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Sharpness Results and Knapp’s Homogeneity
Argument
Alex Iosevich and Guozhen Lu

Abstract. We prove that the L2 restriction theorem, and Lp → Lp ′ , 1
p + 1

p ′ = 1, boundedness of the surface

averages imply certain geometric restrictions on the underlying hypersurface. We deduce that these bounds
imply that a certain number of principal curvatures do not vanish.

1 Introduction

Let S be a smooth compact hypersurface in Rn. Let

FS(ξ) =

∫
S

ei〈x,ξ〉 dσ(x)(1)

denote the Fourier transform of the surface measure carried by S.
Let R f = f̂ |S, the restriction operator. It is well known (see [6], [2], [4]) that if

|FS(ξ)| ≤ C(1 + |ξ|)−r
, r > 0,(2)

then

‖R f ‖2 ≤ C p‖ f ‖p, f ∈ S(Rn), for p ≤ p0 =
2(r + 1)

r + 2
,(3)

where S(Rn) is the standard Schwartz class.
However, it is not in general known whether this result is sharp. More precisely, it is

natural to ask the following.

Question A Does the estimate (3) imply the estimate (2)?

Let

T f (x, xn) =

∫
f
(

x − y, xn − Φ(y)
)
ψ(y) dy,(4)

where x, y ∈ Rn−1, ψ is a smooth cutoff function, Φ is smooth, Φ(0, . . . , 0) = 0, and
�Φ(0, . . . , 0) = (0, . . . , 0).
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It is well known (see [5]) that if the estimate (2) holds, then

‖T f ‖p ′ ≤ C p‖ f ‖p, where
1

p
−

1

2
≤

r

2(r + 1)
,(5)

where p ′ denotes the conjugate exponent of p.
The key estimate here is

‖T f ‖2(r+1) ≤ C‖ f ‖ 2(r+1)
2r+1

;(6)

the rest follows by interpolation. It is then natural to ask the following.

Question B Does the estimate (5) imply the estimate (2)?

The purpose of this paper is to answer questions A and B affirmatively in the case of
the optimal exponents. We shall employ a multiparameter version of Knapp’s homogeneity
argument. (See e.g. [1] for a similar argument).

More precisely, we will show that if the the estimate (3) holds with p = 2(n+1)
n+3 , then the

hypersurface has everywhere non-vanishing Gaussian curvature. Similarly, we will show
that if the estimate (5) holds with p = n+1

n , then the hypersurface has non-vanishing Gaus-
sian curvature.

We remark here, on the other hand, that non-vanishing Gaussian curvature implies that
the estimate (2) holds with r = n−1

2 (see e.g. [4]). Thus Question A is answered affirma-
tively in the case r = n−1

2 . Since the estimate (2) with r = n−1
2 implies the estimate (3)

with p = 2(n+1)
n+3 , Theorem 2 below shows that the optimal decay of the Fourier transform

(i.e., r = n−1
2 ) implies that the hypersurface has non-vanishing Gaussian curvature.

We will also see that if a hypersurface has ≤ k non-vanishing principal curvatures at
each point, then the exponent p in the estimate (3) can never exceed 2n+k−2

6 . Consequently,

the estimate (3) with p ≥ 2n+k−2
6 implies that at least k principal curvatures are non-zero

at each point. (See Theorem 3 below). Similarly, we will show that if the estimate (5) holds
with p ≥ 2n+k+4

2n+k+1 , then at least k principal curvatures are non-zero at each point.
The sharpness of the estimate (3) is known in some cases. For example, if the hypersur-

face has non-vanishing Gaussian curvature, Knapp’s homogeneity argument can be used
to show that the exponent p = 2(n+1)

n+3 is the best possible. Indeed, non-vanishing Gaussian
curvature implies that the hypersurface has contact of order two with its tangent plane at
every point. Let fδ(x) = g(δ−1x, δ−2xn), where x = (x1, . . . , xn−1), and g is the character-
istic function of the rectangle with sides (1, . . . , 1,C), C large, with the long side normal to
the hypersurface.

It is not hard to check that ‖ fδ‖p ≈ δ(1− 1
p )(n+1), whereas ‖R fδ‖2 ≈ δ

n−1
2 . The compari-

son yields p ≤ 2(n+1)
n+3 .

