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C*-CONVEXITY AND MATRICIAL RANGES 

D. R. FARENICK 

ABSTRACT. C* -convex sets in matrix algebras are convex sets of matrices in which 
matrix-valued convex coefficients are admitted along with the usual scalar-valued con­
vex coefficients. A Carathéodory-type theorem is developed for C*-convex hulls of 
compact sets of matrices, and applications of this theorem are given to the theory of 
matricial ranges. If T is an element in a unital C*-algebra A, then for every ne N, the 
n x n matricial range Wn(T) of T is a compact C* -convex set of n x n matrices. The 
basic relation Wl(T) = convo-(T) is well known to hold if T exhibits the normal-like 
quality of having the spectral radius of /3 T + \i 1 coincide with the norm || /3 T + n 11| 
for every pair of complex numbers fl and fi. An extension of this relation to the matrix 
spaces is given by Theorem 2.6: W^T) is the C*-convex hull of the n x n matricial 
spectrum an(T) of T if, for every B,M G Mn, the norm of T <g> B + 1 <g> M in A <g> Mn 

is the maximum value in{||A(g)5+l<g>A/|| : A € an{T)} . The spatial matricial range 
of a Hilbert space operator is the analogue of the classical numerical range, although it 
can fail to be convex if n > 1. It is shown in § 3 that if T has a normal dilation N with 
&(N) C cr(7), then the closure of the spatial matricial range of T is convex if and only 
if it is C*-convex. 

Introduction. In this paper we will be concerned with the structure of compact sets 
Ĉ in the C*-algebra 9\{n ofnxn complex matrices which possess the following convexity 

property: 

p 
whenever Ai , . . . , A^ G X and Tu . • •, Tp G Mn with J2 TîTi = ^ 

/=i 

t h e n f ^ A ^ e a C . 
i = i 

Sets of this type have been called matrix convex [2], matricially convex [5], and because 
this form of convexity can be defined in general *-algebras other than 9\{n, these sets 
have also been called C*-convex in [11], where the formal study of this generalized form 
of convexity was initiated by R. I. Loebl and V. I. Paulsen. In the conditions defining 
C*-convexity, p can be any positive integer, the A/'s need not be distinct, and the C*-
convex coefficients 7/ need not commute among themselves, nor with the A/'s. C*-convex 
sets are, of course, plainly convex, and the class of C*-convex sets in the 1-dimensional 
algebra C is precisely the class of convex sets. The unit ball in a (unital) C*-algebra is 
a simple example of a C*-convex set [11], however closed balls centred at non-scalar 
elements can fail to be C*-convex. The matrix-valued analogue of the numerical range 
for elements of a unital C*-algebra provides all examples of compact C*-convex sets in 
Mn [11; Prop. 301. 
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If T is an element in a unital C*-algebra !A, then the n x n matricial range of T is the 
set 

Wn(T) = {(j>(T): <j> is a unital completely positive map C*(T) —> 9^n}, 

where C*(T) is the unital C*-algebra generated by T. The most basic fact concerning 
Wn(T) is that it is a compact C*-convex unitary invariant of T [2;p.301]. If Si is the 
algebra #(#") of bounded linear operators on a complex Hilbert space 9-1, then Wn(T) 
has a path connected spatial component known as the n x n spatial matricial range: 

W%(T) = { V*TV : V is a linear isometry C1 - • # } . 

Although Wl(T) = {(7JC,X) : I G ^ / and ||JC|| = (x,jt)2 = 1} is the classical numerical 
range of T, W"(T) need not be convex if n > 1. Basic references for the spatial and 
algebraic numerical ranges respectively are [8] and [20], and the theory of their matricial 
analogues is developed, for example, in [2], [4], [5], [7], [10], [12], [15], and [19]. 

The purpose of the first part of this paper is to prove a Carathéodory-type theorem for 
the C*-convex hull of a compact set in fW ,̂ and to give applications of this theorem to 
matricial range theory and to matrix theory. These results are motivated by the following 
well established fact (implicit, for example, in the proofs of [20;Thm. 8] and [13;2.10]): 
if T is an element in a unital C*-algebra Si such that the norm of every linear polynomial 
(5 T+\x 1 in T coincides with the spectral radius of /? T+\i 1, then Wl (T) is the convex hull 
of the spectrum cr(T) of T. In §2, the proper matricial extension of this norm—spectral 
radius relation is formulated, so that Wn(T) is given by the C*-convex hull of the matri­
cial spectrum an(T) of T. The formulation involves the comparison of the norm of every 
linear n x n matrix-polynomial in T to the maximum of the norms obtained in evaluat­
ing the matrix-polynomial over the n x n matricial spectrum of 7, thereby sharpening, 
extending, and unifying some early results in this direction on matricial ranges. A key 
geometric idea is to introduce the notion of a matrix-valued disc which functions as a 
C*-convex generalization of a compact planar disc. As an outgrowth of these develop­
ments, the representation of contractive matrices as convex combinations of unitaries 
will be seen to extend to a statement that matrices with compact spectral sets X C C can 
be represented as C*-convex combinations of normal matrices Ni with a (Ni) C dX. 

The second part of this paper examines convexity and C*-convexity phenomena ex­
hibited by the spatial matricial ranges of certain operators. In light of the fact that spatial 
matricial ranges need not be convex, it is somewhat surprising that they possess any 
interesting convexity properties at all. Special attention will be paid to the relation be­
tween convexity and C*-convexity, and between W%(T) and the spatial matricial spectrum 
as

n(7). Two other generalizations of the classical numerical range, the C-numerical range 
and the ^-numerical range, have a role in obtaining these convexity theorems; in partic­
ular, a theorem of Y.-T. Poon on the /c-numerical range for matrices is found to have a 
reasonably strong formulation in infinite dimensions. 

The concepts that we will use from the theory of positive maps and from matrix-valued 
spectral theory are reviewed in § 1. 

https://doi.org/10.4153/CJM-1992-019-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-019-1


282 D. R. FARENICK 

ACKNOWLEDGEMENT. The results presented here are based upon part of my doc­
toral dissertation at University of Toronto. I wish to thank my thesis advisor, Professor 
Chandler Davis, for his encouragement, support, and direction of this work. 1 would also 
like to thank Professor Chi-Kwong Li for sending me a preliminary version of [101. 

