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1. Introduction

Large finite groups have large automorphism groups [4]; infinite groups
may, like the infinite cyclic group, have finite automorphism groups, but
their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p.
68]). We show in this paper that the corresponding propositions for semi-
groups are false.

2. Finite semigroupsx

Consider the semigroup given by the presentation (see [5] for the
notation)

En = sgp(e, f; e* = e,f* = f, e(fe)» = (fe)- = {fe)'/),
where n is a positive integer at our disposal. We write 0 for (fe)n, because
it clearly is a zero. The elements of En can be written in one of the forms

e, f, ef, fe, efe, fef, • • •, (fe)"^ f, (ef)n, 0;
hence the order of the semigroup is

\En\ £ 4».

To show that the order of En in fact equals 4w, we represent the semigroup
by mappings of the set

X = {1, e, f, ef, fe, efe, • • •, (fe)n^f, (ef)n, 0}

into itself. Define s : X -»- X by

le = ee = e,

(fey-ife = {feye = (fe)\ 1 ^ * ^ n - 1
(ef)*s = (efyee = («/)'«, 1 ^ * £ n-1

{fe)n^-fe = {ef)ne = 0e = 0;

1 We are indebted to Mr Bruce G. Neill, an undergraduate student at the University of
Queensland, for several important corrections to an earlier draft of this section.
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[2] Semigroups with few endomorphisms 163

and similarly f : X -> X by

U = K = f,
{efy-ieC = (ef)K = (ef)\ l^i^n,

Ve)*C=VeYK= (feYf, lf^i^n-1,
oc = o.

Then one can verify, firstly, that e and f satisfy the defining relations

£2 = e, ? = C, £(Ce)n = (fe)» = (£e)"C

of £„, and secondly that every element of X other than 1 is the image of
1 under a sequence of mappings e and £. It follows that the semigroup of
mappings X -> X generated by e and £ is an epimorphic image of En of
order not less than |X| —1, that is 4M; thus it is isomorphic to En, and

\En\ = 4n,

as claimed. This representation of En is, of course, simply that by right
multiplications on E*, the semigroup obtained from En by adjoining a unit
element. Incidentally one sees that En has only 3 idempotents, namely
e, f, 0. As every endomorphism of En must map e and / on idempotents,
and as the images of e and / determine the endomorphism uniquely, there
can be at most 9 endomorphisms of En. In fact there are only 8, as the de-
fining relations of En are not symmetric in e and /, and thus e and / cannot
be interchanged by an endomorphism; the other 8 mappings of e and /
independently on e, f, 0 all define endomorphisms. Thus we see that there
are finite semigroups of arbitrarily large order with a bounded number of
endomorphisms, namely 8.

It may be remarked that a finite semigroup has at least one idempotent,
and thus must, if its order exceeds 1, have at least 2 endomorphisms,
namely the identity and one that maps all elements on one and the same
idempotent. We do not know whether there are finite semigroups of arbi-
trarily large order with fewer than 8 endomorphisms.

3. A rigid semigroup

An infinite semigroup need not contain any idempotent, and it is thus
conceivable that such a semigroup could be 'rigid', that is to say, have no
endomorphisms other than the identity. We shall now exhibit a rigid semi-
group.

THEOREM 3.1. The semigroup presented by

A = sgp(a, b; ab2 = baba)

has no endomorphism other than the identity automorphism.
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We defer the proof, which requires setting up a normal form for the
elements of A and then considering a number of cases. For the present we
just remark that the theorem is best possible in more than one sense:

No monogenic semigroup, other than the trivial semigroup (of order 1),
can be rigid; for every mapping of the generator of a monogenic semigroup
into the semigroup extends to an endomorphism (or, equivalently, every
monogenic semigroup, like every cyclic group, is relatively free). Thus a
rigid semigroup needs, like ours, at least 2 elements to generate it.

A free semigroup has infinitely many endomorphisms, as every mapping
of the generators into the semigroup extends to an endomorphism. Thus
a rigid semigroup needs, like ours, at least one non-tautological relation.

The length of the defining relation of our semigroup A, that is to say
the sum of the lengths of its two sides, is 7. One can show that no semigroup
with a defining relation of length 6 or less is rigid: the verification is tedious,
and we omit it.

We have found other rigid semigroups with two generators and a single
defining relation, of length 7 and also of greater lengths.

4. A representation of the rigid semigroup

Let W denote the set of words, which we shall call normal words, in a
and b of the form

(4.11) w =:bta'iba**---ba'",

where

(4.12) t^O,

(4.13) n ^ 1,

(4.14) sn ^ 0 and s, ^ 1 for 1 ^ t < ».

We shall sometimes omit zeroth powers of a or b; thus if t = 0 and
n = 1, we have a power a'1 of a; if n = 1 and s1 = 0 we have a power bl of b.
The empty word is the normal word with t = 0, n = 1, and sx = 0;v?e denote
it by 1. Every normal word other than 1 represents2 an element of our
semigroup

A = sgp(a, b; ab2 = baba),

or indeed of any other semigroup generated by a and b.

LEMMA 4.2. Every element of A is represented by one and only one normal
word.

