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1. Introduction. Combinatorial configurations may generally be phrased 
in terms of arrangements of objects into sets subject to certain conditions. In 
view of this, the question arises as to whether given a set 5 and its power-set 
Us (the class of all subsets of 5), it might be possible to structure Us in a 
combinatorially significant manner. This paper proposes and investigates one 
such structuring achieved by defining a distance function over U5. 

Given Ay B in Us, define their distance by 

d(A,B) = N([A \JB]-[A H B])/2, 

where N(E) denotes the number of elements in E, + oo being an admissible 
value. One readily verifies that the distance function satisfies the metric 
postulates d(A,B) = 0 if and only if A = Byandd(A,B) < d(A, C) + d(B,C) 
for all A, By C in Us (15). More generally, we may define a higher dimensional 
metric by associating with every r-tuple Ei, . . . , Er of elements of Us, the 
number d{E\, . . . , ET) = iV(U At — C\ A?)/r. Although it appears that this 
will be necessary in order to obtain metric characterizations of, for example, 
the theorem of Desargues, only the ordinary metric is studied here. 

Given the sets Su . . . , Skj denote by 

irSi = Si X 3*2 X . . . X Sjc = {(si, . . . , Sjc) ; Si Ç Sf}, 

their Cartesian product of ordered ^-tuples. Since irSi may be viewed as a 
subclass of an appropriate power-set by identifying the element (si, . . . , sk) 
with the set {(1, si), . . . , (&, sk))y the above definition also yields a metri-
zation for Cartesian products which may be restated: For x, y in wSf, 
x = (xi, . . . , xk)y y = (yiy . . . , yk)y d(x, y) is the number of subscripts i for 
which Xt ?£ yiy i = 1, . . . , k. 

Section 3 gives metric characterizations of some of the classical configura­
tions and their generalizations, such as balanced incomplete block designs 
(and, in particular, v, k, X configurations and projective planes) and ortho­
gonal Latin squares and cubes. Section 4 sets forth some theorems for metrized 
Cartesian product spaces. 

2. Definitions and notation. In order to reduce to a minimum the 
introduction of new terminology, wherever feasible the author has adopted 
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that used by Blumenthal (4; 5), whose excellent books also nourished several 
interesting trains of thought. In the following, M denotes an abstract metric 
space, and E a subspace of M. Wherever applicable, + oo is regarded as an 
admissible value. 

DEFINITION 1. If M = {ai, a2, . . . ,} is countable, it may be completely 
specified by the symmetric distance matrix 

A = [ai^jdij = d(ailaJ). 

DEFINITION 2. For a in M, r > 0, the open sphere and closed sphere with 
centre a, radius r are defined, respectively, by 

s (a, r) = {x; x in M, d(x, a) < r}, 

c(a, r) = {x; x in M, d(x, a) < r}. 

Note that in general a sphere need not have a unique centre or radius. 

DEFINITION 3. For x in M, the distance of x from E is given by d(x, E) = g.l.b. 
d(x, y) for y in E. 

DEFINITION 4. Two metric spaces M and Mr are isometric provided there 
exists a mapping a from M onto M' such that d(x, y) = d(a(x), a(y)) for all 
x, y in AT. We write M ^ M'. Note that a is biunique since a{x) — a(y) 
implies d(a(x), a(y)) = d(x, y) = 0 . If M = M', the isometry is termed a 
motion. Two subsets of ikf are superposable provided a motion exists that maps 
one onto the other. 

DEFINITION 5. E is a metric basis of AT provided each point of i f is uniquely 
determined by its distances from the points of E. 

DEFINITION 6. The major diameter A(E), of E, and the minor diameter 
3(E), of E are defined by 

A(E) = l.u.b. d(x, y) for x, y in E, 

5(E) = g.l.b. d(x, y) for x, y in E, x ^ 3/. 

If £ contains fewer than two points, define 8(E) — 0. 
Combinatorial configurations generally are highly symmetric in various 

aspects of their structure. Searching for a means of obtaining some sort of 
''symmetrizing" condition in Us, it was discovered that one way of achieving 
this is to require that Us contain a "large" number of elements mutually 
"far apart." These considerations motivate the next definition. 

DEFINITION 7. The t-extent of E, e(E, t), is the greatest integer m such that 
E contains m distinct points with minor diameter greater than t. If no two 
points of E have distance greater than /, set e(E, i) = 1, while if for n arbi­
trarily large there are n points of E with minor diameter exceeding t, define 
e(E,t) = + co. 
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As we shall see in the next section, the concept of /-extent enables us to 
give simple metric characterizat ions of the various configurations examined 
there. 

Let S(n) denote a set of n elements (n > 1), and Sk(n) (k > 1) the &-fold 
Cartesian product of Sin), 

Sh(n) = {(xi, . . . ,xk);Xi £ S(n)}. 

Assume tha t Sk(n) has been metrized as in the preceding section, so t ha t for 
x, y in Sk(n), x = (xi, . . . , xk), y = (3/1, . . . , yk), d(x, y) is the number of 
subscripts i for which xt 9^ y i, i = 1, . . . , k. For 0 < r < k, every set of 
nT + 1 elements of Sk(n) has minor diameter a t most k — r. Hence the k — r 
extent of every subspace E of Sk(n) satisfies e(E, k — r) < nr. We next define 
terms to describe subspaces which a t ta in this maximum extent . 

D E F I N I T I O N 8. A subspace E of Sk(n) is r-orthogonal, 0 < r < k, provided 
e(E, k — r) = nr. If in addit ion E contains precisely nr elements, E is termed 
an L(n, k, r) space. (Thus E is r-orthogonal if and only if E contains an 
L(n, k, r) space.) 

For a given subspace E, r -orthogonali ty does not imply (r — ^ - o r t h o ­
gonality. Sk(n) always has or thogonal i ty 0, 1, and k. Indeed, any point con­
s t i tu tes an L(n, k, 0) space; the points (i, i, . . . , i), i = 1, . . . , n comprise 
an L(n, k, 1) space, and Sk(n) is itself an L(n, k, k) space. For values between 
1 and k the proper ty becomes non-trivial , and, as we shall see in the following 
section, is related to some of the classical unsolved problems in combinatorial 
analysis. 

