CERTAIN REPRESENTATION ALGEBRAS

S. B. CONLON

(received 5 May 1964)

Introduction

Let Λ be the set of inequivalent representations of a finite group \mathscr{G} over a field \mathscr{F} . Λ is made the basis of an algebra \mathscr{A} over the complex numbers \mathscr{C} , called the representation algebra, in which multiplication corresponds to the tensor product of representations and addition to direct sum. Green [5] has shown that if char $\mathscr{F} \nmid |\mathscr{G}|$ (the non-modular case) or if \mathscr{G} is cyclic, then \mathscr{A} is semi-simple, i.e. is a direct sum of copies of \mathscr{C} . Here we consider two modular, non-cyclic cases, viz. where \mathscr{G} is $\mathscr{V}_4 (= Z_2 \times Z_2)$ or \mathscr{A}_4 (alternating group) and \mathscr{F} is of characteristic 2.

Finally we consider the analogous case where the multiplication is changed to the ordinary ring tensor product over the group algebra $\mathscr{F}(\mathscr{G})$.

I would like to thank Dr. G. E. Wall for indicating these problems.

1. Representation algebras of groups

Let \mathscr{P} be an arbitrary commutative ring with a unity, and let $\mathscr{F}(\mathscr{G})$ be the group algebra of a group \mathscr{G} over a field \mathscr{F} . The *representation algebra* $\mathscr{A}(\mathscr{P}, \mathscr{F}, \mathscr{G})(=\mathscr{A})$ is defined as follows. It is the \mathscr{P} -module generated by the set of all isomorphism classes $\{\mathscr{M}\}$ of $\mathscr{F}(\mathscr{G})$ -modules ¹ \mathscr{M} , subject to the relations

(1)
$$\{\mathcal{M}\} = \{\mathcal{M}'\} + \{\mathcal{M}''\},\$$

for all $\mathcal{M}, \mathcal{M}', \mathcal{M}''$ such that $\mathcal{M} = \mathcal{M}' \oplus \mathcal{M}''$, and equipped with the bilinear multiplication given by

(2)
$$\{\mathcal{M}\}\{\mathcal{M}'\} = \{\mathcal{M} \times \mathcal{M}'\}.$$

Here $\mathscr{M} \times \mathscr{M}'$ is the module obtained from the tensor (Kronecker) product ² of the representations afforded by \mathscr{M} , \mathscr{M}' . By the Krull-Schmidt theorem for $\mathscr{F}(\mathscr{G})$ -modules, \mathscr{A} is free as a \mathscr{P} -module and the $\mathscr{F}(\mathscr{G})$ -indecomposable classes form a \mathscr{P} -basis. \mathscr{A} is a commutative, associative algebra over \mathscr{P} ,

83

¹ We consider only modules *M* of finite *F*-dimension.

² See page 69 of [3] for the definition of tensor product representation.

and has identity element $\{\mathscr{F}_{g}\}$, i.e., the class containing the trivial $\mathscr{F}(\mathscr{G})$ -module.

When \mathscr{P} is taken to be the field \mathscr{C} of complex numbers, $\mathscr{A}(\mathscr{C}, \mathscr{F}, \mathscr{G})$ is semi-simple in the non-modular case, or when \mathscr{G} is a cyclic group (Green [5]). In these cases there are only a finite number of different indecomposable classes and so \mathscr{A} is a direct sum of copies of \mathscr{C} . In general the structure of \mathscr{A} is more complicated, but we may still hope for semi-simplicity.

Green in [5] is more precise. When $\mathscr{P} = \mathscr{C}$, we define a *G*-character of \mathscr{A} to be a non-zero algebra homomorphism $\phi : \mathscr{A} \to \mathscr{C}$. \mathscr{A} is then *G*-semisimple if, given any non-zero element $A \in \mathscr{A}$, there exists some *G*-character ϕ of \mathscr{A} such that $\phi(A) \neq 0$. We may define the *G*-radical of \mathscr{A} to be the intersection $\cap \mathscr{M}_{\alpha}$ of all maximal ideals \mathscr{M}_{α} of \mathscr{A} , such that $\mathscr{A}/\mathscr{M}_{\alpha} \approx \mathscr{C}$. Then \mathscr{A} is *G*-semisimple if and only if the \mathscr{G} -radical = (0).

Let \mathscr{F}^* be an extension field of \mathscr{F} . Each $\mathscr{F}(\mathscr{G})$ -module \mathscr{M} gives rise to a $\mathscr{F}^*(\mathscr{G})$ -module $\mathscr{M}^* = \mathscr{F}^* \otimes_{\mathscr{F}} \mathscr{M}$. We have the following

PROPOSITION 1.³ $\mathcal{M} \approx \mathcal{M}'$ if and only if $\mathcal{M}^* \approx \mathcal{M}'^*$. The mapping $\{\mathcal{M}\} \rightarrow \{\mathcal{M}^*\}$ gives rise to a natural homomorphism

(3)
$$\mathscr{A}(\mathscr{C},\mathscr{F},\mathscr{G}) \to \mathscr{A}(\mathscr{C},\mathscr{F}^*,\mathscr{G})$$

From proposition 1 it follows that this is actually a monomorphism. In view of this natural embedding we shall use $\{\mathcal{M}\}$ to denote either $\{\mathcal{M}\}$ or $\{\mathcal{M}^*\}$; the interpretation will be clear from the context.

Let \mathscr{H} be a subgroup of \mathscr{G} , let \mathscr{L} be a $\mathscr{F}(\mathscr{H})$ -module, and let \mathscr{M} be a $\mathscr{F}(\mathscr{G})$ -module. $\mathscr{L}^{\mathscr{G}}$ will denote the induced $\mathscr{F}(\mathscr{G})$ -module

 $\mathcal{F}(\mathcal{G})\otimes_{\mathcal{F}(\mathcal{X})}\mathcal{L},$

while $\mathscr{M}_{\mathscr{H}}$ will denote the $\mathscr{F}(\mathscr{H})$ -module obtained by restriction of the module multiplications to the subalgebra $\mathscr{F}(\mathscr{H})$ of $\mathscr{F}(\mathscr{G})$.⁴

PROPOSITION 2.5 $\mathscr{L}^{\$} \times \mathscr{M} \approx (\mathscr{L} \times \mathscr{M}_{\ast})^{\$}$.

