GERTAIN REPRESENTATION ALGEBRAS

S. B. CONLON

(received 5 May 1964)

Introduction

Let Λ be the set of inequivalent representations of a finite group \mathscr{G} over a field $\mathscr{F} . \Lambda$ is made the basis of an algebra \mathscr{A} over the complex numbers \mathscr{C}, called the representation algebra, in which multiplication corresponds to the tensor product of representations and addition to direct sum. Green [5] has shown that if char $\mathscr{F} \dagger|\mathscr{G}|$ (the non-modular case) or if \mathscr{G} is cyclic, then \mathscr{A} is semi-simple, i.e. is a direct sum of copies of \mathscr{C}. Here we consider two modular, non-cyclic cases, viz. where \mathscr{G} is $\mathscr{V}_{4}\left(=Z_{2} \times Z_{2}\right)$ or \mathscr{A}_{4} (alternating group) and \mathscr{F} is of characteristic 2.

Finally we consider the analogous case where the multiplication is changed to the ordinary ring tensor product over the group algebra $\mathscr{F}(\mathscr{G})$.

I would like to thank Dr. G. E. Wall for indicating these problems.

1. Representation algebras of groups

Let \mathscr{P} be an arbitrary commutative ring with a unity, and let $\mathscr{F}(\mathscr{G})$ be the group algebra of a group \mathscr{G} over a field \mathscr{F}. The representation algebra $\mathscr{A}(\mathscr{P}, \mathscr{F}, \mathscr{G})(=\mathscr{A})$ is defined as follows. It is the \mathscr{P}-module generated by the set of all isomorphism classes $\{\mathscr{M}\}$ of $\mathscr{F}(\mathscr{G})$-modules ${ }^{1} \mathscr{M}$, subject to the relations

$$
\begin{equation*}
\{\mathscr{M}\}=\left\{\mathscr{M}^{\prime}\right\}+\left\{\mathscr{M}^{\prime \prime}\right\} \tag{1}
\end{equation*}
$$

for all $\mathscr{M}, \mathscr{M}^{\prime}, \mathscr{M}^{\prime \prime}$ such that $\mathscr{M}=\mathscr{M}^{\prime} \oplus \mathscr{M}^{\prime \prime}$, and equipped with the bilinear multiplication given by

$$
\begin{equation*}
\{\mathscr{M}\}\left\{\mathscr{M}^{\prime}\right\}=\left\{\mathscr{M} \times \mathscr{M}^{\prime}\right\} . \tag{2}
\end{equation*}
$$

Here $\mathscr{M} \times \mathscr{M}^{\prime}$ is the module obtained from the tensor (Kronecker) product ${ }^{2}$ of the representations afforded by $\mathscr{M}, \mathscr{M}^{\prime}$. By the Krull-Schmidt theorem for $\mathscr{F}(\mathscr{G})$-modules, \mathscr{A} is free as a \mathscr{P}-module and the $\mathscr{F}(\mathscr{G})$-indecomposable classes form a \mathscr{P}-basis. \mathscr{A} is a commutative, associative algebra over \mathscr{P},

[^0]and has identity element $\left\{\mathscr{F}_{y}\right\}$, i.e., the class containing the trivial $\mathscr{F}(\mathscr{G})$ module.

When \mathscr{P} is taken to be the field \mathscr{C} of complex numbers, $\mathscr{A}(\mathscr{C}, \mathscr{F}, \mathscr{G})$ is semi-simple in the non-modular case, or when \mathscr{G} is a cyclic group (Green [5]). In these cases there are only a finite number of different indecomposable classes and so \mathscr{A} is a direct sum of copies of \mathscr{C}. In general the structure of \mathscr{A} is more complicated, but we may still hope for semi-simplicity.

Green in [5] is more precise. When $\mathscr{P}=\mathscr{C}$, we define a G-character of \mathscr{A} to be a non-zero algebra homomorphism $\phi: \mathscr{A} \rightarrow \mathscr{C} . \mathscr{A}$ is then G-semisimple if, given any non-zero element $A \in \mathscr{A}$, there exists some G-character ϕ of \mathscr{A} such that $\phi(A) \neq 0$. We may define the G-radical of \mathscr{A} to be the intersection $\cap \mathscr{M}_{\alpha}$ of all maximal ideals \mathscr{M}_{α} of \mathscr{A}, such that $\mathscr{A} / \mathscr{M}_{\alpha} \approx \mathscr{C}$. Then \mathscr{A} is G-semisimpe if and only if the \mathscr{C}-radical $=(0)$.

Let \mathscr{F} * be an extension field of \mathscr{F}. Each $\mathscr{F}(\mathscr{G})$-module \mathscr{M} gives rise to a $\mathscr{F}^{*}(\mathscr{G})$-module $\mathscr{M}^{*}=\mathscr{F} * \otimes_{\mathscr{F}} \mathscr{M}$. We have the following

Proposition $1 .{ }^{3} \mathscr{M} \approx \mathscr{M}^{\prime}$ if and only if $\mathscr{M}^{*} \approx \mathscr{M}^{\prime *}$.
The mapping $\{\mathscr{M}\} \rightarrow\left\{\mathscr{M}^{*}\right\}$ gives rise to a natural homomorphism

$$
\begin{equation*}
\mathscr{A}(\mathscr{C}, \mathscr{F}, \mathscr{G}) \rightarrow \mathscr{A}(\mathscr{C}, \mathscr{F} *, \mathscr{G}) . \tag{3}
\end{equation*}
$$

From proposition 1 it follows that this is actually a monomorphism. In view of this natural embedding we shall use $\{\mathscr{M}\}$ to denote either $\{\boldsymbol{M}\}$ or $\left\{\mathscr{M}^{*}\right\}$; the interpretation will be clear from the context.

Let \mathscr{H} be a subgroup of \mathscr{G}, let \mathscr{L} be a $\mathscr{F}(\mathscr{H})$-module, and let \mathscr{M} be a $\mathscr{F}(\mathscr{G})$-module. $\mathscr{L}^{\mathscr{B}}$ will denote the induced $\mathscr{F}(\mathscr{G})$-module

$$
\mathscr{F}(\mathscr{G}) \otimes_{\mathscr{F}(\mathbb{*})} \mathscr{L},
$$

while \mathscr{M}_{\neq}will denote the $\mathscr{F}(\mathscr{H})$-module obtained by restriction of the module multiplications to the subalgebra $\mathscr{F}(\mathscr{H})$ of $\mathscr{F}(\mathscr{G}) .{ }^{4}$

Proposition $2 .{ }^{5} \mathscr{L}^{g} \times \mathscr{M} \approx\left(\mathscr{L} \times \mathscr{M}_{\boldsymbol{x}}\right)^{\boldsymbol{g}}$.
Proposition 2 shows that the subspace spanned by all the (\mathscr{G}, \mathscr{H})projective modules ${ }^{6}$ is an ideal of \mathscr{A}.

In particular, taking $\mathscr{H}=\{E\}$, the trivial subgroup of \mathscr{G}, we have that the $(\mathscr{F}(\mathscr{G})$-) projective modules span an ideal \mathscr{D} of \mathscr{A}, which we shall call the projective ideal of \mathscr{A}.

Proposition 3. The projective ideal \mathscr{D} is semi-simple and finite dimensional.