3. Metr i c c h a r a c t e r i z a t i o n s of s o m e c o m b i n a t o r i a l c o n f i g u r a t i o n s . 
(a) Latin squares and cubes. A Latin square of order n, A — [ a^ ] , is an 

n X n matr ix whose entries are from a set of n dis t inct symbols and such t h a t 
each symbol appears exactly once in each row and column. T h u s a Lat in square 
of order n is essentially the multiplication table of a loop of order n. Two 
Lat in squares A = [ai:j], B = [bfj] of order n are Graeco-Latin provided the 
n2 ordered pairs (a0-, bi3) are all dist inct . A set of Lat in squares of order n, 
A i, A 2, . . . , Am, is orthogonal provided At and A3 are Graeco-Lat in for 
all i y£ j . In this event, one readily shows t h a t m < n — 1. An orthogonal set 
is complete provided m = n — 1. 

A Latin cube of order n, A = [aijk], i sa cubical a r ray of nz cells (in n 
row-planes, n column-planes, and n layers) whose entries are from a set of 
n dist inct symbols and such t h a t whenever arst = ^uvw and a t least two of 
the equalities r = u, s = v, t = w hold, then the third also holds. No te t h a t 
this condition holds if and only if each row-plane, column-plane', and layer 
is a Lat in square of order n. T w o Lat in cubes of order n are Graeco-Latin 
provided every pair of corresponding row-planes, column-planes, and layers 
is a Graeco-Latin square. Three Lat in cubes, A = [ai}k], B = [bijk], C = [cijk], 
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of order n are strongly Eulerian provided each pair is Graeco-Latin and the 
nz ordered triples (aiJk, bilk, ciJk}) are all distinct. (These conditions are 
stronger than those of Ball (2).) A set of pairwise Graeco-Latin cubes of order 
n, Ai, . . . , Am, is orthogonal provided Au Aj} Ak are strongly Eulerian for all 
i,j, k pairwise distinct. Again one readily shows t ha t m < n — 1, and an 
orthogonal set is termed complete provided m = n — 1. 

There exists a fairly extensive l i terature on Lat in squares. (In this con­
nection, see the fine historical review by Norton (19).) Euler conjectured t h a t 
for n = 4& + 2, Graeco-Latin squares of order n do not exist, and T a r r y 
(25) verified this for n = 6. Aside from n = 6 (n = 2 is, in a sense, vacuous 
since a complete set consists of a single square) , the question of the validity 
of the conjecture has resisted all determined onslaught (although Mann 
(17) has ruled out certain candidates, among these being the group mult i­
plication tables). The case n = 10 remains the first undecided instance.1 

MacNeish (16) seems to have been the first to establish the existence of 
complete sets of orthogonal Lat in squares of prime power order. The interest 
in orthogonal Latin squares and finite projective planes was mutual ly en­
hanced when Bose (6) and Levi (14) independently showed the equivalence 
of complete sets of such squares to the planes. 

Given a set of orthogonal Lat in squares Ai, . . . , Am, of order n, construct 
the associated n2 ^-tuples (k = m + 2) in the usual manner . (Here the 
&-tuple (ii, . . . , ii) is admit ted if and only if ij is in row ik-i, column ik 

of A j , j = 1, . . . , k — 2.) One readily verifies t h a t these n2 elements actually 
comprise an L(n, k, 2) space, since any pair of the elements having a t least 
two corresponding components equal would violate either the Lat in con­
dition on rows or columns, or the orthogonali ty condition. T h u s the minor 
diameter of the n2 elements exceeds k — 2. Conversely, given an L(n, k, 2) 
space, we may reverse the process and obtain k — 2 orthogonal Lat in squares 
of side n. T h e same procedure may be employed to show the equivalence of 
L(n, k, 3) spaces and sets of k — 3 orthogonal Lat in cubes. 

(b) Finite nets. For k, n positive integers with k > 3, Bruck (9) defines a 
(finite) net N of degree k, order n, as " a system of undefined objects called 
'points ' and 'lines' together with an incidence relationship ( 'point is on line' 
or 'line passes through point ' ) such t ha t : 

(i) N contains k (non-empty) classes of lines. 
(ii) Two lines a, b of N belonging to distinct classes, have a unique common 

point P . 
(iii) Each point P of N is on exactly one line of each class. 
(iv) Some line of N has exactly n dist inct points. 
"A finite affine plane with n points on each line, n > 2, is simply a net 

of degree n + 1, order n (13). A loop of order n is essentially a net of degree 
3, order n ( 1 ; 3) . More generally, for 3 < fe < » + 1, a set of k — 2 mutual ly 

^ e e the addendum for recent developments. 
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orthogonal n X n Lat in squares may be used to define a net of degree k, 
order n (and conversely) by paralleling Bose's correspondence (6) between 
affine planes and complete sets of orthogonal Lat in squares ." 

For k > r > 1 we may generalize Bruck 's configuration to a finite net of 
degree k, order n, and dimension r by replacing (ii) and (iv) with 

(ii') Every r lines h, . . . , lT of N belonging to pairwise dist inct classes 
have a unique common point P. 

(iv ;) Some line of N has exactly nr~l points. 
As immediate consequences of the axioms we have 

(1) Every class contains n lines. 
(2) Every line has exactly nr~l points. 
(3) N contains nr points. 

For let A i, . . . , Ar, Ar+i, . . . , Ak be the k classes of lines of N, and suppose 
A i contains ra* lines, and N contains m points. One readily shows raf and m 
to be finite. Then from (ii') and (iii) we obtain the system of r + 1 equat ions 
Ttrij = m(j = 1, . . . , r + lyj 9e i;i = 1, . . . , r + 1) which have the unique 
solution Mi = m1/r, i = 1, . . . , r + 1, and since we m a y replace Ar+i by any 
other Aj, we obtain m* = m1/r, i = 1, . . . , k. If we next consider any fixed 
line of A\ together with the classes A2, . . . , Ar, then (ii') and (iii) imply 
t h a t the line passes through m{r~l),r points, and this together with (ivr) 
implies m == nr. 