Proposition 2 shows that the subspace spanned by all the $(\mathcal{G}, \mathcal{H})$ -projective modules⁶ is an ideal of \mathcal{A} .

In particular, taking $\mathscr{H} = \{E\}$, the trivial subgroup of \mathscr{G} , we have that the $(\mathscr{F}(\mathscr{G})$ -)projective modules span an ideal \mathscr{D} of \mathscr{A} , which we shall call the *projective ideal* of \mathscr{A} .

PROPOSITION 3. The projective ideal \mathcal{D} is semi-simple and finite dimensional.

REMARK. In the non-modular case, $\mathscr{D} = \mathscr{A}$ and the proposition reduces

- ⁵ See, for instance, theorem 38.5 (ii), p. 268 of [3].
- ⁶ See definition 63.1 (p. 427), and theorem 63.5 (p. 429) of [3].

³ See p. 200 of [3] for the proof.

⁴ For further explanations, see [3].

to Green's result. We shall therefore assume in the proof that \mathscr{F} is of characteristic $p \neq 0$.

PROOF. In proposition 1 take \mathscr{F}^* to be algebraically closed. Then the restriction of the monomorphism (3) to \mathscr{D} , embeds \mathscr{D} in the projective ideal \mathscr{D}^* of $\mathscr{A}(\mathscr{C}, \mathscr{F}^*, \mathscr{G})$. It will therefore be sufficient to consider \mathscr{F} algebraically closed.

Let $\mathscr{K}_1, \dots, \mathscr{K}_r$ be the *p*-regular conjugacy classes of \mathscr{G} and let $X_{\nu} \in \mathscr{K}_{\nu}$ $(\nu = 1, \dots, r)$. Any $\mathscr{F}(\mathscr{G})$ -module class $\{\mathscr{M}\}$ then defines a Brauer character χ , which is completely determined by the values ⁷ of the $\chi(X_{\nu}) \in \mathscr{C}$. Write

$$\beta_{\nu}(\mathcal{M}) = \chi(X_{\nu}).$$

 β_{ν} can then be extended linearly over \mathscr{C} to give a map $\beta_{\nu} : \mathscr{A} \to \mathscr{C}$. This is readily verified to be a \mathscr{C} -algebra homomorphism and so β_{ν} is a *G*-character of \mathscr{A} .

Consider now the restrictions γ_{ν} of the β_{ν} to \mathcal{D} . As \mathcal{F} is algebraically closed, the number of different indecomposable projective modules (i.e. indecomposable summands of the regular module) is equal to the number of p-regular conjugacy classes⁸, i.e. r. Let $\{\mathcal{P}_1\}, \dots, \{\mathcal{P}_r\}$ be these different classes. The $\{\mathcal{P}_{\mu}\}$ are a basis of \mathcal{D} . We prove that \mathcal{D} is semisimple by showing that $\bigcap_{\nu} \ker \gamma_{\nu} = (0)$. Now this last is so if and only if the matrix $(\gamma_{\nu}(\mathcal{P}_{\mu}))$ is non-singular. But this matrix is precisely the matrix H on p. 599 of [3], and is non-singular as the Cartan matrix C is non-singular.

COROLLARY 4. If \mathcal{F} is algebraically closed, \mathcal{D} is isomorphic to the direct sum of r copies of \mathcal{C} .

COROLLARY 5. D is an ideal direct summand of A.

PROOF. This follows directly from the fact that \mathcal{A} , \mathcal{D} have unit elements.

2. Representations of \mathscr{V}_4 over a field characteristic 2

All representations of the group $\mathscr{V}_4 (= Z_2 \times Z_2)$ over a field \mathscr{F} of characteristic 2 have been essentially determined by two authors [1], [6]. Let \mathscr{V}_4 have generators X, Y satisfying $X^2 = Y^2 = E$, XY = YX, with E the identity element. In the group algebra $\mathscr{F}(\mathscr{V}_4)$ write

$$P = X + E, \qquad Q = Y + E.$$

Then $P^2 = Q^2 = 0$, PQ = QP and

$$\mathscr{F}(\mathscr{V}_4) \approx \mathscr{F}[P,Q]/(P^2,Q^2) = \mathscr{R}, \text{ say,}$$

⁷ See pages 588, 589 of [3] for the definition of Brauer characters, etc.

⁸ See page 591 of [3].

where (P^2, Q^2) denotes the ideal generated by P^2 , Q^2 in the polynomial ring $\mathscr{F}[P, Q]$.

The following discussion of indecomposable \mathcal{R} -modules is independent of the characteristic of \mathcal{F} .

Let $A \to \lambda(A)$ $(A \in \mathcal{R})$ be a representation of \mathcal{R} , where the matrices $\lambda(A)$ have coefficients in \mathcal{F} . One indecomposable such representation is the regular representation whose \mathcal{R} -module class we denote by D. The underlying \mathcal{R} -module is both \mathcal{R} -projective and \mathcal{R} -injective and so is a direct summand of any module in which it occurs as a submodule. The remaining indecomposable representations all satisfy the condition

$$\lambda(P)\lambda(Q)=0.$$

As $(\lambda(P))^2 = (\lambda(Q))^2 = 0$ in any case, by suitable choice of basis, $\lambda(P)$, $\lambda(Q)$ can be written in the form

and so it is sufficient in describing an indecomposable representation to give \overline{P} , \overline{Q} . The following cases A_n , B_n , $C_n(\pi)$, $C_n(\infty)$ arise.

Both A_0 , B_0 can be interpreted as the class of the trivial *R*-module.

Let $\pi = T^m - u_{m-1}T^{m-1} - \cdots - u_0$ be an irreducible polynomial in the indeterminate T over \mathscr{F} , with degree $\pi = m$. Thus we define

where

As a convention we shall say that the degree of ∞ is 1.

Here A_n , B_n , $C_n(\pi)$, D denote the module classes associated with the respective representations. With the above convention on deg (∞) , π can be considered to range through all irreducible polynomials over \mathscr{F} , together with ∞ . \overline{Q} for $C_n(\pi)$ ($\pi \neq \infty$) is an indecomposable Jordan block, with invariant factors π^n , 1, 1, \cdots . Indeed, once the A_n , B_n , D have been removed in the break-up of a given module into indecomposables, the decomposition of the remainder can be determined by elementary divisor techniques, suitable allowance being made for $C_n(\infty)$ ⁹.

