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Optimization of structural materials for nuclear energy purposes necessitates understanding the fundamental 

mechanisms beyond the helium-induced damage in the structural materials [1]. The morphology of emergent 

microstructures is readily available via imaging; however, analyzing transmission electron microscopy (TEM) 

images is time-consuming and often difficult manually or using traditional computational tools. Here we 

demonstrate the seamless integration of the deep learning algorithms with the physics-based descriptors 

implemented via traditional computer vision techniques can significantly accelerate the process and provide 

new insights into the images. 

The use of deep convolutional neural networks has long been demonstrated in real-world image and video 

semantic segmentation, such as in autonomous vehicles [2]. Lately, deep convolutional neural network 

(DCNN) semantic segmentation has also been employed in microscopy experiments in the biological science 

and materials science fields to automatically identify features in an image [3]. While DCNNs have been shown 

to be capable of performing image segmentation, domain knowledge is important in giving physical meaning 

to the segmented labels. Thus traditional computer vision techniques based on the physics of the formation of 

the helium bubbles were incorporated to obtain statistics from the labels. 

The proposed use of deep learning–based semantic segmentation is part of an overall drive to automate 

workflows in microscopy experiments. Through the use of deep learning, significant time-savings were gained 

which accelerated the process of scientific discovery. Furthermore, the use of traditional computer vision 

techniques as a post-processing step brought to light the importance of incorporating domain knowledge in the 

application of deep learning in the microscopy field. 

Previously, NiFex-based single-phase concentrated solid solution alloy samples with different alloy 

compositions were implanted with 200 keV helium ions to simulate the effects of helium embrittlement in 

nuclear reactor structural materials [4]. 42 TEM images were acquired, of which ten were labeled and used for 

the training of the DCNN. The fully-convolutional DCNN had a U-net architecture and ensemble training was 

used in which twelve models with different weight initializations were trained. Image segmentation was 

performed on the twelve trained networks individually and the results were averaged. The labeled bubbles 

were then located and sized using the Laplacian of Gaussian (LoG) and Hough transform separately, and the 

identified coordinates and radii were concatenated using density-based spatial clustering of applications with 

noise (DBSCAN). The training and classification workflows are illustrated in Fig. 1. The results of the 

classification were compared with those manually labeled by three different researchers to measure the 

performance of the proposed framework. 

The performance of the DCNN-based framework was robust. The DCNN ensemble achieved an intersection-

over-union (IoU) of 0.85. This was higher than those of the individual neural networks. The identified bubbles 

are shown in Fig. 2. Upon analyzing the segmented images using the traditional computer vision techniques 

outlined above, individual bubbles were identified with an IoU of 0.80. Overlapping bubbles were effectively 
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identified separately. Images from other materials systems were also analyzed and the proposed framework 

was able to identify gas bubbles in such systems effectively even without retraining the network on images of 

the relevant materials systems. 

The demonstration of a successful DCNN-based pipeline not only allowed the same paradigm to be utilized 

by different experiments to accelerate the process but also brought promise to automating the entire workflow 

of microscopy experiments—from automatic control of the microscope based on real-time analysis of the 

image captured, to the data analysis and the generation of new insights from the data acquired. 

 
Figure 1. Flowchart of the DCNN-based framework. The blue arrows follow the workflow of the ensemble 

training process and the green arrows follow the workflow of the classification process. 

 
Figure 2. Helium bubbles that were identified by the framework. The insets show examples of overlapping 

bubbles that were identified as separate bubbles by the framework. 
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