Now let us co-ordinatize N by assigning to the point P the co-ordinates 
(ii, • • • , ijc) provided P is on the ^ t h line of the jth class. Then (ii;) and (iii) 
imply t h a t there is a 1-1 correspondence between points and co-ordinates, 
and t h a t as elements of Sk(n) any two of these ordered ^-tuples have distance 
exceeding k — r. Since there are nr dist inct such ^-tuples, and each component 
of a &-tuple can assume n values, the nr ^-tuples comprise an L(n, k, r) space. 
Conversely, one may reverse the above process, and we thus have a corre­
spondence between L(n, k, r) spaces with 1 < r < k and finite nets of degree 
k, order n, dimension r» In part icular then, an L(n, 3, 2) space is essentially 
a loop of order n, an L(n} n + 1, 2) space defines a finite affine plane with 
n points on each line (n > 2), and from an L(n, k, 2) space we may construct 
a system of k — 2 orthogonal Lat in squares of side n. 

(c) Hyper cubes and orthogonal arrays. Rao (21) defines a hypercube of 
s t rength d as follows: " L e t there be m factors Ai, A2, . . . , Am each of which 
can assume 5 different values. We define an ordered set (iiy i2, . . . , im) as a 
combinat ion of m factors obtained by the selection of i i th , i2 th . . . values 
of the first, second, . . . , factors respectively. There are sm such combinat ions 
of which a subset of sl combinations may be called a (m, s, t) a r ray . An 
(m, s, t) a r ray is said to be of s t rength d if all combinat ions of any d of the 
m factors occur in equal number (sl~d) of t imes. An ar ray of s t rength d repre­
sented by (m, s, t, d) is, a l ternat ively, called a hypercube of s t rength d." For 
t = d, these hypercubes correspond to L(n, k, r) spaces with n = s, r = d, 
and conversely. 
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Bose and Bush (7, 8) weakened the condition of s* combinations to N = Xsd 

combinations, to obtain an orthogonal array of s t rength d, size N, index X, 
k constraints , and 5 levels which they define as " a k X N matr ix A, with 
entries from a set 2 of 5 > 2 elements . . . [such tha t ] each d X N submatr ix 
of A contains all possible d X 1 column vectors with the same frequency 
A." For X = 1 it is clear t ha t the column vectors of A comprise an L(n, k, r) 
space, and conversely. 

(d) A configuration. Let v elements be arranged into v + 1 sets 7 \ , . . . , 
Tv+i such t h a t for i ^ j , the number of elements which are in either Tt or 
Tj b u t not in both is k. We may co-ordinatize the sets of the configuration by 
assigning to a set the co-ordinates (ii, . . . , iv), where ij = 1 if the j t h element 
is in the set, and ij = 0 otherwise. If x±, . . . , xv+i are the co-ordinates of 
Tu . . . , Tv+i, respectively, then the xt comprise a subspace of Sv(2), S(2) 
= {0, 1}, satisfying d{xu Xj) = k, for all i ^ j . We will discuss this configura­
tion further in the next example. 

As an illustration, for k = 4, v = 7, consider 

r i = {i, 2} r 4 = {i, 3 , 6 , 7 } r 7 = { 2 , 4 , 6 , 7 } 

T2 = {3,4} T5 = { 1 , 4 , 5 , 7 } T8 = { 1 , 2 , 3 , 4 , 5 , 6 } . 

Tz = {5,6} T6 = { 2 , 3 , 5 , 7 } 

(e) The v, k, X configuration. Consider next the now classic v, k, X configura­
tion defined in Chowla and Ryser (11) as an arrangement of v elements into 
v sets such t h a t every set contains exactly k dist inct elements and such t h a t 
every pair of sets has exactly X elements in common, 0 < X < & < ^ . In 
statistics these configurations are termed symmetrical balanced incomplete 
block designs. For X = 1 and k = n + 1, w > 2 , the configuration reduces 
to a projective plane with n + 1 points per line, and for v = 4m — 1, 
k = 2m — 1, \ = m — 1, it is equivalent to a H a d a m a r d matr ix of order 
N = 4m (20) (these are the ± 1 matrices H satisfying HHT = NI, where H 
is of order N and / is the identi ty matr ix) . For a comprehensive summary of 
results see Ryser (22). Wi th the v, k, X configuration we may associate its 
characterizing v X v incidence matr ix A = [ai:j], where atj = 1 if the j t h 
element is in the ith set, and 0 otherwise. Actually, constructing the incidence 
matr ix is equivalent to co-ordinatizing the sets of the configuration, the i th 
row representing the co-ordinates of the ith set. I t is apparen t t h a t the v 
sets of co-ordinates so obtained comprise v elements of Sv(2), 5(2) = {0, 1}, 
satisfying: 

(i) If s = (0, 0, . . . , 0), and the v elements are X\} . . . , x#, then 
d(xt, s) = k for i = 1, . . . , v. 

(ii) d(xu Xj) = 2(k — X), i ^ j . 
T h a t the metric characterization of v, k, X tends toward the hear t of the 

mat te r is suggested in (ii) by the fact t h a t the value k — X which appears 
in both the v, k, X design and its complementary design (the design obtained 
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by replacing each set by its complement) and plays such a critical role in 
the non-existence theorems, occurs explicitly. 

Also of interest is the fact t h a t the * ' s t rong" converse of the above holds. 
T h a t is, given v + 1 elements sr, / of S*(2) satisfying 

(i') d{%i , s') = k for i = 1, . . . , v 
(ii) dix/, x/) = 2 (ft - X), i j± j , 0 < X < k < v, 

we may construct v elements Xi, . . . , xv satisfying (i) and (ii) and hence 
const i tut ing a v, k, X configuration. Th is m a y be seen as follows. If in the 
j t h components of x / , . . . , x / , s' we replace O's by l ' s and l ' s by O's, we clearly 
obtain an isometric space. Now perform this replacement in the j t h components 
if and only if the j t h component of sf is 1. Then we obtain an isometric space 
with 5 = (0, 0, . . . , 0) as the image of s'. 

Consider again the configuration in (d). Though , a t least on the surface, 
the relation of this configuration to the v, k, X configuration is somewhat 
obscure, by relating both to their metric characterizat ions, it is immediately 
apparen t t h a t for 0 < 2X = k < v, they are essentially equivalent . 