Remark. In the non-modular case, $\mathscr{D}=\mathscr{A}$ and the proposition reduces

[^1]to Green's result. We shall therefore assume in the proof that \mathscr{F} is of characteristic $p \neq 0$.

Proof. In proposition 1 take \mathscr{F}^{*} to be algebraically closed. Then the restriction of the monomorphism (3) to \mathscr{D}, embeds \mathscr{D} in the projective ideal \mathscr{D}^{*} of $\mathscr{A}(\mathscr{C}, \mathscr{F} *, \mathscr{G})$. It will therefore be sufficient to consider \mathscr{F} algebraically closed.

Let $\mathscr{K}_{1}, \cdots, \mathscr{K}_{r}$ be the p-regular conjugacy classes of \mathscr{G} and let $X_{\nu} \in \mathscr{K}_{\nu}(\nu=1, \cdots, r)$. Any $\mathscr{F}(\mathscr{G})$-module class $\{\mathscr{M}\}$ then defines a Brauer character χ, which is completely determined by the values ${ }^{7}$ of the $\chi\left(X_{\nu}\right) \in \mathscr{C}$. Write

$$
\beta_{\nu}(\mathscr{M})=\chi\left(X_{\nu}\right) .
$$

β_{ν} can then be extended linearly over \mathscr{C} to give a map $\beta_{\nu}: \mathscr{A} \rightarrow \mathscr{C}$. This is readily verified to be a \mathscr{C}-algebra homomorphism and so β_{v} is a G-character of \mathscr{A}.

Consider now the restrictions γ_{ν} of the β_{ν} to \mathscr{D}. As \mathscr{F} is algebraically closed, the number of different indecomposable projective modules (i.e. indecomposable summands of the regular module) is equal to the number of p-regular conjugacy classes ${ }^{8}$, i.e. r. Let $\left\{\mathscr{P}_{1}\right\}, \cdots,\left\{\mathscr{P}_{r}\right\}$ be these different classes. The $\left\{\mathscr{P}_{\mu}\right\}$ are a basis of \mathscr{D}. We prove that \mathscr{D} is semisimple by showing that $\bigcap_{\nu} \operatorname{ker} \gamma_{\nu}=(0)$. Now this last is so if and only if the matrix $\left(\gamma_{\nu}\left(\mathscr{P}_{\mu}\right)\right)$ is non-singular. But this matrix is precisely the matrix H on p. 599 of [3], and is non-singular as the Cartan matrix C is non-singular.

Corollary 4. If \mathscr{F} is algebraically closed, \mathscr{D} is isomorphic to the direct sum of r copies of \mathscr{C}.

Corollary 5. \mathscr{D} is an ideal direct summand of \mathscr{A}.
Proof. This follows directly from the fact that \mathscr{A}, \mathscr{D} have unit elements.

2. Representations of \mathscr{V}_{4} over a field characteristic 2

All representations of the group $\mathscr{V}_{4}\left(=Z_{2} \times Z_{2}\right)$ over a field \mathscr{F} of characteristic 2 have been essentially determined by two authors [1], [6]. Let \mathscr{V}_{4} have generators X, Y satisfying $X^{2}=Y^{2}=E, X Y=Y X$, with E the identity element. In the group algebra $\mathscr{F}\left(\mathscr{V}_{4}\right)$ write

$$
P=X+E, \quad Q=Y+E
$$

Then $P^{2}=Q^{2}=0, P Q=Q P$ and

$$
\mathscr{F}\left(\mathscr{V}_{4}\right) \approx \mathscr{F}[P, Q] /\left(P^{2}, Q^{2}\right)=\mathscr{R}, \text { say }
$$

[^2]where $\left(P^{2}, Q^{2}\right)$ denotes the ideal generated by P^{2}, Q^{2} in the polynomial ring $\mathscr{F}[P, Q]$.

The following discussion of indecomposable \mathscr{R}-modules is independent of the characteristic of \mathscr{F}.

Let $A \rightarrow \lambda(A)(A \in \mathscr{R})$ be a representation of \mathscr{R}, where the matrices $\lambda(A)$ have coefficients in \mathscr{F}. One indecomposable such representation is the regular representation whose \mathscr{R}-module class we denote by D. The underlying \mathscr{R}-module is both \mathscr{R}-projective and \mathscr{R}-injective and so is a direct summand of any module in which it occurs as a submodule. The remaining indecomposable representations all satisfy the condition

$$
\lambda(P) \lambda(Q)=0
$$

As $(\lambda(P))^{2}=(\lambda(Q))^{2}=0$ in any case, by suitable choice of basis, $\lambda(P)$, $\lambda(Q)$ can be written in the form

and so it is sufficient in describing an indecomposable representation to give \bar{P}, \bar{Q}. The following cases $A_{n}, B_{n}, C_{n}(\pi), C_{n}(\infty)$ arise.

Both A_{0}, B_{0} can be interpreted as the class of the trivial R-module.
Let $\pi=T^{m}-u_{m-1} T^{m-1}-\cdots-u_{0}$ be an irreducible polynomial in the indeterminate T over \mathscr{F}, with degree $\pi=m$. Thus we define

where

As a convention we shall say that the degree of ∞ is 1 .
Here $A_{n}, B_{n}, C_{n}(\pi), D$ denote the module classes associated with the respective representations. With the above convention on $\operatorname{deg}(\infty), \pi$ can be considered to range through all irreducible polynomials over \mathscr{F}, together with $\infty . \bar{Q}$ for $C_{n}(\pi)(\pi \neq \infty)$ is an indecomposable Jordan block, with invariant factors $\pi^{n}, 1,1, \cdots$. Indeed, once the A_{n}, B_{n}, D have been removed in the break-up of a given module into indecomposables, the decomposition of the remainder can be determined by elementary divisor techniques, suitable allowance being made for $C_{n}(\infty){ }^{9}$.

If $\mathscr{F} *$ is the algebraic closure of \mathscr{F}, the representation afforded by

[^3]the class $C_{n}(\pi)$ may break up further over $\mathscr{F} *$. Say \mathscr{F} has characteristic p; let the degree of inseparability of π be t, and let the reduced degree of π be s, i.e. $m=s p^{i}$; let a_{1}, \cdots, a_{s} be the different roots of π in $\mathscr{F} *$. Then
\[

$$
\begin{equation*}
\pi=\prod_{\alpha=1}^{s}\left(T-a_{\alpha}\right)^{p^{t}} \tag{4}
\end{equation*}
$$

\]

The invariant factors for \bar{Q} in $\mathscr{F} *$ are

$$
\prod_{\alpha}\left(T-a_{\alpha}\right)^{p^{t}}, 1,1, \cdots
$$

and \bar{Q} splits up into s different blocks each of size $n \cdot p^{t}$. We write

$$
\begin{equation*}
C_{n}(\pi)=F_{\alpha=1}^{s} C_{n} \cdot p^{t}\left(T-a_{\alpha}\right) \tag{5}
\end{equation*}
$$

implying that we are considering $\mathscr{F} *\left(\mathscr{V}_{4}\right)$-module classes.

