two fluxes: an anisotropic
nonlinear diffusive flux D · ∇c̄ and a phototactic drift c̄T‖er of the Keller–Segel type
(Keller & Segel 1971). We note that the form of the phototactic drift simply carries
over from the full three-dimensional model (up to an integration across the thickness
of the suspension) and its interpretation remains identical: cells move in the radial light
intensity gradient with a velocity that depends on the local value of the light intensity field.
The anisotropic nonlinear effective diffusion matrix D, on the other hand, incorporates
several effects of distinct physical origins that we now discuss. We first note that it can be
decomposed as the sum of three terms in the (er, eθ ) basis:

D =
(

1 0
0 1

)
︸ ︷︷ ︸

linear diffusion

+
(

α0(T⊥)Ra c̄ 0
0 α0(T⊥)Ra c̄

)
︸ ︷︷ ︸

advection

+
(

0 0
0 −γ0(T⊥)GyRa c̄

)
︸ ︷︷ ︸

gyrotaxis

. (6.2)

The linear contribution corresponds to the random motion of cells. Nonlinear
contributions originate from advection and gyrotaxis (respectively the second and third
terms in the above decomposition). The advective term is isotropic and is due in a large
part to the primary convective roll induced by cell accumulation at the centre of the light
beam. It is driven by cell concentration gradients and its magnitude is controlled by the
pseudo-Rayleigh number Ra and a convective coefficient α0. This convective coefficient
depends on the dimensionless vertical velocity drift T⊥ and we note that its sign is opposite
to that of T⊥ as seen in figure 11(a). Anisotropy is due to the gyrotactic term that creates
an orthoradial diffusive flux. Here γ0 is a gyrotactic coefficient. It is not only multiplied
by the gyrotactic number Gy but also by the pseudo-Rayleigh number Ra. This means
that both Gy /= 0 and a high enough Ra are necessary conditions to observe an effect of
gyrotaxis.

6.2. Effect of advection
The physical origin of the advective term is sketched in figure 9. Let us consider an initial
perturbative gradient in the cell concentration. This concentration gradient generates a
convective flow, whose magnitude is given by v ∝ Ra∇c̄ (see (5.11)), and where the
surface velocity is directed from the low towards the high concentration region (figure 9a).
As a consequence, the advective mass flux c̄v can be expressed as α0c̄Ra∇c̄, with a
proportionality coefficient α0. This advective term is indeed equivalent to an effective
diffusive flux with a nonlinear diffusion coefficient α0c̄Ra. Now the direction of this
advective cell flux (ruled by the sign of α0) depends on where the cells are located and
three possibilities can be distinguished. (i) When the cells are predominantly located near
the free surface (T⊥ > 0 and figure 9b), they are mostly advected by the flow in the
upper layer of the suspension and, thus, the mass flux is directed from the low towards
the high cell concentration regions (α0 < 0). Since this effective diffusive flux reinforces
the concentration gradient, we expect this regime to be prone to instabilities. (ii) When
cells are homogeneously distributed across the thickness of the suspension (T⊥ = 0 and
figure 9c), the resulting mass flux vanishes (α0 = 0). (iii) When cells are predominantly
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Figure 9. Effect of advection on the cell concentration. (a) A horizontal (radial or orthoradial) cell
concentration gradient and its corresponding velocity vertical profile. (b–d) Middle: the vertical profile of
the cell concentration is given by the sign of T⊥. Right: direction of the depth-averaged advective flux with
respect to the direction of the cell concentration gradient. For each graph, the vertical axis is that of the vertical
coordinate z. See main text for a more detailed discussion.

located near the bottom of the suspension (T⊥ < 0 and figure 9d), the mass flux is directed
from the high towards the low cell concentration region (α0 > 0).