(f) Balanced incomplete block designs. Le t T = {si, . . . , sv}y and consider 
the configuration C = {7 \ , . . . , Th], where the Tt are subsets of T. Then 
the dual configuration consists of the subsets A i, . . . , A v of the set A = { t \ , . . . , 
tb], where tt is in A j if and only if a,j is in TÙ and the complementary configura­
tion consists of the sets Tu . . . , Tb, where Tt denotes the complement of 7\> 

Given the set S(b) of b elements, let Er denote the class of all subsets of 
S(b) containing r elements. Then Er is a subspace of the metric space 
Us(b)- We will show t h a t for 0 < X < r < b, the existence of a balanced 
incomplete block design B I B D (26) with parameters b, v, k, r, X is equivalent 
to having e(Er, r - X - 1) = (r - \)b/(r2 - \b) with r2 - \b > 0. 

T H E O R E M 3.1. If r2 — \b > 0 (X integral and 0 < X < r), then 
(a) e(ET, r — X — 1) < v, where v = (r — \)b/(r2 — \b). 
(b) Equality holds in (a) if and only if there exist v elements xï} . . . , xr in 

Er such that d{xu oc3) = r — X, for all i ^ j . 

Proof. Le t e(Er, r — X — 1) = m. T h e n since X is integral there exist 
X\j . . . , Xrfi i n Er with d{xu Xj) > r — X for all i ^ j . Denote by kt the num­
ber of sets Xj containing the ith. e lement of S(b), i = 1, . . . , b. Compar ing 
total occurrences we obtain 

(1) Yl ki = rm. 

Comparing contr ibut ions to all 

(m\ 

\ 2 / 

set intersections, we obtain 

(2) Z { i l = E N(xt f i xt) = E [r - d(xi} x,)]. 
\4 / Kj i < : A 
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But then d{xu Xj) > r — X implies 

(3) L (*<) < x(") . 

Now from Lemma 1 (§ 4) and (1), (3) follows 

m L - » ( ~ / » ) < j f - E ^ ) < i i . x ^ ) . 

Using r2 — \b > 0, we find from elementary calculations that L < R is 
equivalent to m < y, and L = R if and only ii m = v. Thus conclusion (a) 
is established. Finally, if m = v, from L = M = R and (2) it follows that 

X) [r - d (Xi,Xj)] = X 

and thus d(xu x3) > r — X implies r — d(xt, Xj) = X. Hence d(x*, Xy) = r — X, 
completing the proof of the theorem. 

COROLLARY 1. For 0 < X < r < b, the configuration the dual 
of a BIBD with parameters b, v, k, r, X, where k = rv/b. Conversely, given 
the BIBD and considering its dual configuration as a subspace of Eri one 
obtains e(Er, r — X — 1) = v, r2 — \b > 0, and v = (r — \)b/(r2 — \b). 

Proof. In the proof of the above theorem, from m = v we obtain L = ikf. 
This together with Lemma 1 (§ 4) and (1), gives kt = rv/b = k, for i = 1, . . . , 
b. Thus every element of S(b) occurs in k of the sets Further, note 
that d(xuXj) = r — X for all i ^ j implies that every pair of distinct sets 
intersect in exactly X elements. Thus the first conclusion follows. Conversely, 
given the BIBD and considering its dual configuration as a subspace of ET, 
one obtains e(Er, r — X — 1) > v. Further, from 0 < X < r < b, and the 
well-known conditions rv = bk, \(v — 1) = r(k — 1), it follows that r2 — \b>0 
and v = (r — \)b/(r2 — \b). But then from conclusion (a) of the theorem, 
we have e(Eri r — X — 1) = v. 

Specializing to v, k, X configurations, one obtains the interesting result: 

COROLLARY 2. If v elements are arranged in v' > v sets of k elements each, 
such that every pair of distinct sets has at most X elements in common, where 
X < k2/v is a non-negative integer, then X > k(k — l)/(v — I). If equality holds, 
then v' — v and every pair of distinct sets has exactly X elements in common. 

Thus for 1 < k < v, the arrangement constitutes a v, k, X configuration. (In 
this event, it is interesting to note that from Corollary 1 one also obtains 
directly that each element occurs in exactly k sets.) 

Proof. From conclusion (a) of the theorem we have that if k2 — \v > 0, 
then v < v' < e(Ek, k - X - 1) < (k - \)v/(k2 - \v). But v < {k - \)v/ 
(k2 — \v) is equivalent to X > k{k — l)/(v — 1), and equality hold sin both 
expressions or neither. Finally, apply the proof of (b). 

(m\ 
\ 2 / ' 
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4. Some theorems for metrized Cartesian product spaces. Let E* denote 
a subspace of the metric space Sk(nt), i = 1, . . . , t. For xt = (an, . . . , aik) in 
Eu i = 1, . . . , t, let xix2 . . . xt = irXi = (bi, .. . ,bk), where bj = (a1Jy. .. ,atj), 
j = 1, . . . , k. If irXi = (6i, . . . , bk), irji = (ch . . . , ck), xt and yt in £ , , 
define d(irXi, T^JI) in the usual manner as the number of subscripts j for which 
°j 7* Cj,j = 1, . . . , k. 

Definition 9. T h e metric space 

EixE2x . . . xEt = wEi = {irxùXi Ç Et] 

is termed the direct product of the Et. Note the distinction between the direct 
product irEi and the Cartesian p roduct TrEt. 

From the above definition, it is clear t h a t any biunique mapping from 
ir S (ni) onto S(irni) induces an isometry between irSk(n^ and Sk(irni). For 
convenience we simply write irSk(ni) = Sk(irni). Wi th this unders tanding, 
wEi is a subspace of Sk(irni). Note t h a t the direct product is independent of 
the order of the factors. T h a t is, if i(l), . . . , i(t) is a permuta t ion of 1, 2, . . . , /, 
then TTEJ is isometric to -kEi{j) under the mapping TTXJ —-» TTX^J). Next note 
t h a t if ti < t2 < . . . < tr = t, then wEi{i)XirE^2)X . . . XTE^) is isometric to 
TKE./, where i ( j ) = tj-i + 1, . . . , tj (to = 0). In part icular it follows t h a t 
(EixE2)xEs and E1x(E2xEz) are isometric since each is isometric to EixE2xE^. 
Thus , relative to isometry, the direct product operation is associative and 
commuta t ive . 