3. Tensor (Kronecker) products of the $\mathscr{F}\left(\mathscr{V}_{4}\right)$-module classes

Methods for calculating the tensor products of the $\mathscr{F}\left(\mathscr{V}_{4}\right)$-indecomposable modules have been given by Bašev in [1] when the field \mathscr{F} is algebraically closed of characteristic 2. The author has found that Bašev's results are correct except for the following case. Let $a \in \mathscr{F}, a \neq 0,1$ (or ∞). Then we have

$$
\begin{align*}
& C_{1}(T+a) C_{1}(T+a)=C_{2}(T+a) \tag{6}\\
& C_{n}(T+a) C_{n}(T+a)=n(n-1) D+2 C_{n}(T+a) \quad(n>1) \tag{7}
\end{align*}
$$

Our results can be extended to the case where \mathscr{F} is not algebraically closed by using proposition 1 . Let \mathscr{F}^{*} be the algebraic closure of \mathscr{F}. Consider, for instance, $C_{n}(\pi) C_{n}(\pi)(n>1)$, where π is given by (4) with $p=2$.

$$
\begin{align*}
C_{n}(\pi) C_{n}(\pi)= & \mathscr{F}_{\alpha, \beta=1}^{s} \sum_{n \cdot 2^{t}}\left(T+a_{\alpha}\right) C_{n \cdot 2^{t}}\left(T+a_{\beta}\right) \tag{by5}\\
= & \mathscr{F}_{\alpha} \sum_{\alpha=1}^{s} C_{n \cdot 2^{t}}\left(T+a_{\alpha}\right) C_{n \cdot 2^{t}}\left(T+a_{\alpha}\right) \\
& +\sum_{\alpha \neq \beta}^{s} C_{n \cdot 2^{t}}\left(T+a_{\alpha}\right) C_{n \cdot 2^{t}}\left(T+a_{\beta}\right) .
\end{align*}
$$

But

$$
\begin{equation*}
C_{n \cdot 2^{t}}\left(T+a_{\alpha}\right) C_{n \cdot 2^{t}}\left(T+a_{\beta}\right)=_{\mathscr{F}^{*}}\left(n \cdot 2^{t}\right)\left(n \cdot 2^{t}\right) D \quad(\alpha \neq \beta) \tag{8}
\end{equation*}
$$

and so

$$
\begin{align*}
C_{n}(\pi) C_{n}(\pi)= & { }_{F} \sum_{\alpha=1}^{\in}\left[n \cdot 2^{t}\left(n \cdot 2^{t}-1\right) D+2 C_{n \cdot 2^{t}}\left(T+a_{\alpha}\right)\right] \\
& +s(s-1) n^{2} 2^{2 t} D \tag{7}\\
= & { }_{g^{*}} n m(n m-1) D+2 C_{n}(\pi)
\end{align*}
$$

where $m=\operatorname{deg} \pi$. Thus by proposition 1 we have

$$
C_{n}(\pi) C_{n}(\pi)=n m(n m-1) D+2 C_{n}(\pi)
$$

this being an equation in $\mathscr{F}\left(\mathscr{V}_{4}\right)$-module classes.
Let π_{1} denote either $T, T+1, \infty$ or any inseparable irreducible polynomial over \mathscr{F}, let π_{2} denote any other irreducible polynomial; let π denote the general irreducible polynomial of type π_{1} or π_{2}.

The results are summarised in the following multiplication table.

$n \leqq n^{\prime}$	A_{n}	B_{n}	$C_{n}(\pi), \operatorname{deg} \pi=m$	D
$A_{n^{\prime}}$	$n n^{\prime} D+A_{n+n^{\prime}}$	$n\left(n^{\prime}+1\right) D+A_{n^{\prime}-n}$	$n n^{\prime} m D+C_{n}(\pi)$	$\left(2 n^{\prime}+1\right) D$
$B_{n^{\prime}}$	$n\left(n^{\prime}+1\right) D+B_{n^{\prime}-n}$	$n n^{\prime} D+B_{n+n^{\prime}}$	$n n^{\prime} m D+C_{n}(\pi)$	$\left(2 n^{\prime}+1\right) D$
$C_{n}\left(\pi^{\prime}\right)$ $\operatorname{deg} \pi^{\prime}=m^{\prime}$	$n n^{\prime} m^{\prime} D+C_{n^{\prime}}\left(\pi^{\prime}\right)$	$n n^{\prime} m^{\prime} D+C_{n^{\prime}\left(\pi^{\prime}\right)}$	$\frac{n m n^{\prime} m^{\prime} D, \text { if } \pi \neq \pi^{\prime}}{}$	$2 n^{\prime} m^{\prime} D$
$n m\left(n^{\prime} m-1\right) D+2 C_{n}(\pi)$, if $\pi=\pi^{\prime}$, except that $C_{1}\left(\pi_{2}\right) C_{1}\left(\pi_{2}\right)=C_{2}\left(\pi_{2}\right)$				
D	$(2 n+1) D$	$(2 n+1) D$	$2 n m D$	$4 D$

4. The representation algebra for \mathscr{V}_{4}

We shall now look at $\mathscr{A}\left(\mathscr{P}, \mathscr{F}, \mathscr{V}_{4}\right)=\mathscr{A}$, where \mathscr{F} has characteristic 2 . We require that \mathscr{P} should contain a subring isomorphic to $Z\left[2^{-\frac{1}{2}}\right]$.
$A_{0}=B_{0}$ is the identity I of \mathscr{A}. Further $I_{D}=\frac{1}{4} D$ is an idempotent. Thus I_{D} generates the projective ideal which is an ideal direct summand with complement generated by $I-I_{D}$. Write

$$
\begin{aligned}
& A_{n}=A_{n}\left(I-I_{D}\right)=A_{n}-\frac{2 n+1}{4} D, \\
& B_{n}=B_{n}\left(I-I_{D}\right)=B_{n}-\frac{2 n+1}{4} D, \\
& C_{n}(\pi)=C_{n}(\pi)\left(I-I_{D}\right)=C_{n}(\pi)-\frac{n m_{\pi}}{2} D,
\end{aligned}
$$

where $\operatorname{deg} \pi=m_{\pi}$. The multiplication table in the ideal $\left(I-I_{D}\right)$ is then as follows:

$n \leqq n^{\prime}$	A_{n}	\bar{B}_{n}	$\bar{O}_{n}(\pi)$
A_{n},	$A_{n+n^{\prime}}$	$A_{n^{\prime}-n}$	$\bar{O}_{n}(\pi)$
$B_{n}{ }^{\prime}$	$\bar{B}_{n^{\prime}-n}$	$\bar{B}_{n+n^{\prime}}$	$\bar{C}_{n}(\pi)$
$\bar{C}_{n^{\prime}\left(\pi^{\prime}\right)}$	$\bar{C}_{n^{\prime}\left(\pi^{\prime}\right)}$	$\bar{C}_{n^{\prime}\left(\pi^{\prime}\right)}$	$\begin{align*} & 0 \text {, if } \pi \neq \pi^{\prime} . \tag{9}\\ & \hline 2 \bar{C}_{n}(\pi), \text { if } \pi=\pi^{\prime}, \\ & \text { except that } \\ & O_{1}\left(\pi_{2}\right) \delta_{1}\left(\pi_{2}\right)=C_{2}\left(\pi_{2}\right) . \end{align*}$