If \mathcal{F}^* is the algebraic closure of \mathcal{F} , the representation afforded by

* See § 5 of chapter II of [4].

the class $C_n(\pi)$ may break up further over \mathscr{F}^* . Say \mathscr{F} has characteristic p; let the degree of inseparability of π be t, and let the reduced degree of π be s, i.e. $m = sp^t$; let a_1, \dots, a_s be the different roots of π in \mathscr{F}^* . Then

(4)
$$\pi = \prod_{\alpha=1}^{s} (T - a_{\alpha})^{p^{t}}.$$

The invariant factors for \bar{Q} in \mathscr{F}^* are

$$\prod_{\alpha} (T-a_{\alpha})^{p^{i}}, 1, 1, \cdots,$$

and \overline{Q} splits up into s different blocks each of size $n \cdot p^t$. We write

(5)
$$C_n(\pi) = \underset{\alpha=1}{\overset{s}{\longrightarrow}} C_{n \cdot p^i}(T - a_\alpha),$$

implying that we are considering $\mathscr{F}^*(\mathscr{V}_4)$ -module classes.

3. Tensor (Kronecker) products of the $\mathscr{F}(\mathscr{V}_4)$ -module classes

Methods for calculating the tensor products of the $\mathscr{F}(\mathscr{V}_4)$ -indecomposable modules have been given by Bašev in [1] when the field \mathscr{F} is algebraically closed of characteristic 2. The author has found that Bašev's results are correct except for the following case. Let $a \in \mathscr{F}$, $a \neq 0, 1$ (or ∞). Then we have

(6)
$$C_1(T+a)C_1(T+a) = C_2(T+a),$$

(7)
$$C_n(T+a)C_n(T+a) = n(n-1)D + 2C_n(T+a)$$
 $(n > 1).$

Our results can be extended to the case where \mathscr{F} is not algebraically closed by using proposition 1. Let \mathscr{F}^* be the algebraic closure of \mathscr{F} . Consider, for instance, $C_n(\pi)C_n(\pi)$ (n > 1), where π is given by (4) with p = 2.

But

(8)
$$C_{n\cdot 2^t}(T+a_{\alpha})C_{n\cdot 2^t}(T+a_{\beta}) =_{\mathcal{F}^*} (n\cdot 2^t)(n\cdot 2^t)D \qquad (\alpha \neq \beta),$$

and so

[6]

Certain representation algebras

$$C_{n}(\pi)C_{n}(\pi) = \underset{\alpha=1}{\overset{\bullet}{\text{s}}} \sum_{\alpha=1}^{\overset{\bullet}{\text{s}}} [n \cdot 2^{t}(n \cdot 2^{t}-1)D + 2C_{n \cdot 2^{t}}(T + a_{\alpha})] \\ + s(s-1)n^{2}2^{2^{t}}D \qquad (by (7), (8)), \\ = \underset{\sigma}{\text{s}} nm(nm-1)D + 2C_{n}(\pi),$$

where $m = \deg \pi$. Thus by proposition 1 we have

$$C_n(\pi)C_n(\pi) = nm(nm-1)D + 2C_n(\pi),$$

this being an equation in $\mathcal{F}(\mathcal{V}_4)$ -module classes.

Let π_1 denote either $T, T+1, \infty$ or any inseparable irreducible polynomial over \mathscr{F} , let π_2 denote any other irreducible polynomial; let π denote the general irreducible polynomial of type π_1 or π_2 .

The results are summarised in the following multiplication table.

$n \leq n'$	An	Bn	$C_n(\pi), \deg \pi = m$	D	
A _{n'}	$nn'D+A_{n+n'}$	$n(n'+1)D + A_{n'-n}$	$nn'mD+C_n(\pi)$	(2n'+1)D	
B _{n'}	n(n'+1)D+Bn'-n	$nn'D+B_{n+n'}$	$nn'mD+C_n(\pi)$	(2n'+1)D	
$C_{n'}(\pi')$	$nn'm'D+C_{n'}(\pi')$	$nn'm'D+C_{n'}(\pi')$	nmn'm'D, if $\pi \neq \pi'$	2n'm'D	
$\deg \pi' = m'$			$\frac{nm(n'm-1)D+2C_n(\pi)}{\text{if }\pi=\pi', \text{ except that}}$ $C_1(\pi_2)C_1(\pi_2)=C_2(\pi_2)$		
D	(2n+1)D	(2n+1)D	2nmD	4 D	

4. The representation algebra for \mathscr{V}_{4}

We shall now look at $\mathscr{A}(\mathscr{P}, \mathscr{F}, \mathscr{V}_4) = \mathscr{A}$, where \mathscr{F} has characteristic 2. We require that \mathscr{P} should contain a subring isomorphic to $Z[2^{-\frac{1}{2}}]$.

 $A_0 = B_0$ is the identity I of \mathscr{A} . Further $I_D = \frac{1}{4}D$ is an idempotent. Thus I_D generates the projective ideal which is an ideal direct summand with complement generated by $I-I_D$. Write

$$\begin{split} \bar{A}_n &= A_n (I - I_D) = A_n - \frac{2n+1}{4} D, \\ \bar{B}_n &= B_n (I - I_D) = B_n - \frac{2n+1}{4} D, \\ \bar{C}_n(\pi) &= C_n(\pi) (I - I_D) = C_n(\pi) - \frac{nm_\pi}{2} D. \end{split}$$

where deg $\pi = m_{\pi}$. The multiplication table in the ideal $(I-I_D)$ is then as follows:

(9)

$n \leq n'$	A_n	\bar{B}_n	$\tilde{C}_n(\pi)$
Ăn'	$A_{n+n'}$	An'-n	$\bar{C}_n(\pi)$
$\vec{B}_{n'}$	$\bar{B}_{n'-n}$	$\bar{B}_{n+n'}$	$\bar{C}_n(\pi)$
$\bar{C}_{n'}(\pi')$	$\bar{C}_{n'}(\pi')$	$\bar{C}_{n'}(\pi')$	0, if $\pi \neq \pi'$.
			$\overline{2\bar{C}_n(\pi), \text{ if } \pi = \pi',}$ except that $\bar{C}_1(\pi_2)\bar{C}_1(\pi_2) = \bar{C}_2(\pi_2).$