T H E O R E M 4 .1 . For xt and yt in Eu 

msLx[d(xu yt)] < d(irxu iryi) < Y.d(xu y-D-

Proof. F rom the definition it is clear t h a t if xT and yr have dist inct j t h 
components , then so do irXi and iry^ Hence d(xr, yr) < d(irxu iryi) and the 
first inequali ty follows. Next suppose -KXt and Tryt have dist inct j t h com­
ponents . Then so do a t least one pair xtJ ytJ and from this it is clear t h a t 
the second inequali ty mus t hold. 

COROLLARY 1. The major and minor diameters A, 5 satisfy 

max(ô(E<)) < ô(7rEi) < A(TTE%) < XA(Et). 

Proof. F rom the definitions and the theorem we have 

ô(Ei) < d(xu yt) < max d(xu yt) < d(irxu Tryt), 

which implies m a x 5 ( E j ) < 8(irEi). Also 

d(wXi,iryi) < Y,d(xuJi) < ! > ( £ * ) 

implies t h a t A (irEi) < Y,&(Ei). 

COROLLARY 2. If Sk(ni) and Sk(n2) are r-orthogonal, then so is Sk(nin2). 
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Proof. Let Lt be an L{nu k, r) space of Slc{n1)) i = 1, 2. Then L = LixL2 

is an L(nin2y k, r) space of Sk(nin2), since 

Ô(L) > max[Ô(Li), Ô(L2)] > * - r, 

and L contains exactly {n\n^)r elements. 

By identifying the element (ai, . . . , a*) with the set {(1, ai), . . . , (&, a*)}» 
we can apply Theorem 3.1 and its first corollary to the metric space Sk(n). We 
then obtain immediately 

THEOREM 4.2. If k > (r — l)n (r integral, 2 < r, n > 1), then 
(a) e(Sk(n), k — r) < v, where v = n[k — (r — l)]/[fe — n(r — 1)]. 
(b) If equality holds in (a) JAere exw^ z; elements %i, . . . , xv in Sk(n) such 

that d(pCij Xj) = k — (r — 1), /or a// i 9e j . In this event, each element of S(n) 
occurs as a jth component of exactly t = [k — (r — l)]/[k — n(r — 1)] of the 
XiS, j = 1, . . . , k. Further, from xu . . . , xv we can construct a BIBD with 
parameters b', v', kf, rr, A' (0 < X' < r' < b'), where b' = kn, v' = v, kf = t, 
r
f = k, Xf = r - 1. 

This BIBD has the special property that its V blocks can be partitioned 
into k pairwise disjoint classes of n blocks each, such that every variety 
occurs in exactly one block from each class. Conversely, given such a BIBD, 
one can construct v elements of Sk(n) with mutual distances exceeding 
k — r, and the elementary conditions on its parameters will imply k > (r — l)n. 

From Cauchy's inequality we obtain 

LEMMA 1. For the real numbers a±, . . . , an, 

where 

( j ) = ai(at - l)/2 

and a = (^a^/n. Further, equality holds if and only if at = a for all i. 

LEMMA 2. Let i(l), . . . , i{t), t < r, be any t distinct integers from among 
1, . . . , k, and let a^j) be in S(n). Then in the L(n, k, r) space, L, there are 
precisely nr~l elements with i(j)th component equal to a^j), j = 1, . . . , t. 

Proof. The proof is evident from the fact that L contains nr elements, 
any two distinct elements agree in at most r — 1 corresponding components, 
and over S(n) every /-tuple can be completed to an r-tuple in exactly nT~t 

ways. 

LEMMA 3. If Sk{n) is r-orthogonal, then Sk~l{n) is (r — 1) -orthogonal. 
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Proof. Let L be an L(n, k, r) space of Sk(n). By Lemma 2 there are nr~l 

elements in L having the same &th component. If their kth components are 
dropped, it is easy to see that the nr~l elements so obtained constitute an 
L(n, k — 1, r — 1) space. 

LEMMA 4. If Sk(n) is r-orthogonal, then so is Sl(n), t < k. 

Proof. This is clear from the fact that if the last k — t components of the 
elements in an L{n, k, r) space are dropped, the resulting elements comprise 
an L(n, t, r) space. 

LEMMA 5. If Sk(n) is r-orthogonal, r > 2, then k < n + r — 1. 

Proof. Let L be an L(n, k, r) space in Sk(n). For a in S(n), by Lemma 2 
there are n elements Xi, . . . , xn in L with first r — 1 components equal to a, 
and an element xn+i distinct from these and having its first r — 2 com­
ponents equal to a. Thus from d{xu x3) > k — r for all i ^ j , it follows that 
n > k — r + 1. 

LEMMA 6. For x and y in the L(n, n + r — 1, r) space, L, d(x, y) < n + 1 
implies d(x, y) = n. 

Proof. Let x = (ai, . . . , ak), y = (blf . . . , bk), k = n + r — 1. Suppose 
d(x, y) < n + 1. Then at = bt for at least r — 2 subscripts t. With no loss 
of generality, suppose at = bu i = 1, . . . , r — 2. Now by Lemma 2 there 
are exactly n2 — 1 elements in L(n, &, r) which are different from x and have 
ith component equal to au i = 1, . . . , r — 2. Let ^ denote the subset 
of these n2 — 1 elements having j th component equal to ajy j = r — 1, . . . , k. 
Then again by Lemma 2, A3 contains precisely n — 1 elements. Also, At C\ Aj 
= (j) for i ^ j , and so ^JAj contains precisely {n — l)(n + 1) = n2 — 1 
elements. Thus every element in L having ith component equal to au i = 1, . . , 
r — 2, has its j th component equal to aj for precisely one value of j , r — 1 
< j < &, and so has distance w from x. In particular, d(x, y) = n. 

LEMMA 7. G^e?z a k X r matrix. A, over afield F, having all its r-rowed minors 
non-singular, we can construct a k X (k — r) matrix with all (k — r)-rowed 
minors non-singular. 