Let $X=\bar{A}_{1}$. Then X is invertible and

$$
X^{n}=\left\{\begin{array}{l}
\bar{A}_{n}, n \geqq 0, \\
\bar{B}_{n}, n<0,
\end{array}\right.
$$

with $X^{n} X^{m}=X^{n+m}$, for all integers n, m.
Clearly

$$
X^{n} \bar{C}_{n^{\prime}}(\pi)=\bar{C}_{n^{\prime}}(\pi),
$$

for all n, π, and $n^{\prime}>0$. Put

$$
\begin{array}{ll}
I_{1, \pi_{1}}=\frac{1}{2} \bar{C}_{1}\left(\pi_{1}\right), & (n>1), \\
I_{n, \pi_{1}}=\frac{1}{2}\left(\bar{C}_{n}\left(\pi_{1}\right)-\bar{C}_{n-1}\left(\pi_{1}\right)\right) & \\
I_{1, \pi_{2}}=\frac{1}{4}\left(\bar{C}_{2}\left(\pi_{2}\right)-\sqrt{ } 2 \bar{C}_{1}\left(\pi_{2}\right)\right), & \\
I_{2, \pi_{2}}=\frac{1}{4}\left(\bar{C}_{2}\left(\pi_{2}\right)+\sqrt{ } \bar{C}_{1}\left(\pi_{2}\right)\right), & (n>2) . \\
I_{n, \pi_{2}}=\frac{1}{2}\left(\bar{C}_{n}\left(\pi_{2}\right)-\bar{C}_{n-1}\left(\pi_{2}\right)\right) & (n>2)
\end{array}
$$

The $I_{n, \pi}$ are mutually orthogonal idempotents. Hence \mathscr{A} can be written

$$
\mathscr{A} \approx\left(\mathscr{P}\left[X, \frac{1}{X}\right]+\left\{\underset{n, \pi}{\oplus} \mathscr{P} I_{n, \pi}\right\}\right) \oplus \mathscr{P} I_{D}
$$

where $X^{m} I_{n, \pi}=I_{n, \pi}$ (all integers m) and where $\left\{\oplus_{n, \pi} \mathscr{P} I_{n, \pi}\right\}$ is the direct sum of ideals isomorphic to \mathscr{P}.

The structure of \mathscr{A} is somewhat more complicated if \mathscr{P} merely contains a subring isomorphic to $Z\left[\frac{1}{2}\right]$, or if $\mathscr{P}=Z$. It can be proved that \mathscr{A} is semisimple in the Jacobson sense if \mathscr{P} is a Jacobson ring (Noetherian ring in which every prime ideal is the intersection of maximal ideals), though the quotients $\mathscr{A} / \mathscr{M}$ (\mathscr{M} a maximal ideal) may be very varied in nature.

Theorem. $\mathscr{A}\left(\mathscr{C}, \mathscr{F}, \mathscr{V}_{4}\right)$ is G-semisimple.
Proof. $\mathscr{C}[X, 1 / X]$ is a principal ideal domain and the maximal ideals have the form $(X-a), a \in \mathscr{C}, a \neq 0$. Clearly $\mathscr{C}[X, 1 / X]$ is G-semisimple and so the G-radical of \mathscr{A} is contained in

$$
\left\{\underset{n, \pi}{\oplus} \mathscr{C} I_{n, \pi}\right\} \oplus \mathscr{C} I_{D}
$$

Write

$$
\begin{aligned}
\mathscr{M}_{D} & =\left(I-I_{D}\right), \\
\mathscr{M}_{n, \pi} & =\left(I-I_{n, \pi}\right) .
\end{aligned}
$$

Then $\mathscr{A}\left|\mathscr{M}_{D}, \mathscr{A}\right| \mathscr{M}_{n, \pi}$ are isomorphic to \mathscr{C} and

$$
\mathscr{M}_{D} \cap\left(\bigcap_{n, \pi} \mathscr{M}_{n, \pi}\right) \cap\left(\left\{\underset{n, \pi}{\oplus} \mathscr{C} I_{n, \pi}\right\} \oplus \mathscr{C} I_{D}\right)=(0),
$$

and so \mathscr{A} is G-semisimple.
Thus there exists a set of G-characters ϕ_{α} on \mathscr{A}. We may think of a set of coordinates $\left\{\phi_{\alpha}(\mathscr{M})\right\}$ of a $\mathscr{F}\left(\mathscr{V}_{4}\right)$-module class $\{\mathscr{M}\}$, which completely determine $\{\mathscr{M}\}$ and which are compatible with direct sum and tensor product of modules.

5. Representations of \mathscr{A}_{4} over a field \mathscr{F} of characteristic 2

We regard \mathscr{A}_{4} (alternating group of 4 symbols) as being an extension of \mathscr{V}_{4} by a cyclic group of order 3 . Thus we take generators W, X, Y satisfying

$$
\begin{gathered}
W^{3}=X^{2}=Y^{2}=E, \quad X Y=Y X, \\
W^{-2} X W^{2}=W^{-1} Y W=X Y,
\end{gathered}
$$

where E is the identity element. \mathscr{V}_{4} is the subgroup generated by X, Y.
Let \mathscr{F} be an algebraically closed field of characteristic 2. By Higman's theorem 1 in [7], every indecomposable $\mathscr{F}\left(\mathscr{A}_{4}\right)$-module is a direct summand of the $\mathscr{F}\left(\mathscr{A}_{4}\right)$-module induced from an indecomposable $\mathscr{F}\left(\mathscr{V}_{4}\right)$-module. We now look at such induced $\mathscr{F}\left(\mathscr{A}_{4}\right)$-modules.

A $\mathscr{F}\left(\mathscr{V}_{4}\right)$-module \mathscr{L} (and the corresponding representation of $\mathscr{F}\left(\mathscr{V}_{4}\right)$) will be called stable in \mathscr{A}_{4} if the $\mathscr{F}\left(\mathscr{V}_{4}\right)$-submodule

$$
W \otimes_{\mathscr{F}\left(r_{4}\right)} \mathscr{L} \quad \text { of } \quad\left(\mathscr{L}^{\infty_{4}}\right)_{r_{4}}
$$

is isomorphic to \mathscr{L}. We now find which indecomposable $\mathscr{F}\left(\mathscr{V}_{4}\right)$-modules are stable in \mathscr{A}_{4}.

Let

$$
\mathscr{G} \rightarrow \lambda(G), \quad G \rightarrow \bar{\lambda}(G) \quad\left(G \in \mathscr{F}\left(\mathscr{V}_{4}\right)\right)
$$

be the representations afforded by the $\mathscr{F}\left(\mathscr{V}_{4}\right)$-modules \mathscr{L} and $W \otimes \mathscr{L}$ respectively. Choosing bases appropriately, we can write

$$
\bar{\lambda}(G)=\lambda\left(W^{-1} G W\right) \quad\left(G \in \mathscr{F}\left(\mathscr{V}_{4}\right)\right) .
$$

If $P=X+E \quad Q=Y+E$, it is readily seen that

$$
\begin{aligned}
\bar{\lambda}(P) & =\lambda(Q) \\
\bar{\lambda}(Q) & =\lambda(P)+\lambda(Q)+\lambda(P Q),
\end{aligned}
$$

and \mathscr{L} is stable in \mathscr{A}_{4} if and only if the pair $(\bar{\lambda}(P), \vec{\lambda}(Q))$ is similar to $(\lambda(P), \lambda(Q))$.