It should be noted that the above example does not verify even a special case of ques-
tion A. For example, the above argument does not prove that if the estimate (3) holds with
p = 2(n+1)

n+3 , then the estimate (2) holds with r = n−1
2 . We will show (see Theorem 2 below)

that this is indeed the case.
The sharpness of the estimate (5) can also be verified in some cases. By testing T against

a characteristic function of a small ball it is not hard to check that if T is bounded from
Lp(Rn) to Lq(Rn), then ( 1

p ,
1
q ) must be contained in the triangle with the endpoints (0, 0),
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(1, 1), and ( n
n+1 ,

1
n+1 ). However, as before this does not prove that if the estimate (5) holds

with p = n+1
n , then the estimate (2) holds with r = n−1

2 . We will show (see Theorem 5
below) that this is indeed the case.

2 Statement of Results

Theorem 1 Let S = {(x, xn) ∈ Rn : xn = Φ(x)}, where x = (x1, . . . , xn−1), Φ is a
smooth function which does not vanish on a set of positive measure, Φ(0, . . . , 0) = 0, and
�Φ(0, . . . , 0) = (0, . . . , 0). Suppose that the estimate (3) holds. Let G be any continuous
function which does not vanish on a set of positive measure satisfying G(0, . . . , 0) = 0. Then

(
|G(δ)|

)r
≥ CR(δ)r+1|δ1δ2 · · · δn−1|,(7)

where R(δ) = |{x ∈ [−1, 1]n−1 : |Φ(δ1x1, . . . , δn−1xn−1)| ≤ C|G(δ)|}|.

Remark If G(δ) is chosen to beΦ(δ), andΦ is increasing in each variable separately, Theo-
rem 1 says that the estimate (3) implies that

(
|Φ(δ)|

)r
≥ Cδ1δ2 · · · δn−1. The same estimate

would be true, of course, if we just assume that R(δ) is bounded below, which is a much
weaker assumption. To prove Theorem 2, Theorem 3, Theorem 5, and Theorem 6 below
we shall use Theorem 1 with

G(δ) = sup
{x∈[−1,1]n−1}

|Φ(x1δ1, . . . , xn−1δn−1)|.(8)

Theorem 2 Suppose that the estimate (3) holds with p = 2(n+1)
n+3 . Then the hypersurface S has

everywhere non-vanishing Gaussian curvature.

Theorem 3 Suppose that the estimate (3) holds with p ≥ 2n+k−2
6 . Then the hypersurface S

has at least k non-vanishing principal curvatures at each point.

Remark The conclusion of Theorem 3 can be motivated as follows. If the hypersurface
has exactly k non-vanishing principal curvatures at a point, then after perhaps applying a
rotation we can write it as a graph of the function x2

1 + · · · + x2
k + A(x), where A is a higher

order remainder. It is not hard to believe that the best possible estimate (2) is obtained
if A(x) = |x ′ ′|3, where x ′ ′ = (xk+1, . . . , xn−1). This gives us the estimate (2) with r =
k
2 + n−1−k

3 . The conclusion of Theorem 3 is the consequence of the fact that 2(r+1)
r+2 =

2n+k−2
6 .

Theorem 4 Let δy = (δ1 y1, . . . , δn−1 yn−1) and gδ(s) =
∣∣∣{y ∈ supp(ψ) :∣∣s− |Φ(δy)/Φ(δ)|

∣∣ ≤ C}
∣∣∣. Suppose that the estimate (5) holds. Then for |δ| sufficiently

small,

(
|Φ(δ)|

)r
≥ CPδ‖gδ‖Lp ′ (ds).(9)

Theorem 5 Suppose that the estimate (5) holds with r = n−1
2 . Let S = {(x, xn) : x ∈

supp(ψ), xn = Φ(x)}. Then S has everywhere non-vanishing Gaussian curvature.
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Theorem 6 Suppose that the estimate (5) holds with p ≥ 2n+k+4
2n+k+1 . Then the hypersurface has

at least k non-vanishing principal curvatures at each point.

(See the remark after Theorem 3 for the motivation of the conclusion of Theorem 6).

3 Proof of Theorem 1

Let δx = (δ1x1, . . . , δn−1xn−1), and δ−1x = (δ−1
1 x1, . . . , δ

−1
n−1xn−1). Let f̂δ(x, xn) =

g(δ−1x, xn
|G(δ)| ), where g is the characteristic function of a rectangle with sides of length

(1, 1, . . . , 1,C). Let Pδ = |δ1δ2 · · · δn−1|. It is not hard to see that

‖ fδ‖p ≈ (Pδ|G(δ)|)(1−1/p).(10)

On the other hand,

‖R fδ‖
2
2 =

∫ ∣∣∣∣g
(
δ−1x,

Φ(x)

|G(δ)|

)∣∣∣∣
2

dx = Pδ

∫ ∣∣∣∣g
(

x,
Φ(δx)

|G(δ)|

)∣∣∣∣
2

dx ≈ CPδR(δ),(11)

where R(δ) is defined in the statement of the theorem.
Comparing the estimates (10) and (11) we see that (3) can hold only if

(|G(δ)|)r ≥ CPδR
r+1(δ),(12)

for |δ| sufficiently small. This completes the proof of Theorem 1.