Proof. Let Ai denote the r X r matrix consisting of the first r rows of A, 
and let A2 denote the (k — r) X r matrix consisting of the remaining k — r 
rows, so that 

<-[£]• 
By hypothesis A i is non-singular, so by elementary operations on the columns 
of A we can obtain 
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where / is the r X r identity matrix. Since the elementary operations have 
been performed only on the columns of A, A' also has all r-rowed minors non-
singular. Now using the Laplace expansion, one sees that every minor deter­
minant of A2 occurs as a factor of some r-rowed minor determinant of A', 
and hence is not zero. Again applying the Laplace expansion, one verifies 
that every (k — r) -rowed minor determinant of the (k — r) X k matrix 
[A 2 y I] either equals unity or has the same absolute value as some minor 
determinant of A2' (here / is the (k — r)-rowed identity matrix). Hence 
[AJ, I] has all (k — r)-rowed minors non-singular. Taking the transpose, we 
have the required result. 

THEOREM 4.3. Given a k X r matrix A = [a0] over GF(pm) having all r-rowed 
minors non-singular, we can construct an L(n, k, r) and an L(n, k, k — r) space, 
n = pm. 

Proof. Denote the row vectors of A by «i, . . . , ak. Let L = {^4x}, where x 
ranges over the nr r-place column vectors over GF(pm). Then L is an L(n, k, r) 
space, for suppose Ax, Ay, x 9^ y, have as many as r components the same, 
say i(l)j . . . , i{r). Then the submatrix B of A consisting of the row vectors 
a*(D> • • • J oii(r) satisfies Bx — By. But by hypothesise is non-singular, so x = y 
contradicting our choice of x and y. Hence d(Ax, Ay) > k — r, and L is an 
L(n, k, r) space. Finally, by Lemma 7, from A we can construct a k X (k — r) 
matrix with all r-rowed minors non-singular, and applying the above proof 
we obtain an L(n, k, k — r) space. 

The first part of the above theorem corresponds to that of Bose and Bush 
(7, Theorem 5A, p. 521) with index one. They employ a similar proof. 

LEMMA 8. For n = pm, p a prime, 
(1) Sk(n) is r-orthogonal for k < n -f- 1. 
(2) Sk(n) is 3-orthogonal for k < n + 2 and p = 2. 
(3) Sk(n) is r-orthogonal for k < r + 1. 

Proof. Letting au ... , an-\ denote the non-zero elements of GF(pm), one 
readily verifies that the matrix 

B 
1 0 . . . 0 0 
0 0 . . . 0 1 

where B = [bij] is an (n — 1) X r matrix with btj = at
j, j = 0, . . . , r — 1, 

has all r-rowed minors non-singular, since their determinants all reduce to 
the Vandermonde type. For the special case p = 2, r = 3, we may adjoin 
to A as an (n + 2)th row the vector (0, 1, 0) and again verify that A has 
all 3-rowed minors non-singular. Conclusions (1) and (2) now follow from 
Theorem 4.3 and Lemma 4. Finally, consider (3). For k = r, the result is 
trivial. For k = r + 1, the matrix obtained by adjoining the row vector 
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(1, 1, . . . , 1) to the r X r identity matrix has all r-rowed minors non-singular, 
and (3) follows from Theorem 4.3. 

Conclusions (1) and (2) of the above lemma correspond to the theorem 
of Bush (8, p. 431), who obtains the construction by employing polynomials 
over GF(pm). 

From Lemmas 4 and 8 and Corollary 2 of Theorem 4.1, we obtain 

THEOREM 4.4. If n •= irpiei is the decomposition of n into distinct prime 
powers, then 

(1) Sk(n) is r-orthogonal for k < min(piei + 1). 
(2) S*(n) is S-orthogonal for k < 2m + 2 if mm(pt

ei + 1 ) = 2m + 1. 
(3) Sk(n) is r-orthogonal for arbitrary n whenever k < r + 1. 

From the relation between orthogonal Latin squares and L(n, k, 2) spaces, 
for r = 2 we obtain the theorem proved in Mann's book (18, Theorem 8.8, 
p. 105) (other construction methods may be found in (16, Theorem 12.1)): 

COROLLARY. There exist at least mm(pi6i — 1) orthogonal Latin squares of 
side n = irpie\ 

(It is of interest to note here that in a yet unpublished paper, E. T. Parker 
has, by an elegant construction, succeeded in exceeding the minimum given 
in the above corollary for certain values of n. The author believes this to be 
the first such successful attempt.) 

THEOREM 4.5. Let L be an L(n, k, r) space, r > n — 1, & > r + 2. Then 
r — n — 1, and for every x in Sk(n), d(x, L) < k — r. 

Proof. Let x = (xi, . . . , xk), and applying Lemma 2 with / = r, let 
y = (ai, . . . , ak) be the unique element of L having at = xu i = 1, . . . , r. 
Let y' = (ai, . . . , ar), and in Sr(n) consider the unit closed sphere c(y', 1). 
The sphere contains r(n — 1) elements y±, . . . , yT\n-i) different from yf, and 
by the triangle inequality, d(y/y yf) < 2, i ?± j . Again by Lemma 2, to each 
y I = (ha, . . . , bir) there corresponds a unique element yt in L, yt = (ba, . . . , 
biri uu vt, . . . ,). Now d(y, yt) > k — r and d(y', y/) = 1 imply ut ^ ar+1, 
vt 9^ ar+2. Also, for i ^ j , d(yu yj) > k — r and d(y/, yf) < 2 imply that 
the ordered pairs (ut,Vi) and {uhvf) are distinct. Thus there are r(n — 1) 
distinct ordered pairs {uu vt) for which ut ^ ar+i and vt 9e ar+2> But since 
the total number of such pairs is (n — l)2 , we must have r(n — 1) < (w — l) 2 

or r < n — 1. Hence r = n — 1. 
We now prove the second part of the theorem. If x i — a i for either 

i = r + 1 or r + 2, we are done. So assume xt ^ au i = r + 1, r + 2. But 
then (xr+i, xr+2) must be one of the pairs (uu Vi), and the conclusion follows. 

As an immediate corollary, wre obtain the equivalent of the theorem of 
Bush (8, p. 427): 

COROLLARY 1. If Sk(n) is r-orthogonal, then r > n implies k < r + 1. 
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(Thus there are no Graeco-Latin squares of order 2, no Graeco-Latin cubes 
of order 3, etc.) 

Lemma 5 and the above corollary give 

COROLLARY 2. For 1 < r < k - 1 and k > 2n — 1, Sk(n) is not r-ortho-
gonal. 

THEOREM 4.6. If Sk(n) is r-orthogonal for r > 2 and k = n + r — 1, then 

\ Î - 2 / = 0 m o d ( * - l)f°rt = 2 ,3 , . . . , r . 