Now $\bar{\lambda}(P) \bar{\lambda}(Q)=\lambda(P) \lambda(Q)$. For the representation afforded by the class D we have $\lambda(P) \lambda(Q) \neq 0$, and so $\bar{\lambda}(P) \bar{\lambda}(Q) \neq 0$ and D is stable in \mathscr{A}_{4}. If \mathscr{R} is any module in the classes $A_{n}, B_{n}, C_{n}(\pi)$, then so is $W \otimes \mathscr{R}$, as $\lambda(P) \lambda(Q)=\lambda(P Q)$ remains 0 . In this latter case we must compare the pair $(\lambda(Q), \lambda(P)+\lambda(Q))$ with $(\lambda(P), \lambda(Q))$ under similarity, or, using the notation of $\S 2$, the pair $(\bar{Q}, \bar{P}+\bar{Q})$ with (\bar{P}, \bar{Q}) under independent non-singular transformations on both sides. This can be done using the invariants in § 5 of chapter II of [4]. Thus it can be shown that A_{n}, B_{n} are stable in \mathscr{A}_{4}. As \mathscr{F} is algebraically closed, π (irreducible) has the form $T+a$, for $a \in \mathscr{F}$, or ∞. We write $C_{n}(a)$ for $C_{n}(\pi)$, where $a \in \mathscr{F} \cup\{\infty\}$. By elementary divisors (as mentioned in § 2 for \bar{Q}), we see that

$$
\{W \otimes \mathscr{L}\}=C_{n}(\theta(a)),
$$

where \mathscr{L} is in the class of $C_{n}(a)$, and where

$$
\theta(a)=\frac{1+a}{a},
$$

with the obvious interpretation when $a=\infty$ or 0 . Note that $\theta^{3}(a)=a$. Thus $C_{n}(a)$ is stable if and only if

$$
\theta(a)=a,
$$

i.e.

$$
a^{2}+a+1=0,
$$

or a is a primitive cube root ω of unity in $\mathscr{F} . \theta$ is a permutation on $\mathscr{F} \cup\{\infty\}$. We denote the typical class of transitivity by $\mu=\left\{a, \theta(a), \theta^{2}(a)\right\}$. However there are two additional classes, $\{\omega\}$ and $\left\{\omega^{2}\right\}$.

To obtain the indecomposable $\mathscr{F}\left(\mathscr{A}_{4}\right)$-modules we look at $\mathscr{L}^{\mathscr{A}_{4}}$, where \mathscr{L} is an indecomposable $\mathscr{F}\left(\mathscr{V}_{4}\right)$-module. If \mathscr{L} is not stable in \mathscr{A}_{4}, then $\mathscr{L}^{\alpha_{4}}$ is indecomposable by the theorem in $\S 2$ of [2]. Thus we obtain indecomposable $\mathscr{F}\left(\mathscr{A}_{4}\right)$-modules $C_{n}^{*}(\mu)$ such that

$$
\left(C_{n}^{*}(\mu)\right)_{V_{4}}=C_{n}(a)+C_{n}(\theta(a))+C_{n}\left(\theta^{2}(a)\right) .
$$

If \mathscr{L} is stable in \mathscr{A}_{4}, then $\mathscr{L}^{\alpha_{4}}$ splits up into 3 indecomposable, non-isomorphic $\mathscr{F}\left(\mathscr{A}_{4}\right)$-modules \mathscr{L}^{a} (all superscripts will be considered to be integers modulo 3), such that $\left(\mathscr{L}^{\alpha}\right)_{\boldsymbol{V}_{4}} \approx \mathscr{L}$, as in proposition 3 of [2]. Thus we obtain classes

$$
\begin{equation*}
A_{0}^{\alpha}, A_{n}^{\alpha}, B_{n}^{\alpha}, C_{n}^{\alpha}(\omega), C_{n}^{\alpha}\left(\omega^{2}\right), D^{\alpha} \quad(n>0) \tag{10}
\end{equation*}
$$

In particular A_{0}^{α} may be taken to be the class corresponding to the 1-dimensional representation

$$
\begin{aligned}
W & \rightarrow \omega^{\alpha} \\
X, Y & \rightarrow 1 .
\end{aligned} \quad(\alpha=0,1,2),
$$

Then we can suppose that $A_{0}^{\alpha} \times\left\{\mathscr{L}^{\beta}\right\}=\left\{\mathscr{L}^{\alpha+\beta}\right\}$. As the \mathscr{L}^{α} are extensions of \mathscr{L}, in the corresponding representations it is only necessary to assign a matrix $\lambda(W)$, to extend the matrix representations as detailed in § 2. If $\lambda(W)$ is assigned to the representation afforded by \mathscr{L}^{0}, then the corresponding matrix for \mathscr{L}^{α} is $\omega^{\alpha} \lambda(W)$. The author has constructed suitable matrices $\lambda(W)$ corresponding to classes A_{n}, B_{n}, D (all $n>0$), but not for $C_{n}(\omega)$, $C_{n}\left(\omega^{2}\right)$ in general. However for $C_{1}^{0}(\omega)$ we take

$$
\lambda(W)=\left[\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right],
$$

and for $C_{2}^{0}(\omega)$ we take

$$
\lambda(W)=\left[\begin{array}{ll|ll}
1 & & 0 \\
& \omega^{2} & 0 \\
\hline 0 & \omega & \\
\hline & \omega^{2} & 1
\end{array}\right]
$$

For $C_{1}^{0}\left(\omega^{2}\right), C_{2}^{0}\left(\omega^{2}\right)$ we replace ω by ω^{2} in these matrices. For A_{1}^{0} we take

$$
\lambda(W)=\left[\begin{array}{l|l}
1 & 0 \\
\hline 0 & 0 \\
\hline & 1 \\
\hline & 1
\end{array}\right] .
$$

It should be noted that in general we still have not chosen which of the 3 extensions \mathscr{L}^{a} of \mathscr{L} will be called \mathscr{L}^{0}. This choice will be exercised in the next section.

6. The representation algebra for \mathscr{A}_{4}

To obtain the structure of $\mathscr{A}\left(\mathscr{C}, \mathscr{F}, \mathscr{A}_{4}\right)$, where \mathscr{F} is algebraically closed of characteristic 2 , it is not necessary to find explicitly all tensor (Kronecker) products. By proposition 3 and its corollaries it will only be necessary to obtain the products of the $\mathscr{F}\left(\mathscr{A}_{4}\right)$-modules modulo the projective ideal $\mathscr{D}=\left(D^{0}, D^{1}, D^{2}\right)$, and all equations in this section will be taken to be modulo \mathscr{D}. Further by restricting the ring multiplications to $\mathscr{F}\left(\mathscr{V}_{4}\right)$ and considering the corresponding products of the $\mathscr{F}\left(\mathscr{V}_{4}\right)$-modules, we see that the multiplication table (9) must be valid on removing the superscripts α.