6.3. Effect of gyrotaxis
The effect of gyrotaxis is sketched in figure 10. Let us note that in this asymptotic
model, gyrotactic effects are only considered along the orthoradial direction (see (6.2)).
As previously, several cases must be distinguished. (i) When cells swim toward the free
surface on average (T⊥ > 0 and figure 10a), vorticity rotates the cells away from their
preferred vertical upward orientation. Close to the bottom of the container (below the
dotted line), this rotation induces a drift in the direction of the low concentration while
this drift is oriented towards the high concentration in the upper regions (above the
dotted line). Since the micro-organisms are predominantly located in the upper part of
the suspension for T⊥ > 0, the depth-averaged gyrotactic drift is oriented towards the
highly concentrated region (γ0 > 0) and gyrotaxis can therefore enhance perturbations
(concentration gradients). (ii) When cells have no preferential swimming direction (T⊥ =
0 and figure 10b), then there is no gyrotactic effect (γ0 = 0). (iii) In the case where
algae swim downward in average (T⊥ < 0 and figure 10c), vorticity again rotates cells
away from their preferential vertical orientation. Near the bottom of the dish (below
the dotted line), the counter-clockwise rotation induces a drift toward the concentrated
region of the suspension while, in the upper regions (above the dotted line), the rotation
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Figure 10. Effect of gyrotaxis on cell concentration. Left: an orthoradial cell concentration gradient and the
corresponding vertical profile of the orthoradial velocity. Cells are represented with an orientation q⊥ resulting
from the competition between the vertical component of their preferential orientation and the vorticity of
the flow. Middle: the repartition of cells along the vertical coordinate is given by the sign of T⊥. Right:
direction of the depth-averaged gyrotactic drift with respect to the direction of the cell concentration gradient.
On each graph, the vertical axis is that of the vertical coordinate z. Situations (a–c) respectively correspond
to average-upward, neutral and average-downward swimming microbes. See main text for a more detailed
discussion.

is clockwise and induces a drift toward the region of low concentration. In this case
of preferential downward swimming, the depth-averaged effect of gyrotaxis, however,
is slightly more complex than previously. When this downward swimming is moderate,
then the cell concentration is almost constant throughout the thickness and the resulting
effect of gyrotaxis across the suspension thickness is a drift directed towards the region
of low concentration. In this case, gyrotaxis acts as an enhanced diffusion (γ0 < 0).
On the other hand, when downward swimming is strong enough, algae eventually get
almost entirely located near the bottom of the suspension. Because gyrotaxis in this region
is in the opposite direction, in this case the depth-averaged gyrotactic drift is directed
towards highly concentrated regions (γ0 > 0), again providing a potential mechanism for
an instability.
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Figure 11. (a,b) Evolution of the convective and gyrotactic coefficients α0 and (−γ0) with the dimensionless
vertical drift T⊥. Curves are obtained from (5.24) for panel (a) and (5.25) for panel (b). Tangents to these curves
at T⊥ = 0 are obtained using first-order expansions around T⊥ → 0: α0 −−−−→

T⊥→0
−1
320T⊥ and γ0 −−−−→

T⊥→0
1

48T⊥.

(c–e) Nonlinear orthoradial diffusion coefficient α0 − Gyγ0 > 0 at different gyrotactic numbers Gy. Curves are
obtained with (5.24) and (5.25). Tangents to these curves at T⊥ = 0 are obtained using first-order expansions
around T⊥ → 0. In the grey domains, α0 − Gyγ0 > 0.

7. Analysis of the asymptotic model

7.1. Theoretical analysis
As previously sketched in figures 9 and 10, both the convective and gyrotactic coefficients
α0 and γ0 and their respective influence on the concentration and flow fields depend on
the dimensionless vertical velocity drift T⊥. To be more quantitative, their evolution with
T⊥ is represented in panels (a) and (b) of figure 11 (note that −γ0 is plotted). When
algae are predominantly located near the bottom of the suspension (T⊥ < 0), α0 > 0 and
the primary convection rolls spread the concentration field out, acting as an additional
diffusive flux. For T⊥ > 0, α0 < 0, it was previously shown that advection strengthens
and sharpens any concentration gradient, which makes this regime prone to instabilities.
For 1 + α0Ra42c̄ < 0, the concentration field becomes unstable in the radial direction.