Let $X = \overline{A}_1$. Then X is invertible and

$$X^{n} = \begin{cases} \bar{A}_{n}, n \geq 0, \\ \bar{B}_{n}, n < 0, \end{cases}$$

with $X^n X^m = X^{n+m}$, for all integers n, m. Clearly

$$X^n \overline{C}_{n'}(\pi) = \overline{C}_{n'}(\pi),$$

for all n, π , and n' > 0. Put

$$\begin{split} &I_{1,\pi_1} = \frac{1}{2} \bar{C}_1(\pi_1), \\ &I_{n,\pi_1} = \frac{1}{2} (\bar{C}_n(\pi_1) - \bar{C}_{n-1}(\pi_1)) \\ &I_{1,\pi_2} = \frac{1}{4} (\bar{C}_2(\pi_2) - \sqrt{2} \bar{C}_1(\pi_2)), \\ &I_{2,\pi_3} = \frac{1}{4} (\bar{C}_2(\pi_2) + \sqrt{2} \bar{C}_1(\pi_2)), \\ &I_{n,\pi_3} = \frac{1}{2} (\bar{C}_n(\pi_2) - \bar{C}_{n-1}(\pi_2)) \end{split}$$
 (n > 2).

The $I_{n,\pi}$ are mutually orthogonal idempotents. Hence \mathscr{A} can be written

$$\mathscr{A} \approx \left(\mathscr{P}\left[X, \frac{1}{X}\right] + \left\{\bigoplus_{n,\pi} \mathscr{P}I_{n,\pi}\right\}\right) \oplus \mathscr{P}I_{D},$$

where $X^m I_{n,\pi} = I_{n,\pi}$ (all integers *m*) and where $\{\bigoplus_{n,\pi} \mathscr{P} I_{n,\pi}\}$ is the direct sum of ideals isomorphic to \mathscr{P} .

The structure of \mathscr{A} is somewhat more complicated if \mathscr{P} merely contains a subring isomorphic to $Z[\frac{1}{2}]$, or if $\mathscr{P} = Z$. It can be proved that \mathscr{A} is semisimple in the Jacobson sense if \mathscr{P} is a Jacobson ring (Noetherian ring in which every prime ideal is the intersection of maximal ideals), though the quotients $\mathscr{A}|\mathscr{M}$ (\mathscr{M} a maximal ideal) may be very varied in nature.

THEOREM. $\mathscr{A}(\mathscr{C}, \mathscr{F}, \mathscr{V}_4)$ is G-semisimple.

PROOF. $\mathscr{C}[X, 1/X]$ is a principal ideal domain and the maximal ideals have the form (X-a), $a \in \mathscr{C}$, $a \neq 0$. Clearly $\mathscr{C}[X, 1/X]$ is G-semisimple and so the G-radical of \mathscr{A} is contained in $\left\{\bigoplus_{n,\pi} \mathscr{C}I_{n,\pi}\right\} \oplus \mathscr{C}I_D.$

Write

$$\mathcal{M}_D = (I - I_D),$$

$$\mathcal{M}_{n,\pi} = (I - I_{n,\pi}).$$

Then $\mathscr{A}|\mathscr{M}_D, \mathscr{A}|\mathscr{M}_{n,\pi}$ are isomorphic to \mathscr{C} and

$$\mathscr{M}_{D} \cap \left(\bigcap_{n,\pi} \mathscr{M}_{n,\pi}\right) \cap \left(\left\{\bigoplus_{n,\pi} \mathscr{C}I_{n,\pi}\right\} \oplus \mathscr{C}I_{D}\right) = (0),$$

and so \mathcal{A} is G-semisimple.

Thus there exists a set of G-characters ϕ_{α} on \mathscr{A} . We may think of a set of coordinates $\{\phi_{\alpha}(\mathscr{M})\}$ of a $\mathscr{F}(\mathscr{V}_{4})$ -module class $\{\mathscr{M}\}$, which completely determine $\{\mathscr{M}\}$ and which are compatible with direct sum and tensor product of modules.

5. Representations of \mathscr{A}_4 over a field \mathscr{F} of characteristic 2

We regard \mathscr{A}_4 (alternating group of 4 symbols) as being an extension of \mathscr{V}_4 by a cyclic group of order 3. Thus we take generators W, X, Y satisfying

$$W^3 = X^2 = Y^2 = E, \qquad XY = YX,$$

 $W^{-2}XW^2 = W^{-1}YW = XY,$

where E is the identity element. \mathscr{V}_4 is the subgroup generated by X, Y.

Let \mathscr{F} be an algebraically closed field of characteristic 2. By Higman's theorem 1 in [7], every indecomposable $\mathscr{F}(\mathscr{A}_4)$ -module is a direct summand of the $\mathscr{F}(\mathscr{A}_4)$ -module induced from an indecomposable $\mathscr{F}(\mathscr{V}_4)$ -module. We now look at such induced $\mathscr{F}(\mathscr{A}_4)$ -modules.

A $\mathscr{F}(\mathscr{V}_4)$ -module \mathscr{L} (and the corresponding representation of $\mathscr{F}(\mathscr{V}_4)$) will be called *stable* in \mathscr{A}_4 if the $\mathscr{F}(\mathscr{V}_4)$ -submodule

$$W \otimes_{\mathcal{F}(\mathscr{V}_{4})} \mathscr{L} \quad \text{of} \quad (\mathscr{L}^{\mathscr{A}_{4}})_{\mathscr{V}_{4}}$$

is isomorphic to \mathscr{L} . We now find which indecomposable $\mathscr{F}(\mathscr{V}_4)$ -modules are stable in \mathscr{A}_4 .

Let

$$\mathscr{G} \to \lambda(G), \quad G \to \overline{\lambda}(G) \qquad (G \in \mathscr{F}(\mathscr{V}_4))$$

be the representations afforded by the $\mathscr{F}(\mathscr{V}_4)$ -modules \mathscr{L} and $W\otimes \mathscr{L}$ respectively. Choosing bases appropriately, we can write

$$\bar{\lambda}(G) = \lambda(W^{-1}GW) \qquad (G \in \mathscr{F}(\mathscr{V}_4)).$$

If P = X + E, Q = Y + E, it is readily seen that

[9]

$$\begin{split} \bar{\lambda}(P) &= \lambda(Q) \\ \bar{\lambda}(Q) &= \lambda(P) + \lambda(Q) + \lambda(PQ), \end{split}$$

and \mathscr{L} is stable in \mathscr{A}_4 if and only if the pair $(\bar{\lambda}(P), \bar{\lambda}(Q))$ is similar to $(\lambda(P), \lambda(Q))$.