Now

$$
C_{n}^{*}(\mu)=\left(C_{n}(a)\right)^{\alpha_{4}}
$$

when $a \neq \omega, \omega^{2}$ and $\mu=\left\{a, \theta(a), \theta^{2}(a)\right\}$, and so, using proposition 2 , we quickly obtain all products involving $C_{n}^{*}(\mu)$. Thus

$$
\begin{align*}
A_{m}^{\alpha} C_{n}^{*}(\mu) & =C_{n}^{*}(\mu), \quad B_{m}^{\alpha} C_{n}^{*}(\mu)=C_{n}^{*}(\mu), \\
C_{m}^{*}(\mu) C_{n}^{*}\left(\mu^{\prime}\right) & = \begin{cases}0, & \text { if } \mu \neq \mu^{\prime}, \\
2 C_{\min (m, n)}^{*}(\mu), & \text { if } \mu=\mu^{\prime},\end{cases} \tag{11}
\end{align*}
$$

except that

$$
C_{1}^{*}(\mu) C_{1}^{*}(\mu)=C_{2}^{*}(\mu) \quad \text { for all } \quad \mu \neq\{1,0, \infty\}
$$

Also

$$
C_{1}^{*}(1,0, \infty) C_{1}^{*}(1,0, \infty)=2 C_{1}^{*}(1,0, \infty) .
$$

We now choose $A_{n}^{0}(n>1), B_{n}^{0}(n>0 ;)$ to satisfy

$$
A_{n}^{0}=\left(A_{1}^{0}\right)^{n}, \quad A_{1}^{0} B_{1}^{0}=A_{0}^{0}, \quad B_{n}^{0}=\left(B_{1}^{0}\right)^{n} .
$$

Thus we have

$$
A_{n}^{0} B_{m}^{0}=\left\{\begin{array}{l}
A_{n-m}^{0}, \text { if } n \geqq m, \\
B_{m-n}^{0}, \text { if } n<m, \text { etc. }
\end{array}\right.
$$

A direct calculation shows that

$$
\begin{align*}
& C_{1}^{0}(\omega) C_{1}^{0}(\omega)=C_{2}^{0}(\omega), \tag{12i}\\
& C_{1}^{0}(\omega) C_{2}^{0}(\omega)=2 C_{1}^{0}(\omega) . \tag{12ii}
\end{align*}
$$

As yet $C^{a}(\omega)(n>2)$ have not been specified. Say

$$
C_{\mathbf{1}}^{0}(\omega) C_{n}^{\alpha}(\omega)=C_{\mathbf{1}}^{\beta}(\omega)+C_{1}^{\gamma}(\omega) .
$$

Then $\beta=\gamma$ or not. Choose $C_{n}^{0}(\omega)$ so that one of the following relations is true

$$
C_{1}^{0}(\omega) C_{n}^{0}(\omega)=\left\{\begin{array}{lr}
2 C_{1}^{0}(\omega), & \text { or } \tag{13i}\\
C_{1}^{1}(\omega)+C_{1}^{2}(\omega)
\end{array}\right.
$$

If $n(>1)$ is such that (13i) is true then for $n \geqq m \geqq 1$, the associativity of multiplication implies that

$$
\begin{equation*}
C_{m}^{0}(\omega) C_{n}^{0}(\omega)=2 C_{m}^{0}(\omega), \tag{14i}
\end{equation*}
$$

while if (13ii) is true, then

$$
\begin{equation*}
C_{m}^{0}(\omega) C_{n}^{0}(\omega)=C_{m}^{1}(\omega)+C_{m}^{2}(\omega) . \tag{14ii}
\end{equation*}
$$

Again a direct calculation shows that

$$
A_{1}^{0} C_{1}^{0}(\omega)=C_{1}^{1}(\omega) .
$$

By associativity of multiplication we prove in succession that

$$
\left\{\begin{array}{l}
A_{1}^{0} C_{n}^{0}(\omega)=C_{n}^{1}(\omega) \tag{15}\\
A_{m}^{0} C_{n}^{0}(\omega)=C_{n}^{m}(\omega) \\
B_{m}^{0} C_{n}^{0}(\omega)=C_{n}^{-m}(\omega)
\end{array}\right.
$$

(superscripts are modulo 3).
Similarly

$$
A_{1}^{0} C_{1}^{0}\left(\omega^{2}\right)=C_{1}^{2}\left(\omega^{2}\right)
$$

and so

$$
\left\{\begin{array}{l}
A_{m}^{0} C_{n}^{0}\left(\omega^{2}\right)=C_{n}^{2 m}\left(\omega^{2}\right) \tag{16}\\
B_{m}^{0} C_{n}^{0}\left(\omega^{2}\right)=C_{n}^{-2 m}\left(\omega^{2}\right)
\end{array}\right.
$$

We now look at the structure of $\mathscr{A}=\mathscr{A}\left(\mathscr{C}, \mathscr{F}, \mathscr{A}_{4}\right)$. The projective ideal \mathscr{D} is isomorphic to $\mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C}$. The complement to \mathscr{D} in \mathscr{A} is isomorphic to $\mathscr{B}=\mathscr{A} \mid \mathscr{D}$, and so to find \mathscr{B} we continue as above modulo \mathscr{D}.
A_{0}^{0} is the identity element of \mathscr{B}. Let u be a primitive cube root of unity in \mathscr{C}, and write

$$
J_{\beta}=\frac{1}{3}\left(A_{0}^{0}+u^{\beta} A_{0}^{1}+u^{2 \beta} A_{0}^{2}\right) \quad(\beta=0,1,2)
$$

Then

$$
A_{0}^{0}=J_{0}+J_{1}+J_{2}
$$

and the J_{β} are mutually orthogonal idempotents.
Write

$$
\left\{\begin{array}{l}
A_{n \beta}=A_{n}^{0} J_{\beta}, \quad B_{n \beta}=B_{n}^{0} J_{\beta} \tag{17}\\
C_{n \beta}(\omega)=C_{n}^{0}(\omega) J_{\beta}, \quad C_{n \beta}\left(\omega^{2}\right)=C_{n}^{0}\left(\omega^{2}\right) J_{\beta}
\end{array}\right.
$$

Then

$$
A_{n}^{\alpha} J_{\beta}=u^{-\alpha \beta} A_{n \beta}, \quad \text { etc. }
$$

and

$$
A_{n \alpha} A_{m \beta}= \begin{cases}0, & \text { if } \alpha \neq \beta, \\ A_{(m+n) \beta}, & \text { if } \alpha=\beta, \text { etc }\end{cases}
$$

Further

$$
C_{n}^{*}(\mu) J_{\beta}= \begin{cases}C_{n}^{*}(\mu), & \text { if } \beta=0 \tag{18}\\ 0, & \text { if } \beta \neq 0\end{cases}
$$