For the stability analysis in the orthoradial direction, we need to sum the curves of α0 and
−γ0 by weighting the second with the gyrotactic number Gy. This is represented in panels
(c)–(e) of figure 11 for different values of Gy. This sum exhibits two zeros: one is always
for T⊥ = 0 and the other zero is always for T⊥ < 0. In the interval where α0 − Gyγ0 > 0
between the two zeros, shown as grey domains in figure 11, the cell concentration field
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is always stable in the θ direction. Outside this stable domain, α0 − Gyγ0 < 0 and the
concentration field is potentially unstable in the orthoradial direction if the combined
effects of gyrotaxis and advection overcome the stabilising effect of diffusion, i.e. if the
sum 1 + (α0 − Gyγ0)Ra c̄ is negative.

7.2. Instabilities produced by the model
Whether it be in the er radial or in the eθ orthoradial direction, the model shows that
the concentration field is potentially unstable when α0 < 0 or α0 − Gyγ0 < 0. In this
latter case, instabilities only develop at high enough pseudo-Rayleigh number Ra and cell
local concentration c̄. The different instabilities produced by the numerical simulations
of the model are shown in figure 12. We first note that the concentration field keeps
the radial symmetry of the light beam either for T⊥ = 0 at any Ra, or at low enough
Ra for T⊥ /= 0. When the vertical drift is directed upward T⊥ > 0, we always have
α0 < 0 and α0 − Gyγ0 < 0. In this case the concentration field is unstable in both the
radial and orthoradial direction at high enough Ra c̄ and a convection-driven spinodal-like
instability develops (left column). The term spinodal has been chosen to qualify the
instability because it is associated with a negative diffusion coefficient, like in the classical
Cahn–Hilliard equation. When the vertical drift is directed downward T⊥ < 0, we always
have α0 > 0. Convection is always a stabilising effect when cells are located near the
bottom boundary of the suspension. In the orthoradial direction the sign of α0 − Gyγ0
depends on the values of T⊥ and Gy. In this case, the concentration field is unstable only in
the orthoradial direction when α0 − Gyγ0 < 0 at high enough Ra c̄ and a gyrotaxis-driven
branching instability develops (right column).

Thus, the asymptotic model qualitatively reproduces two instabilities observed in the
experiments. The convection-driven spinodal instability resembles the dots instability
observed in the transitory regime of the experiments (see figures 3 and 4). The
gyrotaxis-driven branching instability resembles the dendrites instability observed in the
experiments.

7.3. Comparison with experimental results
We now compare theoretical predictions of the asymptotic model with experimental
results. First, we compare the experimental radial profiles of the concentration fields with
the analytic axisymmetric solution. This process allows us to determine the values of
T⊥ that is the only free parameter in our theoretical model. Next, we use this value to
determine the regime boundaries in the phase diagram.

7.3.1. Prediction of global properties of cell concentration patterns
The radially symmetric solution of the concentration field in the asymptotic model involves
the convective coefficient α0 but not the gyrotactic one γ0 and reads

c|eq|(r)
c0

= 1
α0Ra

W
(

Aα0Ra exp
[∫ r

0

χ(r′)
D

∂I
∂r′ dr′

])
, (7.1)

where W is the Lambert function defined by the relation y = W( y ey). The constant A
is determined via the global conservation of the total number of cells and depends on
the maximum light intensity I|max|. From this solution, we extract the previously defined
quantities c|max|/c0 and R1/2 that can be further compared with those previously measured
in experiments form various Ra and w (see figure 3k,l). Let us first note that c|eq|/c0
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Figure 12. Instabilities predicted by the model. Left column: 1 + α0Ra c̄ < 0 and 1 + (α0 − Gyγ0)Ra c̄ < 0.
Middle column: 1 + α0Ra c̄ > 0 and 1 + (α0 − Gyγ0)Ra c̄ > 0, for T⊥ = 0 or at low enough Ra. Right column:
1 + α0Ra c̄ > 0 and 1 + (α0 − Gyγ0)Ra c̄ < 0. Note that a small higher-order term ε2�2c̄ is added to the
nonlinear diffusion equation to avoid the failure of the computation in the unstable regime. Note that while
the inclusion of the hyperdiffusive term indeed selects the wavelength of the instability, it does not affect the
threshold of the instability itself (which can be detected numerically without the hyperdiffusive term).
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monotonically decreases with the distance from the centre r because the Lambert function
W increases on R+ while χ(I(r))(∂I/∂r) < 0 since only positive phototaxis occurs in our
experiments. Thus, the maximum concentration is obtained at the centre:

c|eq,max|
c0

= c|eq|(r = 0)

c0
= 1

α0Ra
W(Aα0Ra). (7.2)

The model predicts that the normalised maximum concentration c|eq,max|/c0 decreases
with Ra and is independent of the beam width w, both features being indeed observed
experimentally. More quantitatively, this theoretical prediction is in very good agreement
with experimental data as seen in figure 3(k). Because of the limiting behaviour of the
Lambert function W( y) −−→

y→0
y, we have c|eq,max|/c0 −−−→

Ra→0
A, so that A can remarkably

be interpreted as the maximum concentration factor in the absence of flow. The best fit
to experimental data points is obtained for A = 26 ± 6 and a convective coefficient α0 =
(1.5 ± 0.2) × 10−4.

The theoretical predictions of the pattern sizes R1/2 are obtained by computing the cell
concentration profiles at equilibrium c|eq|(r)/c0 for all Ra and light fields I(r) using the
values of A and α0 found previously. The comparison with experimental data is shown in
figure 3(l). The trends found in the experiments are qualitatively captured by the model.
In particular, the higher sensitivity of the phototactic response at low light intensity
(Ramamonjy et al. 2022) and its nonlinear behaviour with I are essential ingredients,
whose effect is especially captured along the tail of the intensity radial profiles.

7.3.2. Value of the dimensionless vertical drift T⊥
The value of the convective coefficient α0 = (1.5 ± 0.2) × 10−4 obtained by fitting
the experimental data of c|max|/c0 corresponds to two possible negative values for the
dimensionless vertical drift T⊥, as evidenced by variations of α0 with T⊥ (figure 11a).
Either T⊥ = −12.6 ± 0.7 or T⊥ = −0.05 ± 0.01. In the experiments we typically have
Gy ∼ 0.01 − 0.1. In this range of Gy, the model predicts that the cell concentration field
is always stable in the orthoradial direction (see figure 11c–e) for T⊥ = −0.05. Therefore,
we took T⊥ = −12.6 ± 0.7 for which the model predicts the branching instability at high
enough Ra in the range of Gy of the experiments. This corresponds to |v⊥| ∼ 300 μm s−1,
which is larger than the swimming speed of CR (∼100 μm s−1). This value should not
be interpreted literally but rather as an indication that the vertical drift T⊥ in the model
indeed originates from the downward flow at the centre of the primary convection roll.

7.3.3. Theoretical phase diagram
Finally, the asymptotic model predicts a boundary between round and dendrites patterns
in the phase diagram (figure 13). Using a preferential cells location at the bottom
with T⊥ = −12.6 previously found, the value of γ0 is fixed that allows us to find
the domain of existence of dendrites. In the model, the branching instability develops
when 1 + (α0 − Gyγ0)Ra c̄ < 0. The boundary in the phase diagram can thus be found
using the radially symmetric solution c|eq| and corresponds to the equation 1 + (α0 −
Gyγ0)Ra c|eq,max|/c0 = 0. We also included the boundary between round patterns and
waves emission predicted by the 2-D model in (er, ez) with gyrotaxis and nonlinear
phototaxis. This solution, which does not include any fitting parameter, correctly describes
the boundary between round and wave pattern found experimentally. We also note that the
relative beam width does not significantly affect the appearance of this instability.
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Figure 13. Theoretical phase diagram of photo-bioconvection patterns. Data points: experiments (see figure 2
for markers). Lines: theoretical boundaries. Green curve: prediction by the asymptotic model of the {Ra, w/H}
boundary between round patterns and dendrites patterns. Using the radially symmetric solution c|eq|(r)/c0,
the boundary corresponds to 1 + (α0 − Gyγ0)Ra c|eq|(r = H)/c0 = 0 for the different light beams of widths w
since the hypothesis of vz = 0 is only valid for r > H. Vertical pink line: the prediction by the 2-D model with
gyrotaxis of the critical pseudo-Rayleigh number above which round patterns break into waves emission is also
added up to the intersection with the green curve.

