$$
\begin{aligned}
& { }^{5} \mathrm{~A} \times{ }_{5} 3 \mathrm{~B}=17.9287 \times \cdot 06274=1 \cdot 124846 \\
& \cdot 05758 \\
& { }_{51} \mathrm{~A}-{ }_{51} \mathrm{AB}+{ }^{5} \mathrm{~A} \times \times_{51} \boldsymbol{1 0}=1 \cdot 182426
\end{aligned}
$$

Annual premium $=\frac{1 \cdot 182426}{1+_{{ }_{4} \mid} \mathrm{AB}}=\frac{1 \cdot 182426}{4 \cdot 588}=25772$ for $£ 100$ per annum. Premium in one sum, $£ 118.4 s .10 \mathrm{~d}$., or $£ 25.15 s .5 d$. annually.

## FORMULA FOR AN APPROXIMATE VALUE OF ANNUITIES AT SIMPLE INTEREST.

To the Editor of the Assurance Magazine.
Sir,--In looking over some old letters, I found one, dated some years back, from Professor De Morgan, in which he gives the following elegant approximation to the value of $\frac{1}{1+r}+\frac{1}{1+2 r}+\frac{1}{1+3 r}+, \& \mathrm{e} \cdot \frac{1}{1+n r}$.

He says the best approximation is

$$
\begin{aligned}
& \frac{2 \cdot 3}{r} \cdot \sin 81 \\
& \cdot \log \cdot \frac{1+n r}{1+r}+\frac{1}{2}\left(\frac{1}{1+r}+\frac{1}{1+n r}\right)+\frac{r}{12}\left(\frac{1}{\overline{1+\left.r\right|^{2}}}-\frac{1}{\left.\overline{1+n r}\right|^{2}}\right) \\
&-\frac{r^{3}}{120}\left(\frac{1}{\overline{1+r}}-\frac{1}{\overline{1+n r}}\right) ;
\end{aligned}
$$

error only in the sixth decimal when $r=1$, or interest at 10 per cent.,

$$
\frac{1}{1 \cdot 1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 3}+\ldots \ldots \cdot \frac{1}{2 \cdot 0}
$$

Approximation . . . . . 6.687715
Truth . . . . . 6.687714
I am, Sir,
Your obedient Servant,
PETER HARDY.
London Assurance, March 10, 1855.