Now $\overline{\lambda}(P)\overline{\lambda}(Q) = \lambda(P)\lambda(Q)$. For the representation afforded by the class D we have $\lambda(P)\lambda(Q) \neq 0$, and so $\overline{\lambda}(P)\overline{\lambda}(Q) \neq 0$ and D is stable in \mathscr{A}_4 . If \mathscr{R} is any module in the classes A_n , B_n , $C_n(\pi)$, then so is $W \otimes \mathscr{R}$, as $\lambda(P)\lambda(Q) = \lambda(PQ)$ remains 0. In this latter case we must compare the pair $(\lambda(Q), \lambda(P) + \lambda(Q))$ with $(\lambda(P), \lambda(Q))$ under similarity, or, using the notation of § 2, the pair $(\overline{Q}, \overline{P} + \overline{Q})$ with $(\overline{P}, \overline{Q})$ under independent non-singular transformations on both sides. This can be done using the invariants in § 5 of chapter II of [4]. Thus it can be shown that A_n , B_n are stable in \mathscr{A}_4 . As \mathscr{F} is algebraically closed, π (irreducible) has the form T + a, for $a \in \mathscr{F}$, or ∞ . We write $C_n(a)$ for $C_n(\pi)$, where $a \in \mathscr{F} \cup \{\infty\}$. By elementary divisors (as mentioned in § 2 for \overline{Q}), we see that

$$\{W\otimes\mathscr{L}\}=C_n(\theta(a)),$$

where \mathscr{L} is in the class of $C_n(a)$, and where

$$heta(a)=rac{1+a}{a}$$
 ,

with the obvious interpretation when $a = \infty$ or 0. Note that $\theta^3(a) = a$. Thus $C_n(a)$ is stable if and only if

 $\theta(a) = a$

i.e.

$$a^2 + a + 1 = 0$$

or *a* is a primitive cube root ω of unity in \mathscr{F} . θ is a permutation on $\mathscr{F} \cup \{\infty\}$. We denote the typical class of transitivity by $\mu = \{a, \theta(a), \theta^2(a)\}$. However there are two additional classes, $\{\omega\}$ and $\{\omega^2\}$.

To obtain the indecomposable $\mathscr{F}(\mathscr{A}_4)$ -modules we look at $\mathscr{L}^{\mathscr{A}_4}$, where \mathscr{L} is an indecomposable $\mathscr{F}(\mathscr{V}_4)$ -module. If \mathscr{L} is not stable in \mathscr{A}_4 , then $\mathscr{L}^{\mathscr{A}_4}$ is indecomposable by the theorem in § 2 of [2]. Thus we obtain indecomposable $\mathscr{F}(\mathscr{A}_4)$ -modules $C_n^*(\mu)$ such that

$$(C_n^*(\mu))_{\mathscr{V}_4} = C_n(a) + C_n(\theta(a)) + C_n(\theta^2(a)).$$

If \mathscr{L} is stable in \mathscr{A}_4 , then $\mathscr{L}^{\mathscr{A}_4}$ splits up into 3 indecomposable, non-isomorphic $\mathscr{F}(\mathscr{A}_4)$ -modules \mathscr{L}^{α} (all superscripts will be considered to be integers modulo 3), such that $(\mathscr{L}^{\alpha})_{\mathscr{V}_4} \approx \mathscr{L}$, as in proposition 3 of [2]. Thus we obtain classes

(10)
$$A_0^{\alpha}, A_n^{\alpha}, B_n^{\alpha}, C_n^{\alpha}(\omega), C_n^{\alpha}(\omega^2), D^{\alpha} \qquad (n > 0).$$

In particular A_0^{α} may be taken to be the class corresponding to the 1-dimensional representation

$$W \to \omega^{\alpha} \qquad (\alpha = 0, 1, 2),$$

X, Y \ 1.

Then we can suppose that $A_0^{\alpha} \times \{\mathscr{L}^{\beta}\} = \{\mathscr{L}^{\alpha+\beta}\}$. As the \mathscr{L}^{α} are extensions of \mathscr{L} , in the corresponding representations it is only necessary to assign a matrix $\lambda(W)$, to extend the matrix representations as detailed in § 2. If $\lambda(W)$ is assigned to the representation afforded by \mathscr{L}^0 , then the corresponding matrix for \mathscr{L}^{α} is $\omega^{\alpha}\lambda(W)$. The author has constructed suitable matrices $\lambda(W)$ corresponding to classes A_n , B_n , D (all n > 0), but not for $C_n(\omega)$, $C_n(\omega^2)$ in general. However for $C_1^0(\omega)$ we take

$$\lambda(W) = \begin{bmatrix} \omega & 0 \\ 0 & \omega^2 \end{bmatrix},$$

and for $C_2^0(\omega)$ we take

$$\lambda(W) = \begin{bmatrix} 1 & 0 \\ \frac{\omega^2}{0} & 0 \\ 0 & \omega^2 & 1 \end{bmatrix}.$$

For $C_1^0(\omega^2)$, $C_2^0(\omega^2)$ we replace ω by ω^2 in these matrices. For A_1^0 we take

$$\lambda(W) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

It should be noted that in general we still have not chosen which of the 3 extensions \mathscr{L}^{α} of \mathscr{L} will be called \mathscr{L}^{0} . This choice will be exercised in the next section.

6. The representation algebra for \mathscr{A}_4

To obtain the structure of $\mathscr{A}(\mathscr{C}, \mathscr{F}, \mathscr{A}_4)$, where \mathscr{F} is algebraically closed of characteristic 2, it is not necessary to find explicitly all tensor (Kronecker) products. By proposition 3 and its corollaries it will only be necessary to obtain the products of the $\mathscr{F}(\mathscr{A}_4)$ -modules modulo the projective ideal $\mathscr{D} = (D^0, D^1, D^2)$, and all equations in this section will be taken to be modulo \mathscr{D} . Further by restricting the ring multiplications to $\mathscr{F}(\mathscr{V}_4)$ and considering the corresponding products of the $\mathscr{F}(\mathscr{V}_4)$ -modules, we see that the multiplication table (9) must be valid on removing the superscripts α .