4 Proof of Theorem 2

Let G(δ) = sup{x∈[−1,1]n−1} |Φ(δ1x1, . . . , δn−1xn−1)|. It follows that R(δ) ≡ 1, and so

(
G(δ)
)r
≥ CPδ,(13)

where r = n−1
2 by assumption.

After perhaps applying a rotation, we can use Taylor’s theorem to write

Φ(x) = a1x2
1 + a2x2

2 + · · · + akx2
k + A(x),(14)

where A(x) is a higher order remainder term, and k ≤ n − 1. If k = n − 1, then in a
sufficiently small neighborhood of the origin the determinant of the Hessian matrix of Φ
never vanishes, which would verify the claim of Theorem 2. We shall henceforth assume
that k < n− 1.

It is not hard to check that

(
G(δ)
) n−1

2 ≤ (a1δ
2
1 + · · · + akδ

2
k + C|δ|3)

n−1
2 ,(15)

|δ| small.
We must show that the estimate (13) cannot hold if k < n − 1. It suffices to show that

the right hand side of (15) is not bounded below by CPδ . We may assume that A(x) is not
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identically 0, and that A(x) depends on xn−1, for otherwise the contradiction is immediate.

Let δ j = δ
3
2
n−1. If the right hand side were bounded below by CPδ , we could use the fact

that A(x) is a higher order remainder term to force an inequality

|δn−1|
3(n−1)

2 ≥ C|δn−1|
3n−4

2 ,(16)

δn−1 small, which is not true. This shows that the estimate (8) cannot hold unless k = n−1.
This implies that there exists a small neighborhood of the origin where S has non-vanishing
Gaussian curvature. This completes the proof.

5 Proof of Theorem 3

We must show that if Φ is as in the estimate (14) above, with k denoting the number of
non-vanishing principal curvatures, then the estimate

(
G(δ)
)r
≥ CPδ(17)

can only hold if r ≤ k
2 + n−1−k

3 = 2n+k−2
6 .

Let δ = (δ ′, δ ′′), where δ ′ = (δ1, . . . , δk), and δ ′′ = (δk+1, . . . , δn−1).
Let δ j = |δ ′ ′|

3
2 . The estimate (16) cannot hold if the inequality

|δ ′ ′|3r ≥ C|δ ′′|(
3k
2 +(n−1−k))(18)

is not satisfied. However, the estimate (17) can only hold if r ≤ k
2 + n−1−k

3 = 2n+k−2
6 . This

completes the proof.

6 Proof of Theorem 4

Let δ−1 y = (δ−1
1 y1, . . . , δ

−1
n−1 yn−1). Let f denote the characteristic function of the rect-

angle with sides of length (1, 1, . . . , 1,C), C large. Let τδ f (x, xn) = f (δx, |Φ(δ)|xn), and
τ−1
δ f (x, xn) = f (δ−1x, |Φ(δ)|−1xn). Let fδ(x, xn) = τ−1

δ f (x, xn). Let

Tδ f (x, xn) =

∫
f
(
x − y, xn − Φ(y)

)
ψ(δ−1 y) dy.(19)

After making a change of variables we see that

Tδ fδ(x, xn) = Pδτ
−1
δ T∗δ f (x, xn),(20)

where

T∗δ f (x, xn) =

∫
f
(
x − y, xn − Φ(δy)/|Φ(δ)|

)
ψ(y) dy.(21)

It is not hard to see that

‖ fδ‖p ≈ P
1
p

δ

(
|Φ(δ)|

) 1
p .(22)
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Also,

‖Tδ fδ‖p ′ = ‖Pδτ
−1
δ T∗δ f ‖p ′ = PδP

1
p ′

δ

(
|Φ(δ)|

) 1
p ′ ‖T∗δ f ‖p ′ ≈ PδP

1
p ′

δ

(
|Φ(δ)|

) 1
p ′ ‖gδ‖Lp ′ (ds),

(23)

where gδ is defined above.
Comparing the estimates (22) and (23) yields the assertion of the theorem.

7 Proofs of Theorem 5 and Theorem 6

Let G(δ) = supx∈[−1,1]n−1 |Φ(δx)|. The proof of Theorem 4 shows that if the estimate (5)
holds then

(
G(δ)
)r
≥ CPδ.(24)

The proofs of Theorem 5 and Theorem 6 now follow in the same way as the proofs of
Theorem 2 and Theorem 3.
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