1. Positivity and matricial spectra. Throughout, all C*-algebras are assumed to 
possess a unit 1. When two elements S and T of a C*-algebra A are unitarily equivalent 
(i.e., there is a unitary U with U*SU — T), then this will be denoted by S ~ T. Recall, 
from the theory of completely positive maps [13], that a continuous linear map <j>\ £—+(8 
of a self-adjoint linear manifold L in a C*-algebra A into a C*-algebra $ is said to be 
n-positive if (f>n = <t> <8> id n: L 0 lMn —» (B <g) 9tin, where id n is the identity map on 9\{n, 
is a positive map, and that </> is called completely positive if <j> is «-positive for every 
« G N. For a given T G JÏ, let CPn(7) denote the space of all completely positive maps 
<t>\ C*(T) —» fWn satisfying </>(l) = 1 G 9iïn; in the BW-topology, the (convex) space 
CPn(7) is compact [1],[13]. 

The matricial spectrum is developed in [5], [7], and [14], for example. The following 
discussion briefly reviews the parts of the theory that are pertinent in this paper. Gener­
ally, the Hilbert space H is assumed to be separable. 

If T G (B(^-C), then the n x n spatial left matricial spectrum of T is the set Tl"(T) 
of matrices A € fHi f° r which there exist isometries V^:Cn —> 9{ satisfying 0 = 
lim* || TVk — V*A||. The set Y\\(T) consists of the approximate eigenvalues of 7\ and in 
finite-dimensional spaces, A G Il"(T) if and only if A is unitarily equivalent to an opera­
tor obtained by restricting T to one of its «-dimensional invariant subspaces. There is also 
a notion of reducing matricial spectra: a matrix A G Mn is in the spatial reducing matri­
cial spectrum R"(T) if there exist isometries V* : Cn —• 9{ with 0 — lim^ || TVk — V*A|| 
and 0 = lim* || T*Vk — V̂ A* ||. The theory of the reducing spectrum Rl (T), developed by 
N. Salinas in [17], will enter into our work frequently; the main feature of the reducing 
spectrum is that its properties are those of the spectrum of a normal operator. The n x n 
reducing matricial spectrum Rn(T) is the set of all p(T), where p G C?n(T) is a unital 
*-homomorphism C*(T) —* 9rfn. 

A matrix A G 0\{n is an element of the spatial matricial spectrum a"(T) of T G (B{9{) 
if there exist isometries V :̂ Cn —•> "H satisfying 0 = lim^ || V\r{T)Vk — r(A)|| for every 
complex rational function r with poles off cr(T). The simplest case occurs when 9~C is 
finite-dimensional: a matrix A G W[n is in a"(T) if and only if A is unitarily equiva­
lent to an operator obtained by compressing T to one of its «-dimensional semi-invariant 
subspaces. In all cases, cr"(T) is a non-empty compact set with crl(T) = <J(T). The ma­
tricial spectrum an(T) of T G A is the set of all n x n matrices 4>(T) obtained from 
those <j> G CPn(T) which are homomorphisms when restricted to the algebra of rational 
functions in T. 

Finally, recall that <Je(7̂ ), the essential spectrum of T, is the spectrum of the canonical 
image of T in the Calkin algebra (B(9i) modulo the compact operators, and that if N 
is normal, then cre(A0 is precisely all of a(N) except for isolated eigenvalues of finite 
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multiplicity. (Here, "isolated" means that the element is isolated in the entire spectrum 
in the topological sense.) If T G *B(9-[), then A ln G o"{T) for every « E N whenever 
À G (JQ{T)\ for this reason we say that À G cr(T) has infinité multiplicity if A G ae(T). 

Some examples (see [7]): if T is a compact normal operator, if T is a self-adjoint 
operator (not necessarily compact), or if T is a unitary operator, then a"(T) = R"(T) for 
every n G N ; in particular, if "H is a finite-dimensional space, and if T G #(.?/") is normal, 
then or"(7) = /Ç(7) for every 1 < n < dim ^/". All of the spectral elements in these 
examples are normal. In general, if T G $(i#) is normal, then AiU,0- • -®Xphp G /?"(r) 
if and only if each A, G a(T) and &/ < dim (ker(7 — A/1)) whenever A7 is an isolated 
eigenvalue of finite multiplicity. 

The following lemma will be used in § 3, and it will allow us to employ a self-adjoint 
operator with finite spectrum, rather than a general self-adjoint operator, in the proof of 
Theorem 3.1. 

LEMMA 1. IfTG (B(!H) is self-adjoint, and if e > 0, then there is a self-adjoint 
operator A with finite spectrum such that \\T — A\\ < e and <rs

n(A) C a"(T) for every 
n G N. 

PROOF. Because a(T) is compact, the Borel function/: x \--> x can be approximated 
in L°°(a(r)) to within | by a step function 

where V\,...,VP are finitely many mutually disjoint Borel subsets of a(T) with the 
property that V[ is a finite set if and only if ^ is a singleton set consisting of an isolated 
point of spectrum, and such that cr(T) = U ^ ^ . We will now construct a new step 
function 1/; which is within | of <j> by replacing the points Q with certain spectral values. 
Let E denote the spectral measure for T. If the rank of the projection Pt — E(V[) is 
infinite, then there exists a A/ G V[ n <7e(r); replace £ by A/. If the rank of Pj is finite, 
then P( is the projection onto a finite-dimensional invariant subspace, and so 1/j is finite; 
thus, Vi is a singleton set { (/}, and £ is an isolated eigenvalue of finite multiplicity, call 
it A/. Let A = I/J(T); then A — £f=1 A/P/ is a self-adjoint operator with finite spectrum, 
and 

\\T-A\\ = | | / - ^ | | o o < | | / - c / > | | o o + | | < / > - ^ | | o o < 6 . 

The only thing left to verify is that a "(A) C cr"(T). By the choice Aj , . . . , Xp, this amounts 
to verifying that the rank of the projections Pt are such that the multiplicities of the 
eigenvalues A/ of A do not exceed the multiplicities of the spectral values A/ of T. By 
the restrictions placed on the partition (l/\,...,iUp (and, therefore, on the rank of each 
projection Pf), we see that indeed crs

n(A) C cr"(T), for every n £ N. • 
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2. Matrix-valued discs and a Carathéodory-type theorem. A fundamental the­
orem of convex analysis is Carathéodory's Theorem which states that if S is a set in a 
real vector space of dimension n, then every element of the convex hull of S is express­
ible as a convex combination of elements of S involving at most n + 1 terms. There are 
numerous consequences of this theorem, among which is the statement that the convex 
hull of a compact set is compact. The problem of whether the C*-convex hull of a com­
pact set of n x n matrices is compact has been open for some time; a positive solution 
to this problem is found in Theorem 2.4, part of which can be viewed as an analogue 
of the Carathéodory theorem. Theorem 2.4 also contains a geometric characterization of 
the C*-convex hull of a compact set of matrices, where the geometric objects utilized are 
compact C*-convex sets known as matrix-valued discs. 