Finally the elements (17) and $C_{n}^{*}(\mu)$ together form a basis of \mathscr{B} over \mathscr{C}.
We now look at the 3 jdeal direct summands of \mathscr{B} generated by the J_{β}. Set $Y_{\beta}=A_{1 \beta}, 1 / Y_{\beta}=B_{1 \beta}$; then $Y_{\beta}^{m}=A_{m \beta}$ etc., and the subalgebra of $\mathscr{B} J_{\beta}$ generated by $A_{n \beta}, B_{n \beta}$ may be written $\mathscr{C}\left[Y_{\beta}, 1 / Y_{\beta}\right], Y_{\beta}$ being regarded as an indeterminate over \mathscr{C}. From (15) and (16)

$$
\begin{aligned}
& Y_{\beta}^{m} C_{n \beta}(\omega)=u^{-\beta m} C_{n \beta}(\omega) \\
& Y_{\beta}^{m} C_{n \beta}\left(\omega^{2}\right)=u^{\beta m} C_{n \beta}\left(\omega^{2}\right)
\end{aligned}
$$

for m any integer, and

$$
C_{n \beta}(\omega) C_{n^{\prime} \beta}\left(\omega^{2}\right)=0
$$

for all positive n, n^{\prime}. From (12i), (12ii), (14i),

$$
\begin{aligned}
& C_{1 \beta}(\omega) C_{1 \beta}(\omega)=C_{2 \beta}(\omega) \\
& C_{1 \beta}(\omega) C_{2 \beta}(\omega)=2 C_{1 \beta}(\omega) \\
& C_{2 \beta}(\omega) C_{2 \beta}(\omega)=2 C_{2 \beta}(\omega)
\end{aligned}
$$

As in § 4, set

$$
\begin{aligned}
& I_{1 \beta}(\omega)=\frac{1}{4}\left(C_{2 \beta}(\omega)+\sqrt{ } 2 C_{1 \beta}(\omega)\right) \\
& I_{2 \beta}(\omega)=\frac{1}{4}\left(C_{2 \beta}(\omega)-\sqrt{ } 2 C_{1 \beta}(\omega)\right)
\end{aligned}
$$

and these are mutually orthogonal idempotents. For $n>2$, if we have the situation of (13i), then

$$
C_{n \beta}(\omega) C_{n \beta}(\omega)=2 C_{n \beta}(\omega),
$$

and we write

$$
\bar{C}_{n \beta}(\omega)=\frac{1}{2} C_{n \beta}(\omega) .
$$

In case (13ii), we have

$$
C_{n \beta}(\omega) C_{n \beta}(\omega)=\left(u^{-\beta}+u^{-2 \beta}\right) C_{n \beta}(\omega)
$$

and we write

$$
\bar{C}_{n \beta}(\omega)=\frac{1}{u^{-\beta}+u^{-2 \beta}} C_{n \beta}(\omega)
$$

Then the $\bar{C}_{n \beta}(\omega)$ are idempotents. To obtain orthogonal idempotents we put

$$
I_{3 \beta}=\bar{C}_{3 \beta}(\omega)-I_{1 \beta}(\omega)-I_{2 \beta}(\omega)
$$

and for $n>3$

$$
I_{n \beta}(\omega)=\bar{C}_{n \beta}(\omega)-\bar{C}_{(n-1) \beta}(\omega)
$$

Then all the $I_{n \beta}(\omega)$ are mutually orthogonal idempotents. $I_{n \beta}\left(\omega^{2}\right)$ are similarly defined. From (11), (18), we can proceed as in § 4 and $I_{n 0}(\mu)$ are defined.

Hence \mathscr{A} has the following structure.

$$
\left\{\begin{array}{l}
\left(\mathscr{C}\left[Y_{0}, \frac{1}{Y_{0}}\right]+\left\{\underset{\substack{\phi=\omega, \omega^{2}, \mu}}{\oplus} \mathscr{C} I_{n 0}(\phi)\right\}\right) \\
\oplus\left(\underset{\beta=1,2}{\oplus}\left[\mathscr{C}\left[Y_{\beta}, \frac{1}{Y_{\beta}}\right]+\left\{\underset{\substack{n \geq 1 \\
\phi=\omega, \omega^{2}}}{\oplus} \mathscr{C} I_{n \beta}(\phi)\right\}\right]\right) \\
\oplus(\mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C}),
\end{array}\right.
$$

where

$$
\begin{aligned}
& Y_{\beta}^{m} I_{n}\left(\omega^{\alpha}\right)=u^{-\alpha \beta m} I_{n \beta}\left(\omega^{\alpha}\right) \\
& Y_{0}^{m} I_{n 0}(\mu)=I_{n 0}(\mu)
\end{aligned}
$$

the last term is the projective ideal \mathscr{D}.

As in § 4 this is G-semisimple. As far as G-semisimplicity is concerned we may now drop the restriction that \mathscr{F} is algebraically closed. For, if not, let $\mathscr{F} *$ be the algebraic closure of \mathscr{F}. Then, by (3), $\mathscr{A}\left(\mathscr{C}, \mathscr{F}, \mathscr{A}_{4}\right)$ can be regarded as embedded in $\mathscr{A}\left(\mathscr{C}, \mathscr{F}^{*}, \mathscr{A}_{4}\right)$. Thus the restriction of the G characters to the subalgebra will ensure the G-semisimplicity of $\mathscr{A}\left(\mathscr{C}, \mathscr{F}_{F}, \mathscr{A}_{4}\right)$.

Theorem. $\mathscr{A}\left(\mathscr{C}, \mathscr{F}, \mathscr{A}_{4}\right)$ is G-semisimple for all fields \mathscr{F} of characteristic 2.

7. Ring-tensor-product representation algebras

Given a commutative ring \mathscr{R} and two \mathscr{R}-modules $\mathscr{M}, \mathscr{M}^{\prime}$ then the tensor product

$$
\mathscr{M} \otimes_{\mathfrak{R}} \mathscr{M}^{\prime}
$$

can also be defined to be an \mathscr{R}-module. This product is then commutative, associative and distributes over direct sum \oplus. If we now take the set of \mathscr{R}-modules which satisfy the ascending and descending chain conditions, this set is closed under \oplus, \otimes and the Krull-Schmidt theorem is applicable. If \mathscr{P} is any commutative ring with an identity element, then, as in § 1 , we can define the representation algebra $\mathscr{A}(\mathscr{P}, \mathscr{R})$ to be the free \mathscr{P}-module generated by the set of all \mathscr{R}-indecomposable isomorphic classes $\{\mathscr{M}\}$, equipped this time with the multiplication

$$
\{\mathscr{M}\}\left\{\mathscr{M}^{\prime}\right\}=\left\{\mathscr{M}^{\otimes_{\mathscr{x}}} \mathscr{M}^{\prime}\right\} .
$$

If \mathscr{R} is a Dedekind domain, then the indecomposable \mathscr{R}-modules of finite length have the form

$$
\mathscr{R} \mid \mathscr{Q}_{\alpha}^{n},
$$

where \mathscr{Q}_{α} is any non-zero prime ideal of \mathscr{R}. Further it is readily seen that

$$
\mathscr{R}\left|\mathscr{Q}_{\alpha}^{n} \otimes_{\mathscr{R}} \mathscr{R}\right| \mathscr{Q}_{\beta}^{m}= \begin{cases}(0), & \text { if } \alpha \neq \beta, \\ \mathscr{R} \mid \mathscr{Q}_{\alpha}^{\min (n, m)}, & \text { if } \alpha=\beta .\end{cases}
$$

Write then

$$
\begin{array}{ll}
I_{\alpha 1}=\left\{\mathscr{R} \mid \mathscr{Q}_{\alpha}\right\}, \\
I_{\alpha n}=\left\{\mathscr{R} \mid \mathscr{Q}_{\alpha}^{n}\right\}-\left\{\mathscr{R} \mid \mathscr{Q}_{\alpha}^{n-1}\right\} & (n>1) .
\end{array}
$$