7.4. Discussion

7.4.1. Origin of the dendrites instability
The dendrite instability found in the numerical resolution of the model originates
from an interplay between gyrotaxis and a strong downward-oriented drift velocity. It
qualitatively displays the same breaking of the initial axisymmetry as the dendrites
instability observed in experiments. Interestingly, an interesting analogy can be drawn with
purely thermo-gravitational flows where the emergence of longitudinal (dendrite-like)
modes is commonly observed as a result of the competition between vertical and horizontal
destabilizing temperature gradients. In particular, it has been noted that, in the presence
of destabilizing vertical gradients of density, horizontal shear flows can break the in-plane
isotropy of the layered system thereby forcing it to select longitudinal modes of convection
in place of transverse ones (Chen & Pearlstein 1989; Shadid & Goldstein 1990; Busse
& Clever 1992; Fujimura & Kelly 1993; Hoyas, Herrero & Mancho 2004; Peng et al.
2007; Lappa 2009). Furthermore, our numerical results predict a domain of existence in
the phase diagram for relatively high Ra and large beam width w/H, in agreement with
experiments. We thus propose that the formation of dendrites in the experiments is also due
to such a coupling between a strong downward drift (swimming) and gyrotaxis, originating
respectively from the primary light-induced convective flow and the flow vorticity. Let us
note that although the model correctly predicts values of thresholds of the two control
parameters (Ra and w/H) for the occurrence of instabilities, it does not predict any
wavelength. As suggested by experiments, wavelengths are likely to be of the order of the
suspension thickness H where the hypotheses of the model do not hold anymore. A more
refined model at the second order in the small parameter H/L might provide a selection
mechanism for the wavelength of the instability, but this is outside the scope of this paper.
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7.4.2. From the dots instability to the dendrites instability
The spinodal-like instability and the gyrotaxis-driven dendrite instability respectively
reproduce the dots instability observed in the transitory regime in the early stages of
the experiments and the longer time stationary dendrites instability. However, in the
model these two instabilities are mutually exclusive because of opposite signs of T⊥ as a
necessary condition for each mode (T⊥ > 0 for dots, T⊥ < 0 for dendrites, see figure 12).
In fact, in experiments it is likely that a dependence of the average migration of cells
(i.e. the sign and absolute value of T⊥) along the vertical direction in both space and
time explains the switch from the dots instability to the dendrites instability. This switch
from an early downward-dominated migration to later an upward-dominated one could be
consistent with the finite time for the establishment of the main convective roll, but we did
not take this into account in our simplified asymptotic model.

7.4.3. Work towards directional growth
The model does not reproduce the directional growth instability observed in the
experiments. This is possibly due to the hypothesis of an infinite system that forbids the
formation of a fixed direction of growth as in the experiments. In the experiments this
fixed direction seems to be given by a slight defect of horizontality that is hard to include
in the model because it breaks the hypothesis of constant thickness. Instead, theoretical and
numerical works in progress look to adapt the asymptotic model to the case of a system
of finite size with a slightly off-centred light beam in order to create a potentially fixed
direction of growth (by creating a non-radially symmetric primary convective roll).