2 A word is a string of symbols; if we interpret it as a product (which is written in the
same way) we obtain an element of the semigroup, and we say the word represents the
element. The same element of the semigroup can be represented by different words.
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PROOF
 3. We use the method of Croisot as amplified by Clifford and

Preston [3, pp. 169—171]. Our 'normal words' are their 'canonical
forms' for p*, the congruence on F1 generated by the defining relation
p = {{ab2, baba)}; here F1 is the free semigroup generated by a, b with a
unit element 1 adjoined. To apply the method of Clifford and Preston,
we define a mapping

v : F
1 -> F1

as follows.
If w e Fl is of the form

(4.3) w = w'ab2w",

we may assume this representation so chosen that w" is of minimal length:
thus w" is not itself of the form (4.3). We then put

w%p = w'babaw".

On the other hand, if w is not of the form (4.3), we put

wrp = w.

It is then clear that these latter words are just our normal words; and that
to every w e F1 there is a non-negative integer n such that

(4.4) Wfn+1 = Wfn e W.

We define <f> : F1 ->• W by w<f> = wipn with n chosen as in (4.4).
If we are given an arbitrary element of A, there is at least one word

in a and b, say u, that represents it. Then also uip represents this element,
and also wy>2, and ultimately also u<f>: thus every element of A is represented
by at least one normal word.

To show the unicity we have to verify that y> has the properties (1),
(2), and (3) of [3, p. 170], and that it implies (ii) of [3, p. 169]. Of these,
(1), (2), and (ii) are obvious, and it only remains to verify that to each pair
of elements u, v in F1 there are non-negative integers k and / such that

(4.51) (m>)/+! = ({uf)v)y>k,

(4.52) (uv)fl+^ = (u

Now (4.52) is certainly satisfied if I is chosen large enough, like n in (4.4),
to ensure that

(uv)y>l+1 = (uv)yi1.

We turn to the existence of k to satisfy (4.51). If u e W, we choose k
so that

3 [Added 1 May 1968.] We are indebted to the referee for suggesting a proof along these
lines, shorter than our original proof.
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(uv)ipk+1 = (uv)y>k,

that is as n in (4.4); then (4.51) is obvious. liu$W, write

u = u'ab2u"

with u" as short as possible, so that

utp = u'babau".
Choose k so that

(u"v)y>k+1 = (u"v)y>k = w,

say, so that w e W; and choose k, moreover, as small as consistent with this.
Thus k = 0 if u"v e W, and otherwise k is such that {u"v)yP~l 4 W. Now

((uf)v)y>k = (u'babau" v)y>k

= u'baba(u" v)y>k = u'babaw,

where we have used the minimality of k. Also

(uv)rpk+1 = {u'ab2u"v)rpk+1

= (u'ab2(u"v)ipk)y> = (u'ab2w)y)

= u'babaw,

and (4.51) follows. This completes the proof of Lemma 4.2.
From now on we refer to the normal word that represents an element

as its normal form.

5. Proof of the rigidity

In order to complete the proof of Theorem 3.1, we consider an endo-
morphism rj : A ->• A given by

at] = u,

br\ = v,

where we may assume that u and v are given in normal form. We must then
have

(5.1) uv2 = vuvu,

and this must be a consequence of the defining relation

ab2 = baba

of A. We first remark that u is a power of a, say

(5.2) u = a p , p ^ l ;

for application of the defining relation leaves the total exponent of b un-
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changed, while u appears with different exponents on the two sides of (5.1).
The argument now consists in considering the various forms that v

can have, reducing both uv2 and vuvu to normal form, and showing that (5.1)
is not satisfied except trivially. We assume that v is given in the form

(5.4) v = Va'iba'* • • • ba*°,

subject to (4.12—4.14).
Now if n 2: 2, then the reduction to normal form of uv2 will not affect

the part ba'* • • • ba"n with which the second v ends; thus the normal form
of uv2 ends in a'n. Similarly the end of the second v will not be affected by
the reduction of vuvu to normal form; thus this normal form will end in
a*«+p. These normal forms then are manifestly different.

Consider then n = 1 and s1 > 0. Now the normal form of

uv2 = a'b'a'i-Va*'-

will end in a*1 if t is odd, in a"i+1 if t is positive and even, and in ap+2$i if
t = 0; while the normal form of

vuvu = 6'a'1+1>&'a*l+1>

will end in a'l+p if t is odd, in aH+p+1 if t is positive and even, and in a2Sl+2p

if t = 0: and again these normal forms are different.
Thus we may now assume that n = 1 and sx = 0, that is to say v = b*;

and as v cannot be the empty word, we must now have t > 0. Now the
normal form of

will end in a, while the normal form of

vuvu = btapbtap

will end in ap or ap+1 according as t is odd or even. These normal forms then
cannot be equal unless p = 1, that is u = a. In this case, if t > 1, then
the normal form of

uv2 = ab2t

is
ab™ = b2(ab)2t-3a2ba,

while the normal form of
vuvu = b*ab*a

begins with bt+1 or even, if t > 3, with bt+2. Thus these normal forms are
again different, and we are left only with the case t = 1, that is to say v = b.
Hence r\ is the identity on A, and the proof of the theorem is complete.
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[Added 25 March 1968.] The existence of rigid semigroups also follows
from Proposition 4 in a paper by Zdenfik Hedrlin and Joachim Lambek,
'How comprehensive is the category of semigroups?', submitted to the
Journal of Algebra. We are grateful to Dr Hedrlin and Professor Lambek
for allowing us to see a preprint of their paper. They are concerned with
rather more general problems than we, and their methods are quite different
from ours.
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