Then

$$
\mathscr{A}(\mathscr{P}, \mathscr{R})=\underset{\alpha, n \geqq 1}{\oplus} \mathscr{P} I_{\alpha n} .
$$

This algebra does not have an identity.
Another case which can readily be deduced from the above is that of the quotient of the Dedekind domain \mathscr{R} by an ideal $\mathscr{I}=\Pi \mathscr{Q}_{a}^{n_{x}}$, where only a finite number of n_{α} are strictly positive ($n_{\alpha}>0$). Then the indecomposable $\mathscr{R} / \mathscr{I}$-modules of finite length have the form

$$
\mathscr{R} \mid \mathscr{Q}_{\alpha}^{m_{\alpha}}, \quad m_{\alpha}=1, \cdots, n_{a}, \quad \text { when } \quad n_{a} \geqq 1 .
$$

Again

$$
\mathscr{A}(\mathscr{P}, \mathscr{R} \mid \mathscr{I})=\underset{\alpha}{\oplus}\left(\underset{m_{\alpha}=1}{n_{\alpha}} \mathscr{P} I_{a m_{\alpha}}\right) .
$$

This algebra has finite rank over \mathscr{P} and has an identity.
We now take $\mathscr{R}=\mathscr{F}[P, Q] /\left(P^{2}, Q^{2}\right)$, as in § $2(\mathscr{F}$ of arbitrary characteristic). We assume for simplicity that \mathscr{F} is algebraically closed. Then the different classes are $A_{n}, B_{n}, C_{n}(a), D$, where $a \in \mathscr{F} \cup\{\infty\}$.

The multiplication table under $\otimes_{\boldsymbol{x}}$ is as follows.

$n \leqq m$	A_{n}	B_{n}	$C_{n}(a)$	D
A_{m}	$(n+1)(m+1) A_{0}$	$(m+2)(n-1) A_{0}+A_{m-n+1}$	$(m+1) n A_{0}$	A_{m}
B_{m}		$(n-1)(m-1) A_{0}+B_{m+n-1}$	$n(m-1) A_{0}+C_{n}(a)$	B_{m}
$C_{m}\left(a^{\prime}\right)$	$(n+1) m A_{0}$	$m(n-1) A_{0}+C_{m}\left(a^{\prime}\right)$	$\begin{gathered} n(m-1) A_{0}+C_{n}(a) \\ \left(a=a^{\prime}\right) \\ n m A_{0}\left(a \neq a^{\prime}\right) \end{gathered}$	$c_{m}\left(a^{\prime}\right)$
D	A_{n}	B_{n}	$C_{n}(a)$	D

D is the identity element in $\mathscr{A}=\mathscr{A}(\mathscr{C}, \mathscr{R}) . A_{0}, B_{1}$ are obvious idempotents and

$$
D=A_{0}+\left[B_{1}-A_{0}\right]+\left[D-B_{1}\right]
$$

is a splitting of the identity into mutually orthogonal idempotents. The elements $A_{0}, D-B_{1}$ generate ideal direct summands each isomorphic to \mathscr{C}.
Write

$$
\begin{aligned}
\bar{A}_{n} & =\left(B_{1}-A_{0}\right) A_{n}, \\
\bar{B}_{n} & =\left(B_{1}-A_{0}\right) B_{n}, \\
C_{n}(a) & =\left(B_{1}-A_{0}\right) C_{n}(a) .
\end{aligned}
$$

Then the multiplication table in the ideal $\left(B_{1}-A_{0}\right)$ generated by $B_{1}-A_{0}$ is as follows.

$n \leqq m$	A_{n}	B_{n}	$C_{n}(a)$
A_{m}	0	A_{m-n+1}	0
B_{m}	$(n>m)$ A_{1} $(m=n)$ $C_{m}\left(a^{\prime}\right)$ 0	\bar{B}_{m+n-1}	$\bar{C}_{n}(a)$
		$\bar{C}_{m}\left(a^{\prime}\right)$	$\frac{C_{n}(a)}{}\left(a=a^{\prime}\right)$

Place $T=\bar{B}_{2}$. Then $\bar{B}_{n+1}=T^{n}$. Place $I_{1 a}=\bar{C}_{1}(a), I_{n a}=C_{n}(a)-$ $\bar{C}_{n-1}(a)(n>1)$. Then the ideal generated by the $\left\{\bar{C}_{n}(a)\right\}$ is $\oplus_{a, n>0} \mathscr{C} I_{n a}$. The subalgebra generated by the $\left\{\bar{B}_{n}\right\}$ may be written $\mathscr{C}[T]$, where the identity element is \bar{B}_{1}. Write $U_{n}=\bar{A}_{n}$. Then the structure of the ideal ($B_{1}-A_{0}$) may be written

$$
\mathscr{C}[T]+\left(\underset{n>0}{\oplus} \mathscr{C} U_{n}\right)+\left(\underset{a, n>0}{\oplus} \mathscr{C} I_{n a}\right),
$$

where

$$
\begin{aligned}
U_{n} I_{m a} & =0, & U_{n} U_{m} & =0, \\
T U_{m+1} & =U_{m}, & T I_{m a} & =I_{m a},
\end{aligned}
$$

and the $I_{m a}$ are mutually orthogonal idempotents.
The Jacobson radical of this algebra is nonzero as it contains $U_{1}\left(U_{1}^{2}=0\right)$. Hence, a fortiori, $\mathscr{A}(\mathscr{C}, \mathscr{R})$ is not G-semisimple. When the characteristic of \mathscr{F} is 2 , we get a direct comparison between the two kinds of representation algebras that can be formed from $\mathscr{F}\left(\mathscr{V}_{4}\right)$-modules.

References

[1] Bašev, V. A., Representations of the group $Z_{\mathbf{2}} \times Z_{\mathbf{2}}$ in a field of characteristic 2, (Russian), Dokl. Akad. Nauk. SSSR 141 (1961), 1015-1018.
[2] Conlon, S. B., Twisted group algebras and their representations, This Journal 4 (1964), 152-173.
[3] Curtis, Charles W.; Reiner, Irving. Representation Theory of finite groups and associative algebras. Interscience, New York; 1962.
[4] Gantmacher, F. R., Applications of the theory of matrices. Interscience, New York, 1959.
[5] Green, J. A., The modular representation algebra of a finite group, Illinois J. Math. 6(4) (1962) 607-619.
[6] Heller, A.; Reiner, I., Indecomposable representations, Illinois J. Math. 5 (1961), 314-323.
[7] Higman, D. G., Indecomposable representations at characteristic p. Duke Math. J. 21 (1954), 377-381.

University of Sydney.

[^0]: ${ }^{1}$ We consider only modules \mathscr{N} of finite \mathscr{F}-dimension.
 2 See page 69 of [3] for the definition of tensor product representation.

[^1]: ${ }^{3}$ See p. 200 of [3] for the proof.
 4 For further explanations, see [3].
 ${ }^{5}$ See, for instance, theorem 38.5 (ii), p. 268 of [3].
 ${ }^{6}$ See definition 63.1 (p. 427), and theorem 63.5 (p. 429) of [3].

[^2]: ${ }^{7}$ See pages 588, 589 of [3] for the definition of Brauer characters, etc.
 ${ }^{8}$ See page 591 of [3].

[^3]: - See § 5 of chapter II of [4].