Proof. The proof is by induction on r. For r = 2 the theorem is trivial. 
Assume the theorem holds for r — 1, r > 3. Let L be an L(n, k, r) space, and 
let x = (ai, . . . , ak) be in L, & = n + r — 1. By Lemma 2, L contains nr~2 

elements yjy j = 1,. . . , wr-2, with first and second components b\ and 62, res­
pectively, bi 9^ ai, 62 5̂  »2. Also, for every set ii,..., ir_2 of r — 2 distinct inte­
gers from among 3,4, . . . , n + r — 1, there is a unique element y(i\, . . . , ir-2) 
among the y/ s with ifth component equal to a nj)(i (j) = ij),j = 1, . . . , r — 2. 
But then by Lemma 6, the distance of this element from x is n, and so among 
the last n + r — 3 components, y{i\, . . . , ir-2) has r — 1 components equal 
to the corresponding components of x. Hence there are 

distinct sets {j\, . . . , jr-2} associated with the same element 3/(̂ *1, . . . , ir-2). 
Further, since x and y(ii, . . . , ̂ -2) agree in at most r — 1 corresponding 
components, there can be no more than r — 1 such sets associated with 
3/(2*1, . . . , ir-2)- Thus the 

sets are divided into classes of r — 1 sets each, and we must have 

( * + : 2 3 ) - 0 m o d ( r - l ) . 

Applying the induction hypothesis and Lemma 3, we obtain the theorem. 
From t = 3 in the above, one obtains the theorem of Bush (8, p. 430): 

COROLLARY. For n odd, r > 3, an L(n, k, r) space satisfies k < n + r — 2. 

Relative to our previous remarks (§ 3, Example (a)), from the above theorem 
and Lemma 8 it follows that complete sets of orthogonal Latin cubes always 
exist for n a power of 2, and never exist for n odd. However, for n an odd 
prime power > 5, we can always construct a complete set less one. 

THEOREM 4.7. If Sn(n) is 2-orthogonal, then so is Sn+1(n). 
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Proof. Let L be an L(n, n, 2) space in Sn(n), where S(n) = {a^ . . . , an}. 
Denote by Xi, . . . , xn the n elements of L having first component equal to 
OL\ (Lemma 2). Let x / in Sn+1(n) be the element obtained by adjoining at as 
an (n + l)th component to xu i = 1, . . . , n. Let y in L be different from 
the x /s . Then since d(xt, Xj) = n — 1 for all i ^ j , each &;- occurs exactly 
once as a tth component of the x / s for t = 2, . . . , n. Hence d{xu y) > n — 2 
for i = 1, . . . , n implies that there is a unique subscript m for which 
d(xm, y) = n. Let y' in Sn+l{n) be the element obtained by adjoining am as 
an (n + l)th component to y. Now repeat the above process for all y in L 
different from the x/s , and denote by L' the set of n2 elements of Sn+1 in) which 
are thus obtained. By construction it is clear that x / has distance n from 
each of the other elements of L'. Let 3// and yj be any two distinct elements 
of L' different from the x / ' s . If d(yi, y2) = n, then d(yi, y2') > n. If yi and 
y2 have the same first component b ^ ai, let ;y3, . . . , yn denote the remaining 
elements of L with first component b. Then applying the argument used 
above to the yu for each xt there is a unique subscript m for which d(ym, xt) = n. 
Hence, by construction, no two of the y/'s have the same (n + l)th com­
ponent, and so in particular, d(yi, y2) = n. Finally, if yi and y2 have the 
same j th component b, 2 < j < n, let 3/3, . . . , yn~i, xt denote the remaining 
elements of L with jth component b. Again applying the above argument, 
we obtain d(yi, y2) = n. Hence d(x', y') > n for all x', y' in Lr, and so U 
is an L(n, n + 1, 2) space and Sn+1(n) is 2-orthogonal. 

The above theorem is equivalent to saying that every set of n — 2 ortho­
gonal Latin squares of side n may be completed to a full set of n — 1 ortho­
gonal Latin squares. From our remarks following Theorem 4.7, it is interesting 
to note that the corresponding theorem for cubes is false. 

From Lemma 3, Theorem 4.7, the Bruck-Ryser non-existence theorem (10) 
and the relations among orthogonal Latin squares, projective planes, and 
L(n, k, r) spaces, we obtain immediately: 

THEOREM 4.8. If n = 1 or 2 (mod 4) and the square-free part of n is divisible 
by a prime of the form 4& + 3, then Sk(n) is not r-orthogonal for k > n + r — 2, 
r > 2. 

THEOREM 4.9. If Sk(n) is r-orthogonal, then it admits of a partitioning into 
pairwise disjoint, superposable L(n, k, r) spaces. 

Proof. Suppose Sk(n) is r-orthogonal, and let L denote an L(n, k, r) space 
of Sk(n). Let Aly . . . , Ak-r be k — r Latin squares of side n, and denote by 
a(i,j) the permutation t —> at, t = 1, . . . , n, where (<2i, a2j . . . , an) is the ith 
row vector of Aj. Finally, let co = co(z"i, . . . , ik-T) denote the mapping of 
Sk(n) into itself generated by performing the permutation a(ij,j) upon the 
j th components of the elements of Sk(n), j = 1, . . . , k — r. It is clear that 
co is indeed a motion (Definition 4), and so under co, L is carried into a super-
posable L(n, k, r) space, L(ii, . . . , ik-T). Further, from Lemma 2 with t = r, 
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i t is easy to see t h a t if (iu . . . , ik_T) and (ji, . . . , jk-r) are distinct as vectors, 
t hen L(ii, . . . , ik-r) and L(jh . . . , jk_r) are disjoint. Finally, since L(iif . . . , 
ik-T) consists of nr elements, and there are nk~r distinct vectors (ii,... , ik-T), 
it is clear t h a t these spaces exhaust Sk(n). 

T H E O R E M 4.10. For r > 1, L(n, k, r) is a metric basis for Sk(n). 