8. Conclusion

In this paper we have presented systematic experiments on the patterns of bioconvection
that appear in CR suspensions in the presence of a heterogeneous light field. We
have shown that besides stable round patterns, different types of symmetry-breaking
instabilities appear. We have classified these patterns and studied them quantitatively. Next,
we have developed an asymptotic model of light-controlled bioconvection with gyrotaxis
and nonlinear phototaxis. The model was developed in the limit H/L � 1 with additional
simplifying hypotheses. A single nonlinear partial differential equation describing the
depth-averaged cell concentration was obtained. This nonlinear equation captures the
effect of advection by the primary convective roll and gyrotaxis thanks to a nonlinear
and anisotropic effective diffusion matrix. To complete this thin-layer model, we added
the contribution to vertical drift due to both the directional swimming of the cells and
the convective flow itself, allowing us to emphasise the non-trivial role of gyrotaxis in
the appearance and growth of instabilities. This approach enabled us to reproduce the
dendrites instability observed in the experiments, as well as the dots instability occurring
during the earlier stages of experiments and resembling the usual global bioconvective
patterns. According to the model, the dendrites instability originates from a gyrotactic
coupling between the strong downward drift due to the primary light-induced convective
flow and the vorticity of the flow. This occurs in cell concentration patterns whose large
size is controlled by a large beam width. Global properties of the cell patterns, as well as
thresholds for the growth of instabilities, were also finely reproduced by the model. On
the other hand, our simplified model cannot explain the selection of the wavelength of the
dendrite instability. This limitation is related to the absence of a saturation mechanism in
our nonlinear partial differential equation that might be found by developing the general
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equations to the next order in H/L. This study opens the road to the generation of complex
unsteady flow fields that might find applications in the efficient stirring of photosynthetic
micro-organisms in bioreactors.
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Appendix A

A.1. Strains and culture conditions
We used the strain CC124− of CR. The algae were kept on HSA medium agar plate. For
experiments, algae were propagated in liquid HSA medium on an orbital shaker in an
incubator at 25 ◦C on a 12 h/12 h bright/dark light cycle to optimise cell uniformity and
motility. Cells were used between 48 and 72 h after inoculation in liquid medium to ensure
reproducibility of the phototactic response. Algae were left 1 h under dim red light before
being used in experiments. Experiments at low cell concentrations were carried out by
diluting a culture of algae with an aliquot of supernatant obtained by centrifuging another
aliquot of the same culture at 5000 g for 10 min and discarding the cells. Cell counting
was performed with a Malassez cell on an inverted microscope and gave a concentration
of 5 ± 1 × 10−12 mol m−3 at an optical density OD580 = 1. Using an average cell volume
of 500 μm3, this is equivalent to a volume fraction of ∼ 1.5 × 10−3.

A.2. Experimental set-up and data acquisition
A levelled petri dish (inner diameter 84 mm) was filled with a layer of algal suspension
and, to minimise cell adhesion to the boundaries, this suspension was left undisturbed
in the dark for 30 min before being discarded. The petri dish was then washed with
distilled water before being filled again with a thin layer of algal suspension and then
carefully confined in a dark enclosure. A green (532 nm) Gaussian laser beam (4.5 mW,
Thorlabs, Germany) was directed toward the centre of the plate and the intensity of
the beam was calibrated using a lux meter. In order to observe the micro-organisms, a
large LED panel with a red filter (acting as a high-pass filter with a cutoff at ∼610 nm)
was placed below the petri dish and the intensity of the light transmitted through the
algal suspension was recorded with a Nikon D700 digital camera equipped with a
Zeiss objective. After calibration, the transmitted light intensity was converted into a
cell concentration. The conversion from pixel intensity values on the red channel to
depth-averaged cell concentrations was done using homogeneous algal suspensions of
different liquid heights and cell concentrations. The calibration curve is shown in figure 14.
We measured the red pixel intensity for different values of the product lOD = H × c0. For
a given liquid height H, the local depth-averaged cell concentration c(r, θ) could then be
calculated in OD580 by using the exponential fit in figure 14,

c(r, θ)/c|ref | = 1
b.H

ln
(

a
red pix(r, θ)

)
.