To fix the notation and terminology, suppose that S C !Mn. The C*-convex hull of S 
is the smallest C* -convex set in 9v(n containing 5, and it will be denoted by mconv(5); 
the convex hull of a set S will be denoted by conv 5. 

DEFINITION. If B, M e tMn with # ^ 0, and if r > 0, then the matrix-valued disc 
D(Z?, M; r) induced by B and M of radius r is the set of all A G fMn which satisfy the 
norm inequality || A ® B + 1 0 M\\ < r in the C*-algebra Mn (g) f^C 

Observe that when n = 1, a matrix-valued disc is just a disc in the plane in the usual 
metric. To show that these generalized discs are C*-convex, we follow the procedure 
used to show that the unit ball in any unital C*-algebra is C*-convex [13;p.64]: suppose 
that Ai , . . . , Ap are elements of the matrix-valued disc induced by B, M G (Mn of radius 
r, and suppose that T\,..., Tp are C*-convex coefficients; then 

| ( E ^A/7)) ® B + l ® M l | = | | E (TJ ® l)*(Ay 0 ^ + 1 ® M)(Tj <g> 1)| 

= \\G*XG\\ < ||G||2||Z|| = \\G*G\\ \\X\\ < r, 

where X and G are operators on C np <g> C n such that X is the direct sum of A/ (g) Z? +1 (g) M 
for j = 1,...,/? and the operator matrix G consists of zero operators except in the first 
column where each (j, l)-entry is given by 7} (g) 1. This proves that matrix-valued discs 
are C*-convex. Because it is plainly evident that D(#, M ; r) is closed, the compactness of 
D(#, Af ; r) can be verified by showing the boundedness of D(#, M; r). If A G D(£, M; r), 
then 

r > ||A(g)£+ 1 <g>Af|| >max {\\bijA + m,vl|| : 1 < / J < n and /?/i7- ^ 0}, 

and so D(B, M ; r) is contained in the finite intersection of the compact (C*-convex) r-
balls { £1 : H^-A + m^T || < r} for which Z?̂  ^ 0. (A mildly disconcerting fact is that 
this intersection could be empty.) The geometric and affine properties of matrix-valued 
discs have not yet been studied in detail. 

The work in this section is based primarily on two results: one is the description of the 
extremal structure of CPn(T) when T is «-normal, and the other is the following lemma 
describing one way in which the matricial range can be characterized independently of 
positivity and algebraic considerations. 
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LEMMA 2.1. IfTett and n G N, then 

Wn(T) = f| {AG Hi : | | A ® £ + 1 ® M | | < ||r<8)B+ 1 <8) Af||} 

PROOF. If A G Wn(T), then A = </> (T) for some unital completely positive map 
</>: C*(T) —> fAC The induced map </>n: C*(7) 0 Hi —• ^ 4 (8) ^ is a contraction, 
because unital completely positive maps are completely contractive. Hence, the norm 
inequality 

| |A®f l+ l ®Af|| < | | 7 0 5 + 1 <g>Af|| 

holds for every B,M G fA ,̂. 
Conversely, if A G Hi is such that for every B,M G fÂ  the above norm inequality 

holds, then the map (f>n\ L<& Hi —* Hi ® ^ is a unital contraction, where L is the 2-
dimensional subspace spanned by T and 1, and where <j>\ L —• 5Wn is defined by </> (a 1 + 
/3 71) = a 1+/3 A. Therefore, <\>n has a positive extension (j>n: (L* + L) ® Hi —> ^Hi ® Hi, 
by [13;2.12], where the map <j):(L* + L)—+Hi is given by 

< £ ( a l + / ? r + 7 r ) = a l+/3A*+7A. 

This means that <£ is «-positive. A well known theorem of M.-D. Choi states that n-
positive maps into Hi are completely positive [13;5.9], and so, via Arveson's Extension 
Theorem ([1],[13;6.5]), cj> has a completely positive extension from (L* + L) to all of 
C*(T). Hence, A = $(T) G Wn(T). m 

COROLLARY 2.2. If n G N, and if'S,T G A are such that ||S ® £ + 1 ® Af)| < 
|| T <g> 5 + 1 <g> M|| /or every 5, M G fA£, */"?" Wn(S) C Wn(T). 

The following is a standard lemma, and it is stated here because it will be employed 
in more than just the next theorem. It states that every extreme point of Wn(T) comes 
from an extreme point of CPn(T). 

LEMMA 2.3. IfTeA, and if A G Wn( T) is an extreme point of Wn(T), then there is 
an extreme point <j> ofCYn(T) such that A = (/> (T). 

PROOF. Let C be the convex BW-compact subset of C?n(T) of all 0 G CPn(T) 
satisfying A = (j)(T). By the Krein-Milman Theorem, there is a <j> G C which is an 
extreme point of C. Therefore, to prove that <j> is an extreme point of CPn(T), it suffices 
to show that whenever <j> = t<j>\ + (1 — t)<j>2 is a proper convex combination of <j>\, fa G 
CPn(T), we must have <j>\,<j>2 G C. Thus, suppose that <f> = t<j>\ + (1 — f)<j>2 is such a 
combination. Then A = <j>(T) = ^ i ( r ) + (1 — t)</>2(T); this is a representation of A as 
a proper convex combination of elements of Wn{T). But since A is an extreme point of 
Wn(T), it must be that A=<f>x(T) = fcÇT), and hence, fc^GC • 

The proof of the Carathéodory-type theorem makes use of the notions of rc-normality 
and hypoconvexity. An operator T G *B(?{) is n-normal if T is unitarily equivalent to an 
nxn operator matrix consisting of commuting normal operators. An example, canonical 
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up to compact perturbations of arbitrarily small norm [14], is the direct sum of a bounded 
set of n x n matrices. 