[11]

Now

 $C_n^*(\mu) = (C_n(a))^{\mathscr{A}_4}$

when $a \neq \omega$, ω^2 and $\mu = \{a, \theta(a), \theta^2(a)\}$, and so, using proposition 2, we quickly obtain all products involving $C_n^*(\mu)$. Thus

(11)
$$A_{m}^{\alpha}C_{n}^{*}(\mu) = C_{n}^{*}(\mu), \quad B_{m}^{\alpha}C_{n}^{*}(\mu) = C_{n}^{*}(\mu),$$
$$C_{m}^{*}(\mu)C_{n}^{*}(\mu') = \begin{cases} 0, & \text{if } \mu \neq \mu', \\ 2C_{\min(m,n)}^{*}(\mu), & \text{if } \mu = \mu', \end{cases}$$

except that

 $C_1^*(\mu)C_1^*(\mu) = C_2^*(\mu)$ for all $\mu \neq \{1, 0, \infty\}$.

Also

$$C_1^*(1, 0, \infty)C_1^*(1, 0, \infty) = 2C_1^*(1, 0, \infty).$$

We now choose $A_n^0(n > 1)$, $B_n^0(n > 0;)$ to satisfy

$$A_n^0 = (A_1^0)^n, \quad A_1^0 B_1^0 = A_0^0, \quad B_n^0 = (B_1^0)^n.$$

Thus we have

$$A_n^0 B_m^0 = \begin{cases} A_{n-m}^0, & \text{if } n \ge m, \\ B_{m-n}^0, & \text{if } n < m, \text{ etc.} \end{cases}$$

A direct calculation shows that

(12i)
$$C_1^0(\omega)C_1^0(\omega) = C_2^0(\omega),$$

(12ii)
$$C_1^0(\omega)C_2^0(\omega) = 2C_1^0(\omega).$$

As yet $C^{\alpha}(\omega)$ (n > 2) have not been specified. Say

$$C_1^0(\omega)C_n^{\alpha}(\omega) = C_1^{\beta}(\omega) + C_1^{\gamma}(\omega).$$

Then $\beta = \gamma$ or not. Choose $C_n^0(\omega)$ so that one of the following relations is true

(13i)
(13ii)
$$C_1^0(\omega)C_n^0(\omega) = \begin{cases} 2C_1^0(\omega), & \text{or} \\ C_1^1(\omega) + C_1^2(\omega), \\ \end{cases}$$

If n(>1) is such that (13i) is true then for $n \ge m \ge 1$, the associativity of multiplication implies that

(14i)
$$C_m^0(\omega)C_n^0(\omega) = 2C_m^0(\omega),$$

while if (13ii) is true, then

(14ii)
$$C_m^0(\omega)C_n^0(\omega) = C_m^1(\omega) + C_m^2(\omega).$$

Again a direct calculation shows that

$$A_{1}^{0}C_{1}^{0}(\omega) = C_{1}^{1}(\omega).$$

94

By associativity of multiplication we prove in succession that

(15)
$$\begin{cases} A_1^0 C_n^0(\omega) = C_n^1(\omega), \\ A_m^0 C_n^0(\omega) = C_n^m(\omega), \\ B_m^0 C_n^0(\omega) = C_n^{-m}(\omega) \end{cases}$$

(superscripts are modulo 3).

Similarly

$$A_1^0 C_1^0(\omega^2) = C_1^2(\omega^2),$$

and so

(16)
$$\begin{cases} A_m^0 C_n^0(\omega^2) = C_n^{2m}(\omega^2), \\ B_m^0 C_n^0(\omega^2) = C_n^{-2m}(\omega^2) \end{cases}$$

We now look at the structure of $\mathscr{A} = \mathscr{A}(\mathscr{C}, \mathscr{F}, \mathscr{A}_4)$. The projective ideal \mathscr{D} is isomorphic to $\mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C}$. The complement to \mathscr{D} in \mathscr{A} is isomorphic to $\mathscr{B} = \mathscr{A}/\mathscr{D}$, and so to find \mathscr{B} we continue as above modulo \mathscr{D} .

 A_0^0 is the identity element of \mathscr{B} . Let u be a primitive cube root of unity in *C*, and write

 $I_{\beta} = \frac{1}{2} (A_{0}^{0} + u^{\beta} A_{0}^{1} + u^{2\beta} A_{0}^{2})$

Then

$$A_0^0 = J_0 + J_1 + J_2,$$

and the J_{β} are mutually orthogonal idempotents. Write

(17)
$$\begin{cases} A_{n\beta} = A_n^0 J_{\beta}, \quad B_{n\beta} = B_n^0 J_{\beta} \\ C_{n\beta}(\omega) = C_n^0(\omega) J_{\beta}, \quad C_{n\beta}(\omega^2) = C_n^0(\omega^2) J_{\beta}, \end{cases}$$

Then

$$A_n^{\alpha} J_{\beta} = u^{-\alpha\beta} A_{n\beta}$$
, etc

and

$$A_{n\alpha}A_{m\beta} = \begin{cases} 0, & \text{if } \alpha \neq \beta, \\ A_{(m+n)\beta}, & \text{if } \alpha = \beta, \text{ etc} \end{cases}$$

Further

(18)
$$C_n^*(\mu)J_\beta = \begin{cases} C_n^*(\mu), & \text{if } \beta = 0, \\ 0, & \text{if } \beta \neq 0. \end{cases}$$

Finally the elements (17) and $C_n^*(\mu)$ together form a basis of \mathscr{B} over \mathscr{C} .