The intensity–concentration conversion was carried out in Mathematica and image
analysis for wave velocity determination was performed with the ImageJ software. In order
to check for cell migration toward the red panel, we also ran a control experiment with the
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Figure 14. Calibration curve of the top view cells concentration imaging. The intensity on the red pixel is
plotted against the optical density path lOD = H × c0/c|ref | with c0 the global cells concentration c0 and
c|ref | = 3 × 106 cells mL−1. The calibration data are fitted with an exponential decay with an amplitude a =
65 ± 1 and a decay constant b = 0.45 ± 0.02 cm−1. Pixel intensity values range from 0 to 255.

LED panel turned off using only the green laser beam. After one hour in the dark, the
LED panel was turned on and no difference could be seen on the cell concentration profile
obtained with the LED panel on; thus showing that the red light had no distinguishable
effect on the cell migration in our experimental set-up.

A.3. Extraction of dendrite wavelengths
Figure 15 illustrates our analysis to extract an orthoradial wavelength λ from a stationary
dendrites pattern (see figure 15a). Figure 15(b) shows the evolution of the number m of
branches obtained from peak detection in orthoradial concentration profiles versus the
distance from the centre of the light beam r. In figure 15(c) the interbranch distance ib is
plotted versus r. At arbitrary r, the branches spacing ib(r) is calculated from the number
of branches m(r) as the side length of a regular m(r)-sided polygon inscribed in a centred
circle of radius r,

ib(r) = 2r sin
(

π

m(r)

)
. (A1)

Radial profiles of m(r) and ib(r) can be decomposed into different parts. Analysing the
experiments with dendrites patterns, we found a region R1 ≤ r ≤ R2 in which m increases
because of radial splittings. The radius R1 is the minimum distance from the centre at
which branches can be detected. The radius R2 is the distance from the centre at which m is
maximal. In this domain, the branches spacing ib stays close to an orthoradial wavelength
λ. At r ≥ R2, m remains on a plateau value and then drops when reaching the branches
maximum radial extension, while ib increases with r. This decrease in branch number
is due to the fact that phototaxis becomes much less significant at a large distance from
the beam centre and some branches fall below the detection threshold. This leads to a
decrease in branch number (figure 15a) as well as an increase in the interbranch number
(see figure 15c). Between R1 and R2, there is a competition between the establishment of an
orthoradial wavelength and the initial axisymmetry so that the spacing ib slightly increases
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Figure 15. (a) A typical experiment showing the formation of dendrites (green pixel levels from top view).
(b) The number of branches m(r) is measured versus distance to centre r by acquiring the green pixel level along
a centred circle of radius r. From this orthoradial cell concentration profile (see inset for which r = 4 mm), we
compute an adequate peak detection. (c) The interbranch distance ib(r) is evaluated as the side length of a
regular m(r)-sided polygon inscribed in a circle of radius r. The orthoradial wavelength λ is defined between
r = R1 and r = R2 where the branches split (a) and their spacing only slightly increases (c) (see main text).
Here λ = 1.9 ± 0.3 mm, Ra = 180 (H = 0.28 mm, c0 = 8.4 × 106 cells mL−1) and w = 20 mm.

with r. From concentration profiles, a natural definition for the orthoradial wavelength is

λ =

∫ R2

R1

r × ib(r) dr∫ R2

R1

r dr
. (A2)

We could extract an orthoradial wavelength λ in the domain R1 ≤ r ≤ R2 using (A2).

A.4. Numerical simulations
The density ρ0 and the viscosity μ are taken to be those of water at 25 ◦C (ρ0 =
997 kg m−3 and μ = 0.89 mPa s). The cell density is ∼1050 kg m−3, thus giving a β =
1.6 × 107 m3 mol−1. The diffusion coefficient was taken to be D = 0.85 × 10−7 m2 s−1.
The chemotactic coupling parameter was taken as χ = 1.1 × 10−7 m4 (J)−1 unless
otherwise specified. The model equations were then solved numerically using Comsol
Multyphysics 5.0 on an axially symmetric domain together with no-flux boundary
conditions for the cell concentration field and slip and no-slip conditions for the fluid
velocity respectively at the top and bottom surface of the domain. A mesh with at least
150 000 elements was used and simulations were run on a 2.3 GHz QuadCore computer
with 16 GB of memory.
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