A non-empty compact set X C 0\fn is said to be hypoconvex if X is invariant under 
unitary similarity transformations and if X is closed under the formation of sums of the 
type Y!JL\ PjXj, where X\,...,Xm are arbitrary elements of X, and where P\,...,Pm are 
projections with mutually orthogonal ranges and which satisfy PjXj — XjPj for each 
1 <j<m and Y!jL\ Pj — 1. (Consequently, m < n.) The importance of hypoconvexity 
comes from the fact that if a compact subset X C 94.n is to be the matricial spectrum of 
some operator, then X must be hypoconvex; this necessary condition is also sufficient as 
well [18]. The hypoconvex hull of a bounded set S C 0\{n is the smallest hypoconvex set 
to contain S. Plainly, the hypoconvex hull of a compact set is compact. 

THEOREM 2.4. If S C Hi is compact, then mconv(5) is compact and there is a 
P < n3(2n2 + 1) such that every element 6>/mconv(J>) is a C*-convex combination of 
elements of S involving at most p terms. Moreover, mconv(J>) is the intersection of all 
matrix-valued discs containing S. 

PROOF. The idea is to identify the set 

H {AG Hi : | | A ® f l + l ® M | | < s u p { | | S ® £ + l ® M | | : S G S} } 

with the nih matricial range of some operator (by using Lemma 2.1), and then to show 
that this is precisely mconv(5). 

Let { Aj}y= { C S be a finite or a countable subset which is dense in 5, let A — &-=\Aj 
act on an appropriate space Of, and let T = A(oo), countably many copies of A. Each 
summand Aj in T appears with infinite multiplicity, and thus the work of Salinas on the 
reducing essential matricial spectra for «-normal operators can be applied to 7. (Using 
T in place of A is not necessary though: see [7]). 

For every #, M G Mn, 

\\T®B+ 1(g) M\\ = sup{\\Aj®B+l®M\\ : j G N } = sup{ | |S®£+ 1 <g)Af|| : S G S} , 

and therefore by Lemma 2.1, 

H {A:||A<g)fl+l<g)M|| < s u p { | | S ® £ + l ® M | | : S G S} } = Wn(T). 
B,M<EHI 

Because Wn(T) is C*-convex and contains 5, mconv(5) C Wn(T). 
To prove the converse, we argue as in the proof of [5; 3.9] and employ a few more facts 

about the extremal structure of CPn(r). Because Wn(T) is compact and convex, Wn(T) 
is the convex hull of its extreme points; thus, it is enough to prove that every extreme 
point of Wn(T) is in mconv(5). By Lemma 2.3, if A G Wn(T) is an extreme point of 
Wn(T), then A = <j> (T) for some extreme point <j> of CPn(TT). W. B. Arveson studied the 
extreme points of spaces of completely positive mappings in a general setting [ 1 ; 1.4.6], 
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and R. R. Smith and J. D. Ward applied this to the special case CP"(7) [19;6.4] : the 

result is that <j> is of the form 

<t>(X)= V*(7ri(X)0...©7r^(X))V, 

where each 7T; is an irreducible representation of C*(T) on ^£, V : Cn —• ©f=1^" is 

an isometry, and q < n2. With respect to the direct sum ©?=1^£, V has an orthogonal 

decomposition defined by V£ = V\£ 0 • • • 0 Vq^. Because 7 is «-normal, irreducible 

representations of C*(T) take place on spaces of dimension of at most n\ hence, each 

Q/ = 7T/(T) can be viewed as a fc/ x A:/ matrix (1 <kt < n), and each J{ as C *''. Decompose 

each A7 as a direct sum of irreducibles; then 7 ~ 0 ^ 7/3, where each 7^ is a ^ x kp 

irreducible matrix with kp < n. Now since each Q, G /?*''( 7) is irreducible, [ 18; 1.11 ] 

implies that £2; ~ A/ for some A, which is a limit of kt x £,- matrices r f from { Tp }p. To 

each Tf there corresponds a (n — k{) x (n — kt) matrix 0J* such that Tf 0 Sf ~ A ^ » 

for some A^a) £ { A/}/eN • By dropping down to a subsequence if necessary, we may 

assume the matrices Sf converge to a matrix A-, so that the matrices Ff 0 0-* converge 

to A/ 0 A-. From the results of [18;§ 1], we see that each A/ 0 A- is in the hypoconvex hull 

of 5 . For each / = 1 , . . . , q there is a representation 7r/ o n a ( n - &/)-dimensional Hilbert 

space rf such that A't ~ TT/(7). Therefore, if H) = 0 ^ ! (H® H'), and if W : C n —• %> 

is the isometry defined by 

WÇ = (V^ 0 0 ) 0 - -®(VqZ 0 0 ) , 

then 

A = \ y * ( ( ^ ( 7 1 0 ^ ( 7 ) ) 0 - . - 0 ( ^ ( 7 ) 0 7r;(7)))\y=X:^(A/®A;)V,, 
i=\ 

where V; = V/ 0 0 and £ ; V? Vi = 1«- This represents A as a C*-convex combination of 

elements A/ 0 A- from the hypoconvex hull of 5 . This proves that Wn(T) = mconv(5), 

since the hypoconvex hull of S is contained in the matricial convex hull of 5 . 

Finally, an arbitrary element of mconv(5) is a convex combination of at most In2 + 1 

extreme points of mconv(J>) (by Carathéodory 's theorem). An extreme point of mconv(5) 

is a C*-convex combination of no more than n2 (possibly non-distinct) elements of the 

hypoconvex hull of S (by the preceding arguments and the aforementioned Smith-Ward 

theorem). And, an element of the hypoconvex hull of S is obtained in a C*-convex combi­

nation of at most n elements of S (by definition). Hence, an arbitrary element of mconv(5) 

can be obtained in a C*-convex combination requiring at most n3(2n2 +1) (possibly non-

distinct) elements of S- m 

COMMENT. It is likely that the estimate n3(2n2 + 1) is not sharp; the existence of 
such an upperbound, however, is important. 

COROLLARY 2.5. If S C 9An is bounded, then mconv(5~) — (mconvJTr. 