We now look at the 3 ideal direct summands of \mathscr{B} generated by the J_{β} . Set $Y_{\beta} = A_{1\beta}$, $1/Y_{\beta} = B_{1\beta}$; then $Y_{\beta}^{m} = A_{m\beta}$ etc., and the subalgebra of $\mathscr{B}J_{\beta}$ generated by $A_{n\beta}$, $B_{n\beta}$ may be written $\mathscr{C}[Y_{\beta}, 1/Y_{\beta}]$, Y_{β} being regarded as an indeterminate over C. From (15) and (16)

$$\begin{split} Y^m_{\beta} C_{n\beta}(\omega) &= u^{-\beta m} C_{n\beta}(\omega), \\ Y^m_{\beta} C_{n\beta}(\omega^2) &= u^{\beta m} C_{n\beta}(\omega^2), \end{split}$$

 $(\beta = 0, 1, 2).$

for m any integer, and

$$C_{n\beta}(\omega)C_{n'\beta}(\omega^2) = 0,$$

for all positive n, n'. From (12i), (12ii), (14i),

$$\begin{split} C_{1\beta}(\omega)C_{1\beta}(\omega) &= C_{2\beta}(\omega), \\ C_{1\beta}(\omega)C_{2\beta}(\omega) &= 2C_{1\beta}(\omega) \\ C_{2\beta}(\omega)C_{2\beta}(\omega) &= 2C_{2\beta}(\omega). \end{split}$$

As in §4, set

$$I_{1\beta}(\omega) = \frac{1}{4} (C_{2\beta}(\omega) + \sqrt{2} C_{1\beta}(\omega))$$
$$I_{2\beta}(\omega) = \frac{1}{4} (C_{2\beta}(\omega) - \sqrt{2} C_{1\beta}(\omega)),$$

and these are mutually orthogonal idempotents. For n > 2, if we have the situation of (13i), then

$$C_{n\beta}(\omega)C_{n\beta}(\omega) = 2C_{n\beta}(\omega)$$

and we write

$$\tilde{C}_{n\beta}(\omega) = \frac{1}{2}C_{n\beta}(\omega).$$

In case (13ii), we have

$$C_{n\beta}(\omega)C_{n\beta}(\omega) = (u^{-\beta} + u^{-2\beta})C_{n\beta}(\omega),$$

and we write

$$\bar{C}_{n\beta}(\omega) = \frac{1}{u^{-\beta} + u^{-2\beta}} C_{n\beta}(\omega).$$

Then the $\bar{C}_{n\beta}(\omega)$ are idempotents. To obtain orthogonal idempotents we put

$$I_{3\beta} = \bar{C}_{3\beta}(\omega) - I_{1\beta}(\omega) - I_{2\beta}(\omega),$$
$$I_{n\beta}(\omega) = \bar{C}_{n\beta}(\omega) - \bar{C}_{(n-1)\beta}(\omega).$$

and for n > 3

Then all the
$$I_{n\beta}(\omega)$$
 are mutually orthogonal idempotents. $I_{n\beta}(\omega^2)$ are similarly defined. From (11), (18), we can proceed as in § 4 and $I_{n0}(\mu)$ are defined.

Hence \mathscr{A} has the following structure.

$$\begin{pmatrix} \mathscr{C}\left[Y_{0}, \frac{1}{Y_{0}}\right] + \left\{ \underset{\substack{n \geq 1 \\ \phi = \omega, \omega^{2}, \mu}}{\bigoplus} \mathscr{C}I_{n0}(\phi) \right\} \end{pmatrix} \\ \oplus \left(\underset{\beta=1,2}{\oplus} \left[\mathscr{C}\left[Y_{\beta}, \frac{1}{Y_{\beta}}\right] + \left\{ \underset{\substack{n \geq 1 \\ \phi = \omega, \omega^{2}}}{\bigoplus} \mathscr{C}I_{n\beta}(\phi) \right\} \right] \right) \\ \oplus (\mathscr{C} \oplus \mathscr{C} \oplus \mathscr{C}),$$

where

$$Y^{m}_{\beta}I_{n}(\omega^{\alpha}) = u^{-\alpha\beta m}I_{n\beta}(\omega^{\alpha}),$$

$$Y^{m}_{0}I_{n0}(\mu) = I_{n0}(\mu);$$

the last term is the projective ideal \mathcal{D} .

97

As in § 4 this is G-semisimple. As far as G-semisimplicity is concerned we may now drop the restriction that \mathcal{F} is algebraically closed. For, if not, let \mathcal{F}^* be the algebraic closure of \mathcal{F} . Then, by (3), $\mathcal{A}(\mathcal{C}, \mathcal{F}, \mathcal{A}_4)$ can be regarded as embedded in $\mathcal{A}(\mathcal{C}, \mathcal{F}^*, \mathcal{A}_4)$. Thus the restriction of the Gcharacters to the subalgebra will ensure the G-semisimplicity of $\mathcal{A}(\mathcal{C}, \mathcal{F}, \mathcal{A}_4)$.

THEOREM. $\mathscr{A}(\mathscr{C}, \mathscr{F}, \mathscr{A}_4)$ is G-semisimple for all fields \mathscr{F} of characteristic 2.

7. Ring-tensor-product representation algebras

Given a commutative ring \mathscr{R} and two \mathscr{R} -modules \mathscr{M} , \mathscr{M}' then the tensor product

$$\mathcal{M}\otimes_{\mathcal{R}}\mathcal{M}'$$

can also be defined to be an \mathscr{R} -module. This product is then commutative, associative and distributes over direct sum \oplus . If we now take the set of \mathscr{R} -modules which satisfy the ascending and descending chain conditions, this set is closed under \oplus , \otimes and the Krull-Schmidt theorem is applicable. If \mathscr{P} is any commutative ring with an identity element, then, as in § 1, we can define the representation algebra $\mathscr{A}(\mathscr{P}, \mathscr{R})$ to be the free \mathscr{P} -module generated by the set of all \mathscr{R} -indecomposable isomorphic classes $\{\mathscr{M}\}$, equipped this time with the multiplication

$$\{\mathcal{M}\}\{\mathcal{M}'\}=\{\mathcal{M}\otimes_{\mathscr{R}}\mathcal{M}'\}.$$

If \mathscr{R} is a Dedekind domain, then the indecomposable \mathscr{R} -modules of finite length have the form

 $\mathcal{R}/2^n_{\alpha}$,

where \mathcal{Q}_{α} is any non-zero prime ideal of \mathcal{R} . Further it is readily seen that

$$\mathscr{R}/\mathscr{Q}^{n}_{\alpha} \otimes_{\mathscr{R}} \mathscr{R}/\mathscr{Q}^{m}_{\beta} = \begin{cases} (0), & \text{if } \alpha \neq \beta, \\ \mathscr{R}/\mathscr{Q}^{\min(n,m)}_{\alpha}, & \text{if } \alpha = \beta. \end{cases}$$

Write then

$$\begin{split} I_{\alpha 1} &= \{ \mathscr{R} | \mathscr{Q}_{\alpha} \}, \\ I_{\alpha n} &= \{ \mathscr{R} | \mathscr{Q}_{\alpha}^{n} \} - \{ \mathscr{R} | \mathscr{Q}_{\alpha}^{n-1} \} \end{split} \qquad (n > 1). \end{split}$$

Then

$$\mathscr{A}(\mathscr{P},\mathscr{R}) = \bigoplus_{\alpha, n \geq 1} \mathscr{P}I_{\alpha n}.$$

This algebra does not have an identity.