Proof. The theorem is trivial for k = r, so assume k > r. Let x and y be 
a rb i t ra ry in Sk(n)y x = (ai, . . . , a*), y = (&i> • • •>#*) , x ^ ?• T h e theorem 
will be proved if it can be shown t h a t (C): there exists z in L(n, k, r) such 
t h a t d(x, z) < d(y, z). Proof is by induction on r. Consider first L(n, k, 2). 
Suppose, say, a± 9e b\. Let Zi, . . . , zn be the n elements of L(n, k, 2) with first 
component equal to a,\. If for some zu d(y, zt) = k, we are done since d(x, zt) 
< k — 1. So suppose d(y, zt) < k for i = 1, . . . , n. Then since L(n, k, 2) 
has minor diameter > k — 1, by Lemma 5 we must have & = n + 1, and 
hence d(yy zt) = k — 1, i = 1, . . . , n. Now let zt be the unique element 
among the Zi (Lemma 2) with second component equal to a2. Then 
d(y, zt) = k — 1 and d(x, zt) < & — 2. This completes the proof for r = 2. 
Now suppose t h a t (C) holds for r — 1 (r > 3) and all k, and consider L(n , &, r). 
If d(x, 3/) < r, then by Lemma 2, we can always find a z in L(w, &, r) such 
t h a t <i(x, z) < d(y, z). So suppose d(x, y) > r > 3. Select the w7--1 elements 
in L(w, k, r) with ^th component equal to ak. Denote these elements by 
Zi, . . . , zt, t = nr~l, and let Zi , . . . , z( be the corresponding elements of 
Sk~l(n) obtained by dropping the &th components of the zt. By the proof of 
Lemma 3, the z / ' s const i tute an L(n, k — 1, r — 1) space, and by the induction 
hypothesis there exists z/ in L(nf k — 1, r — 1) with d{x'', z{) < d(yf, z/), 
where x' = (ax, . . . , afc_i), y' = (61, . . . , bk-i). Bu t tZ(x', z / ) = d{x, zt), and 
d ( y , 2 / ) < d(y, Zt). Hence d(x, zt) < d(y, zt). 

5. C o n c l u d i n g r e m a r k s . The investigation of the metric properties of 
Sk(n) and, in general, of power-sets has, of course, only its beginnings in the 
present paper. One of the initial problems is the discovery of further signifi­
can t concepts (such as "ex ten t" appears to be, for example), since many of 
the classical metric concepts apparent ly will have limited value, and topo­
logical concepts become completely trivial for the finite spaces. High on the 
list of desiderata would be a development of the basic theory to the point 
where the elements, say, of Sk(n) could be t reated abstract ly, making it 
unnecessary to deal with their internal s t ructure each t ime a new result is 
under scrutiny. For it is precisely a t the point where internal combinatorial 
s t ructure becomes too complex for the mind to grasp as a total i ty t h a t our 
efforts fail. 

A line of a t t ack which has been neglected in the present paper and which 
may prove to be fruitful, is an examination of the distance matrix. One may 
readily obtain an indication of the manner in which some of the properties 
of Sk(n) are reflected in its distance matr ix A by going through the definitions 

https://doi.org/10.4153/CJM-1960-014-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-014-0


174 ROBERT SILVERMAN 

and theorems and rephrasing them in terms of A. Of course, one of the critical 
questions in this regard is whether these and other significant propert ies of A 
lend themselves to matr ic methods and theory. Also of value may be an 
investigation of the behaviour of subspaces of Sk(n) under motions of Sk(n). 
(Any circle of radius 1, C = C(a, 1) = {x; d(x, a) = 1}, is a metric basis 
for Sk(n). Considering such a circle, it is not difficult to show t h a t the group 
of motions of Sk(n) is the semi-direct product of A by B, where A is the direct 
product of k symmetr ic groups on n letters, and B is the symmetr ic group on k 
letters.) For example, wha t can be said about the group of motions which 
carries an L(n, k, r) space into itself? 

In addit ion to these metric spaces being objects of interest in their own 
right, the results thus far obtained offer hope t h a t this type of approach may 
provide a useful common orientation for a wide class of combinatorial prob­
lems. 
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Addendum. Since the submission of this paper, there have been several 
developments in the field. T h e work of Bose, Parker , and Shr ikhande has 
annihilated the Euler conjecture. I t is now known t h a t pairs of orthogonal 
Lat in squares (L(n, 4, 2) spaces) exist for all orders except n = 2, 6. I t will 
be interesting to see to wha t extent their construction techniques can be 
extended to general L(n, k, r) spaces. Remaining related problems are in a 
s ta te of flux. Also, in a recent conversation the au thor learned from Professor 
Bose t h a t the metric space 5* (2) has been studied in connection with error 
correcting codes. (The metric space 5* (2) is, of course, isometric with the 
set of vertices of a ^-dimensional Euclidean hypercube of uni t side, where the 
distance between vertices is taken as the square of the Euclidean distance. Also, 
Sk(n) can be essentially embedded in Skn(2) in a trivial manner.) T h e elements 
are termed &-place messages and the metric is termed the H a m m i n g dis­
tance. I t is impor tan t in the theory of symmetr ic b inary codes to determine 
the /-extent of Sk(2). Discussion of this problem and addit ional bibliography 
can be found in (28), along with an excellent summary of the s ta tus of the 
existence problem for H a d a m a r d matrices. One of the main results in the 
above paper is t h a t if we consider (4/ — 1)-place messages having all mutua l 
distances greater than or equal to 2/, then the existence of the maximum 
number , 4/, of such messages is equivalent to the existence of a symmetr ic 
B I B D with parameters v = b = 4/ - 1, r = k = 2t - 1, A = t - 1 (or 
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equivalently, to the existence of a Hadamard matrix of order 42). This result 
may also be obtained as a corollary to Theorem 4.2 of the present paper 
by taking n = 2, k = 4d — 1 and r = 2t. The design derived from the resolv­
able BIBD of the theorem by deleting one variety and all blocks not con­
taining it, is precisely the symmetric BIBD obtained by Bose and Shrikhande. 
More generally, for n = 2, Theorem 4.2 may be rephrased: If we consider 
ra-place messages having all mutual distances greater than or equal to dy then 
for d + 1 < m < 2d, the maximum number of such messages is less than or 
equal to 2d/(2d — m), and equality is attained if and only if there exists a 
BIBD with parameters 

m 7 , m — d 2m — 3d 
b = m, v = — , r = m — d, k = — , A = . 

2d — m 2d — m 2 
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