PROOF. Since S C 5 " , we have mconv(5) C mconv(5~) and (mconv(5))~ C 
mconv(5~), because the right hand side of the final containment relation is closed (by 
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the theorem). Conversely, suppose that A G mconv(5~), and let e > 0 be given. Then 
there are S\,..., Sp G S~ and C*-convex coefficients T\,...,TP G !Mn such that A = 
£?=1 TJSjTj. Choose AU...9AP G 5 such that \\Aj - Sj\\ < - for each j . Then T = 
EyLj TjAjTj G mconv(5) and 

lA-m = 
7=1 
ETO-^07} <Ell7}lrll^--Aj < (-)p = c 

; = i ^ 

Because e > 0 is arbitrary, A G (mconv(5))~. • 
We now apply our results on C*-convex hulls to matricial range theory and to matrix 

theory. 
A polynomial of the form p(z) = T!Lo ^j w i t n indeterminate z and coefficients 

Cj G !Mn is said be an n x n matrix-polynomial of degree m\ matrix-polynomials of 
degree 1 are called linear matrix-polynomials. The evaluation of a matrix-polynomial p 
at an element T in a C*-algebra A produces an element in !A (g) 94^. p(T) = H^LQ Tj 0 Cj. 
It is well known that if T G A is such that the norm of every linear (scalar) polynomial 
(3 T+p 1 in T coincides with the maximum of the numbers | (3 A +p \ as A varies throughout 
<j(7), then Wl(T) = conva(T). Lemma 2.1 and Theorem 2.4 combine to show that if 
the norm of every linear n x n matrix-polynomial in T is the maximum of the norms 
obtained by evaluating the matrix-polynomial at each point of the matricial spectrum of 
7, then Wn(T) is the C*-convex hull of an(T). 

THEOREM 2.6. IfTeJZ satisfies, for every B,M G 94n, 

||r<g>fl+l ®M\\ = max{ | |A®#+l ® M\\ : A G J " ( J O } , 

then Wn(T) = mconv an(T). 

The following example presents a class of operators which satisfy the matricial con­
ditions of Theorem 2.6, and the example can be viewed as being the matricial analogue 
of the reason why the numerical ranges of, say, Toeplitz or subnormal operators are the 
convex hulls of their spectra: the key is that these operators have normal dilations (or 
extensions) which satisfy a spectral inclusion. As a consequence, we obtain, in the case 
n — 1, a slightly sharper form of [2;2.4.1] and a unification of some diverse results 
appearing in [15]. 

EXAMPLE 1. IfTe <B{9{) has an n-normal dilation A such that Rn{A) C an(T), 
then 

Wkn(T) = mconvakn(T) = Wkn(A)forallk G N. 

For the case n = 1, Wk(T) = mconv Rk(T) for every k G N, and Wk(T) consists of all 
matrices of the form Y^=l A////, where p < k3(2k2 + 1), each A/ G cr(T), each Hi > 0, 
andY?i=x Ht = \k. 

PROOF. The central part of the proof concerns the computation of||A(g)#+l(g)Af|| 
for B,M G 94kn and /i-normal A. This computation can be performed by employing the 

https://doi.org/10.4153/CJM-1992-019-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-019-1


C*-CONVEXITY AND MATRICIAL RANGES 289 

generalized Gelfand theories of [18;§ 2] or [12;Lemma 4.1], but a very transparent proof 
is given here. We will assume, however, that the space on which A acts is separable. 

The Weyl-von Neumann Theorem for «-normal operators [14;3.5] states that for each 
e > 0 there exist operators S and K such that S is unitarily equivalent to a direct sum of 
n x n matrices, K is compact, Rn(S) C Rn(A), \\K\\ < e, and A = S + K. Therefore, if 
B, M G 9A.kn, then 

| | |A®£+1®M|| -||S®fl+l(8)Af|| | < HAWAII < e||£|j. 

On the other hand, because S is unitarily equivalent to a block diagonal «-normal operator 
and because of [18;§ 1], ||S(S)2?+l<g)M|| is the maximum of the numbers ||A®#+l„(g)M|| 
as A ranges through Rn(S). As e is arbitrary and Rn(S) C Rn(A), we conclude that 

(f) | | A ® £ + 1 ® M | | = sup{ ||(A<g>U)®£+lfc,<8>M|| : AeRn(A)}. 

The characterization of mconv{ A ® 1* : A E Rn(A)} given by Theorem 2.4 and (f ) is 

fï {QeMkn : ||fl<g>fl + 1®M\\ < \\A®B+ 1®M\\ } . 

But this, by Lemma 2.1, is precisely Wkn(A). Hence, 

Wkn(T) C Wkn(A) = mconv{ A ® U : A G /?n(A)} 

C mconv{ A ® U : A G ^"(7)} 

Cmconva^( r )C ^ n ( 7 ) . 

For the case n— 1, the hypothesis is that T has a normal dilation A such that a (A) C 
<j(r); hence, W*(r) = conv a(T). Consequently, every extreme point of Wl(T) is both 
a spectral point of T and a boundary point of Wl(T). By [1;3.1.2], to every extreme 
point £ G ^ ( 7 ) there corresponds a unique unital *-homomorphism (i.e., a character) 
p : C*(r) -> C such that p(T) = ( . Thus, 

mconv{p(7) : p = p\ ® • • • © p*, where p/ is a character of C*(7)} 

C mconv 

The former set contains the C*-convex hull of { À U : À G cr(T)} because extreme points 
of Wl(T) correspond to characters of C*(T); hence, 

Wk(T) C Wk(A) = mconv{C lk : < G a (A)} C mconv Rk(T) C W*(r). 

• 
The second application of the ideas developed in this section concerns representations 

of matrices with respect to their spectral sets. Recall that a set X C C is a spectral set for 
an operator T G ^{Oi) if for every rational function r with poles off X, 

r(T)\\ <sup{|r(C)| : ( ^ 4 
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A classical theorem of von Neumann asserts that the closed unit disc ID ~ is a spectral 
set for every contractive operator on a Hilbert space. Combined with the fact that every 
matrix A in the closed unit ball of 9rtn is a convex combination of unitary matrices, 
we may say that every matrix which has the closed unit disc D ~ as a spectral set can 
be expressed as a convex combination of normal matrices with spectra on 3D - . It is 
natural to ask whether this is also true for arbitrary spectral sets, or for simply connected 
spectral sets: if X C C is a compact (and perhaps simply connected) spectral set for 
a matrix A G fHi, is A a convex combination of normals with spectra on dXl In the 
example below, C*-convex combinations are seen to produce sufficiently many matrices 
for a weaker form of the question to be answered affirmatively: in this case, no particular 
connectedness properties are required of the spectral set X. 

EXAMPLE 2. IfX C C is a compact spectral set for a matrix A G 0\fn, then A is a 
C*-convex combination of normal matrices having spectra on dX. 