Another case which can readily be deduced from the above is that of the quotient of the Dedekind domain \mathscr{R} by an ideal $\mathscr{I} = \Pi \mathscr{Q}_{\alpha}^{n_{\alpha}}$, where only a finite number of n_{α} are strictly positive $(n_{\alpha} > 0)$. Then the indecomposable \mathscr{R}/\mathscr{I} -modules of finite length have the form Again

$$\mathcal{R}/\mathcal{Q}_{\alpha}^{m_{\alpha}}, \quad m_{\alpha} = 1, \cdots, n_{\alpha}, \quad \text{when} \quad n_{\alpha} \geq 1$$

$$\mathscr{A}(\mathscr{P},\mathscr{R}/\mathscr{I}) = \bigoplus_{\alpha} \big(\bigoplus_{m_{\alpha}=1}^{n_{\alpha}} \mathscr{P}I_{\alpha m_{\alpha}} \big).$$

This algebra has finite rank over \mathcal{P} and has an identity.

We now take $\mathscr{R} = \mathscr{F}[P, Q]/(P^2, Q^2)$, as in § 2 (\mathscr{F} of arbitrary characteristic). We assume for simplicity that \mathscr{F} is algebraically closed. Then the different classes are A_n , B_n , $C_n(a)$, D, where $a \in \mathscr{F} \cup \{\infty\}$.

The multiplication table under $\otimes_{\mathfrak{a}}$ is as follows.

$n \leq m$	An	B _n	$C_n(a)$	D
Am	$(n+1)(m+1)A_0$	$(m+2)(n-1)A_0+A_{m-n+1}$	$(m+1)nA_0$	A _m
B _m	$ \begin{array}{c} m(n+1)A_0 \\ (m > n) \end{array} $	(m. 1)(m. 1) (a.) P.	$n(m-1)A_0+C_n(a)$	B _m
	$\overline{(n+2)(n-1)A_0+A_1}$ $(m=n)$	(n-1)(m-1)A0+Dm+n-1		
C _m (a')	(n+1)mA ₀	$m(n-1)A_0+C_m(a')$	$n(m-1)A_0+C_n(a)$ (a = a')	$C_m(a')$
			$nmA_0(a \neq a')$	
D	An	Bn	$C_n(a)$	D

D is the identity element in $\mathscr{A}=\mathscr{A}(\mathscr{C},\mathscr{R}).$ $A_0,$ B_1 are obvious idempotents and

$$D = A_0 + [B_1 - A_0] + [D - B_1]$$

is a splitting of the identity into mutually orthogonal idempotents. The elements A_0 , $D-B_1$ generate ideal direct summands each isomorphic to \mathscr{C} . Write

$$A_{n} = (B_{1} - A_{0})A_{n},$$

$$\bar{B}_{n} = (B_{1} - A_{0})B_{n},$$

$$\bar{C}_{n}(a) = (B_{1} - A_{0})C_{n}(a).$$

Then the multiplication table in the ideal $(B_1 - A_0)$ generated by $B_1 - A_0$ is as follows.

$n \leq m$	A_n	\bar{B}_n	$\hat{C}_n(a)$
A _m	0	A_{m-n+1}	0
₿ _m	$\frac{0 (n > m)}{\overline{A_1} (m = n)}$	$ar{B}_{m+n-1}$	$\bar{C}_n(a)$
$\bar{C}_m(a')$	0	$\bar{C}_m(a')$	$\frac{\bar{C}_n(a) (a=a')}{0 \qquad (a\neq a')}$
			$0 (a \neq a)$

98

Place $T = \bar{B}_2$. Then $\bar{B}_{n+1} = T^n$. Place $I_{1a} = \bar{C}_1(a)$, $I_{na} = \bar{C}_n(a) - \bar{C}_{n-1}(a)$ (n > 1). Then the ideal generated by the $\{\bar{C}_n(a)\}$ is $\bigoplus_{a,n>0} \mathscr{C}I_{na}$. The subalgebra generated by the $\{\bar{B}_n\}$ may be written $\mathscr{C}[T]$, where the identity element is \bar{B}_1 . Write $U_n = \bar{A}_n$. Then the structure of the ideal $(B_1 - A_0)$ may be written

$$\mathscr{C}[T] + (\bigoplus_{n>0} \mathscr{C}U_n) + (\bigoplus_{a,n>0} \mathscr{C}I_{na}),$$

where

$$U_n I_{ma} = 0, \qquad U_n U_m = 0,$$

$$T U_{m+1} = U_m, \qquad T I_{ma} = I_{ma},$$

and the I_{ma} are mutually orthogonal idempotents.

The Jacobson radical of this algebra is nonzero as it contains $U_1(U_1^3=0)$. Hence, a fortiori, $\mathscr{A}(\mathscr{C}, \mathscr{R})$ is not G-semisimple. When the characteristic of \mathscr{F} is 2, we get a direct comparison between the two kinds of representation algebras that can be formed from $\mathscr{F}(\mathscr{V}_4)$ -modules.

References

- Bašev, V. A., Representations of the group Z₁×Z₂ in a field of characteristic 2, (Russian), Dokl. Akad. Nauk. SSSR 141 (1961), 1015-1018.
- [2] Conlon, S. B., Twisted group algebras and their representations, This Journal 4 (1964), 152-173.
- [3] Curtis, Charles W.; Reiner, Irving. Representation Theory of finite groups and associative algebras. Interscience, New York; 1962.
- [4] Gantmacher, F. R., Applications of the theory of matrices. Interscience, New York, 1959.
- [5] Green, J. A., The modular representation algebra of a finite group, Illinois J. Math. 6(4) (1962) 607-619.
- [6] Heller, A.; Reiner, I., Indecomposable representations, Illinois J. Math. 5 (1961), 314-323.
- [7] Higman, D. G., Indecomposable representations at characteristic p. Duke Math. J. 21 (1954), 377-381.

University of Sydney.

- 99

[17]