PROOF. If Y — conv X, then Y is also a spectral set for A. Because Y is convex and 
compact, the Berger-Foia§-Lebow dilation theorem [13;4.4] asserts the existence of a 
(rational) normal dilation No of A on a Hilbert space 0i such that a (No) CdY. Now let 
E be the closure of the set of extreme points of F, and note that E C dX. Let N G *B(?{) 
be a normal operator with spectrum E. Since cr(No) C conv£, by Example 1 we have 
that 

Wn(N0) = mconv{C 1„ : C G a(N0)} C mconv{C ln : Ç S E] = Wn(N). 

Hence, A G Wn(No) C Wn(N), and so A is a C*-convex combination of normals with 
spectra on E. • 

3. Convexity theorems for the spatial matricial range. In this section, the C*-
algebras that are involved are concrete: operators on Hilbert spaces. We will assume 
throughout that all Hilbert spaces are separable, though no further restrictions on their 
dimension will be assumed. 

We begin this section with a result concerning convexity rather than C*-convexity, 
and its proof requires the use of a generalized numerical range known as the C-numerical 
range. If C G ^(H) is a fixed trace class operator, then the C-numerical range of A G 
*B(9{) is the set of all complex numbers of the form tr(CU*AU), where U ranges over 
all unitary operators in ^(Of), and where 'tr' denotes the trace. (For an operator A in 
the ideal of trace class operators, the trace of A is tr (A) = ^2i(A<j>i, 0/), where {</>/}, 
is any orthonormal basis of 9{.) Recall that a self-adjoint operator T G $(#") is said 
to have a complete system of eigenvectors if Of has an orthonormal basis consisting of 
eigenvectors of T. 

THEOREM 3.1. IfT G *B(9f) is a self-adjoint operator, then every element ofW"(T)~ 
is a convex combination of elements ofcr"(T). 

PROOF. Assume, initially, that T has finite spectrum; therefore, its spectrum con­
sists solely of eigenvalues, and the corresponding system of eigenvectors is complete. 
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Moreover, the unitary orbit of T is closed [3;3.1], and consequently, the spatial matricial 
ranges of T are closed as well. 

The convex hull of a compact set S in 9^ is the intersection of all closed half-spaces 
containing S\ since conva"(T) C conv W%(T), to prove the theorem, it is enough to show 
that every closed half-space *E in Mn which contains a"(T) also contains W£(T). Denote 
by gc the linear functional on 9dn defined by gc(0 = tr (Cr), where C G fAii, and let 
3t(gc) denote the real part of gc. Every half-space *E in Mn is determined by some pair 
(a,C)£ R x ^ via 

£ = { r e f M i : R ( s c ( 0 ) < a } . 

Thus, suppose that (a, C) G R x Mn induce a half-space £ such that a%(T) C £. To 
prove W%(T) C £, it is necessary to establish the inequality 

» ( tr (CV*7V)) < a, for every isometry V: Cn -> # . 

Embed C n into .?/" so that ^/" = C n 0 i ^ . With respect to this decomposition, consider 
the finite-rank (and trace class) operator C — C® 0. The set gc(W%(T)) can be identified 
with the C-numerical range of T by way of the equality tr (CV*TV) = tr (CU*TU), 
whenever V is an isometric map C n —» i^; here, (7 G *B(?{) is any unitary extension 
of V (i.e., matricially, U — [V, W]: J{ —•> #", for some W). Because T is a self-adjoint 
operator with a complete system of eigenvectors, the C-numerical range of T is given by 

J ] Xj(Cuj, Uj) : { «/}jLi is an orthonormal basis of 9{ , 

where { A/Vl] is a list of the eigenvalues of 7, repeated according to multiplicity. This 
characterization of gc{^{T)) is obtained by observing that the C-numerical range of T 
is the T-numerical range of C, and in turn, this is the D-numerical range of C, where D 
is the diagonal operator with eigenvalues { A,-}^. Similarly, applying gc to the unitary 
orbit of any A G cr"(T) produces the C-numerical range of A: 

(f ) 1^2 A/- (CXJ,Xj) : x\,...,xn G Cn are orthonormal , 

where <J(A) = { A/,,..., A,-„} C cr(r). Because the spatial matricial range W%(T) is 
closed and path connected, the set §tgc{W%(T)) m u s t be a compact interval in R. By 
using our preceding arguments and the fact that the spectrum of T is real, this compact 
interval is the D-numerical range of 3?(C): 

?Rgc(W"(T)) = {j^XffiiQuj, uj) : { UJ)]LX is an orthonormal basis of 9i\. 

Let u; = tr (DU*$l(C)U) be the maximum value of this compact interval. The argu­
ments given by Li in [9;2.1], which show that D and U*?R(C)U commute if iH is finite-
dimensional, are dimension independent (they depend only on the existence of a trace) 
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and, therefore, are valid here as well. Hence, D and U*$l(C)U are simultaneously diag-
onalizable; thus, 

V 

where {QjLi = cr{U(C)) = cr(3t(C))u{0} and 7 is a bijection on the set with cardinal 
number v. 

Without loss of generality, assume a (3?(C)) = { Ci, • • •, d }, and consider 9f as C n 0 
^o. Let { M/}^I be an orthonormal basis of 9i such that { wi,. . . , un} both spans C " (as 
a subspace of 9{) and diagonalizes !R(C). Therefore, CJ can be expressed as 

v n 

But the right hand side of this expression is, by equation (f ), precisely K(gc(A)) for 
some A E cr£(T) with spectrum cr(A) = { A7(/) : 1 < j < n}. Consequently, for all 
isometries V:Cn —+ H, 

^(tr(CV*7Y)) < a; = 5R(tr(CA)) < a; 

that is, the half-space £ contains \ ^ ( r ) . 
To complete the proof, we now consider the situation for T having infinite spectrum. 

Suppose that A G W"(T)~, and suppose that e > 0 is arbitrary. By Lemma 1, there is 
a self-adjoint operator A with finite spectrum such that A approximates T to within | 
and such that a"(A) C cr^(T). By hypothesis, there is an isometry V: Cn —• !H such 
that || A - V*7V|| < § ; so, || A - V*AV|| < e. Because A has finite spectrum, V*AV is 
a convex combination of elements of of (A), and therefore, from crs

rt(A) C of(r), A is 
within e of con v CT^(T). m 

It should be noted that Theorem 3.1 is false if "self-adjoint" is replaced by "normal" 
in its hypothesis: the nilpotent Jordan matrix of order n is an element of the n x n spatial 
matricial range of the cyclic shift operator U on C n+1, but it does not lie within the convex 
hullof<(£/)[7]. 

The next objective is to establish Theorem 3.2. The first step is to extend a theorem 
of Poon concerning a vector-valued range to a wider class of operators and spaces. An 
extension of this form in finite dimensions has been given by Li and it will appear in 
forthcoming work; the presentation of the proof given below is based somewhat on his. 
For n G N not exceeding the dimension of H, let D"(T) denote the set of n-tuples in C n 

of the form y(T(f)\, (f)\),..., (T<j)n, </>„)), where <f>\, ...,<j>n are n orthonormal vectors from 
9{\ equivalently, D"(T) is the set of M-tuples obtained from the diagonals of the elements 
of W%(T). 

THE DIAGONAL LEMMA OF Y.-T. POON. If T e ^{H) is an operator which is not 
a linear function of a self-adjoint operator, but which does satisfy Wl(T) = conv cr(T), 
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then the closure of the set D"(T) cannot be convex ifT has an isolated eigenvalue of 
multiplicity k < n among the extreme points of W\ (T). 

PROOF. The proof is modelled on the original [ 16] : we show that, under the hypoth­
esis, the closure of Dk+l (T) is not convex. 

Suppose that À G a(T) is an isolated eigenvalue of multiplicity k < n, and that À is 
an extreme point of W\{T). Because A is eigenvalue on the boundary of the numerical 
range of T, A is a reducing eigenvalue [8; Satz 2(i)]. Moreover, because A is isolated in 
a(7), T is unitarily equivalent to A 1& 0 B, where B is an operator on 9fo, the orthogonal 
complement of ker(T — A 1), and where A ^ v(B). Hence, by the hypothesis Wl(T) — 
convcr(r), A $ Wl(B), and so Wl(T) is the convex hull of (the disjoint union) { A } U 
Wl(B). There exist, therefore, extreme points 7i,72 of Wl(T), which are elements of 
a(T) as well, such that 

(i) 7i, 72 are adjacent to A (i.e., they are the nearest extreme points to A ). 
Because a(T) is not contained within a line, it is also true that 

(ii) 7i ± 72. 
The proof of the theorem consists of showing that the convexity of the closure of D^+1 (T) 
implies the contradictory statement 7i =72. 

At this point, we know that 7i,72 € a{T)\ however, it is of added benefit for our 
arguments if the points are elements of the spatial numerical range. Therefore, assume, 
for the moment, that W%(T) is closed, so that for each 1 < j < n the sets W{(T) and iys(T) 
are closed (note that this also implies that Wl(T) = Wl(T)). Because Wl(T) is closed 
there exist unit vectors JCI,JC2 G 9i such that 7/ = (Txi,xt)fori — 1,2; moreover, because 
A is a reducing eigenvalue, x\ and X2 can be taken to be orthogonal to ker (T — XI). 
Therefore, the (k + l)-tuples 

a = (A,A,... ,A,72 ,A)and/3 - (A, A, . . . , A, A,7i) eDk
s
+l(T). 

The remaining arguments follow those of [16;Thm. 1]. To show that Dk
s
+l (T) is not con­

vex, it suffices to show that the assumption £ = ^(a+f3) G Dk+l (T) leads to a contradic­
tion of 7i 7̂  72- To argue this, assume that £ is an element of Dk+l(T); thus, there exist 
orthonormal vectors 0 i , . . . , t/̂ +i £ Ji such that & = A = (Tijji, -0/) for i'— 1,...,&— 1, 
£* = 5(A +72) = (Ti/Jk^kl and &+1 = ±(A + 7i) = (7ty*+i,^*+i). By the extremal 
theory for numerical ranges (e.g. [8]), the vectors t/>i,..., 0&-i rnust be eigenvectors of 
T corresponding to A. With respect to the decomposition !H — ker (T — X 1) 0 !HQ, 
express the vectors t/̂  and 0^+i as ^ = 0̂  © ̂ k and 0̂ +i = 6t+\ 0 o^+i. Thus, 

& = W*,t/fc) = A| |^ | |2 + ( r ^ , ^ ) 

= A| |^ | |2 + | | ^ | | 2 ( r ^ , ^ ) 

and 
&+i = ( r ^ + i . ^ + i ) = A ||0*+i ||2 + (TLjk+i,Ljk+i) 

= A||0,+1||2 + \\uk+i\\2(Tûk+ULjk+i), 
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where x denotes ||x||_1x for non-zero x E 9{. The first equation expresses £* as a 
convex combination of À and (T\jjk,xjjk); however, (k is on the line segment connect­
ing the adjacent extreme points A and 72, and so | |^ | | 2 = | | ^ | | 2 = \> Similarly, 
||0*:+i||2 = ||^*+i||2 = j - The vectors 0*,0*+i are elements of the ^-dimensional T-
invariant subspace ker (T — XI), and both are orthogonal to ip\,..., i/^-i ; hence, 0* = 
(6ic+\ for some £ of unit modulus. Moreover, from 0 = (1/̂ ,1/̂ +1), w e conclude that 
(uk,uk+i) = -(0*,0*+i), and thus, 

^ = H l̂l ||^+1|| > 1(^,^1)1 = ||0*|| ||0*+i|| \(SkJk+l)\ = ^|C| = \ 

But this is equality in the Cauchy-Schwarz inequality, and so uk = puk+\ for some 
| p | = 1. In the equation 

1 . . 1 
-7 i = (Tujk,ujk) = \p\(Tuk+uuJk+\) = -72, 

we have a contradiction, for this implies that 7i = 72-
All that it is left is to consider the case where W%(T) = W"(X lk 0 B) is not closed. 

In this case, replace B with ir(B) for some unital *-representation IT of C*(B) for which 
W%(n(B)) is closed and W%(B)~ C W£(7r(£)) (such a representation is constructed in [4; 
pp. 150-155]). Observe that A is an isolated eigenvalue of multiplicity k in a(X \k 0 
7T(/?)). An application of the preceding arguments to the operator A 1* © 7r(#) shows that 
no convex combination of elements of (the closed set) D^+l (Xlk 0 TT(B)) can produce £ ; 
but since 4 € Dk

s
+1(T)- C Of1 (A U e TT(B)), neither can any convex combination of 

elements of D*+1 (T)~ produce £. • 
The preceding lemma is a statement concerning the convexity of the diagonals of 

W"(T)~, based on the numerical range of T sharing a property common to normal opera­
tors. To say something about the convexity of W"(T)~ itself, we will require T to behave 
very much like a normal operator behaves with respect to all of its matricial ranges; 
consequently, we will consider operators T which possess a normal dilation N such that 
a(N) C a(T). 

THEOREM 3.2. IfTe <B{9{) has a normal dilation N such that a(N) C a(T), then 
the following statements are equivalent: 

(i) W%(T) is dense in a convex set. 
(ii) W%(T) is dense in a C*-convex set. 

(iii) Every isolated eigenvalue ofT among the extreme points of Wl(T) is of multi­
plicity no less than n. 

PROOF, (i) => (iii) The assumption that W"(T)~ is convex implies that DS(T)~ is 
convex as well; hence, if T is not a linear function of a self-adjoint operator, then Poon's 
Diagonal Lemma shows that the closure of W^(T) is convex only if (iii) holds. If T is a 
linear function of a self-adjoint operator, then there is no loss in assuming that T > 0, 
and in proving (iii) only for A = || T\\. In the finite-dimensional case, the equivalence 
of (i) and (iii) is covered (for self-adjoint operators) by [10;2.1], and so we assume that 
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H is of infinite dimension. Because (iii) is a statement about extreme points of W[(T) 
which are not elements of at(T), we assume, in addition, that À is an isolated eigenvalue. 

Because J7* = T and because W^(T)~ is convex, we have W%(T)~ = conv a£(T), by 
Theorem 3.1. Bauer's Maximum Principle states that the maximum value of the (convex) 
function tr : W"(T)~ —• R is attained at an extreme point of W%(T)~; hence, there is a 
A G cr^(T) such that tr (A) > tr (O) for every Q G W^(T)~. Because || T\\ g ae(T), an 
n x n spectral element of maximal trace must be unitarily equivalent to a matrix of the 
form 

Ail*, 0A 2 1* 2 ©-- -0A / , 1 V 

where ||r| | = \\ > A?. > • • • > Xp, and where each A; is an isolated eigenvalue of 
multiplicity kf, for 1 < i < p (Xp could be an element of ae(T)). Let a = - tr (A); there 
exist unitaries U\,...,Un G 9v(n such that 

Hence, a\n G W£(r)-,by the convexity of W^(T)~Af a < A^thena = Ai = • • • = A, 
because in addition to a < A/ for every 1 < i < p, oc is a convex combination of 
Ai, . . . , Xp. Therefore, the inequality a < Xp is enough to imply (iii), since this inequality 
implies X\ln G W%(T), and so there exist n orthonormal vectors x\,...,xn G 0~C with 
Ai = || r | | = (Txi,Xi) for each 1 < i < n; hence, Txt — X\X[ for every I < i < n, thereby 
implying that ker (T — X\ 1) is at least «-dimensional. 

We claim,: a < Xp. Let E denote the spectral measure for T, and for use in the argu­
ment, let G denote the spectral measure for a ln. Let B be a compression of T and let F 
be the spectral measure for B. By the generalized minimax principle, 

rank F((A, oo)) < rank E((X, oo)) for every A G R [6;l(i)]. 

In particular, if A > Xp, then 

rank F((X, oo)J < ^ kj•• — n — kp < n. 
i<P 

The element a \n G W"(T)~~ is the limit of a sequence of compressions of T, and there­
fore, by the lower semicontinuity of rank, we have that 

n — r a n k G ( { a } ) = rank G((a — e,oo)) < rank£((a — e,oo)) 

for every e > 0. Hence, we must have a — e < Xp for every e > 0, because 
rank £ ( ^ , 0 0 ) ) < n. 

(iii) => (ii) It is sufficient to prove that the closure of W%(T) is the compact C*-convex 
set $C of matrices of the form Yfi=] A////, where p < n3(2n2 + 1), each A/ G cr(T), each 
Hi > 0 in 9An, and Y^=iHi= 1. Because T has a normal dilation N with a(N) C a(7), 
Ĉ contains the closure of W%(T), by Example 1 of § 2. 

Conversely, suppose that A — £f=1 A//// G ^C, and suppose that e > 0; we are 
to show that A is within e of some element of W%(T). Assume, to begin with, that 
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Ai,. . . , Xp are extreme points of Wl(T). Because each Xt G dW](T) Pi a(T), the points 
Ai, . . . , Xp e Rl

s(T) [8; Satz 2]. (It is the properties of Rl(T) which allow us, in the ab­
sence of a spectral theorem for 7, to treat X\,...,XP just as though they were spectral 
points of a normal operator.) An element of R[

s (T) is either a reducing isolated eigen­
value or a reducing essential eigenvalue [17; 6.1]. Thus, there exist mutually orthogonal 
projections Q\,...,QP E ^{H) such that for every 1 < / < p the operators (T — A/1 )Qi 
and (T* — A*l)g/ are compact and are of norm no greater than/?~2e [17;4.1,4.2]; more­
over, by condition (iii), the dimension of each subspace H = Q0i~) is no less than n. 
These facts imply that for each 1 < i < p there is an isometry Vt : C

 n —• ^ satisfying 
||(7 - A/1)V||| < p~2e. The matrix A is within e of V*7Y G Ws

n(7), where V is the 
i 

isometry defined by V = E/ V///J2, since 

|| VTv-A|| = lEE^vrTv,/// -UllnWXjVjH} 
j i J i 

<JlE\\Hj\\\\Hj\\\\V*(TVj~XjVj)\\ 
j I 

P2 

This proves that A is in the closure of W%(T). 
Now suppose that Q is an arbitrary element of 9£, and that Q is of the form Q. — 

Hj=i WjHj. Each ujj is an element of the convex hull of the extreme points of W](T); 
furthermore, an application of Carathéodory's Theorem produces, for each 1 < j < p, 
the convex combination ujj = T^=\ ^Xj, where each i{ G [0,1] with Y\=\ ^ = 1, and 
where the points X\ are extreme points of Wl(T). Let K\ — ̂ H/, then each 

*!>o, EE«î '=i». and n = E E A / 4 
j= 1 '= 1 j= 1 i'= 1 

In this form, we see that £1 G W"( J)~, by the preceding paragraph, 
(ii) ^> (i) This is obvious. • 

Whether it is true, for general operators 7, that W^(T)~ cannot be convex without 
already being C*-convex is not known. It seems, though, that there ought to be some sort 
of analogue of Theorem 3.2 for the kn x kn spatial matricial ranges of «-normal operators. 
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