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FREE FINITARY ALGEBRAS
ON COMPACTLY GENERATED SPACES

BRIAN J, DAY

An explicit colimit formula is used to describe the free k-space

algebra on a given k-space for any k-enriched finitary theory.

A question, raised and solved affirmatively by several authors,

has been that of whether the free k-space group on a weakly

hausdorff k-space is again weakly hausdorff and admits a closed

embedding of the generators. In the present article both these

features of finitary k-space algebra are combined to answer

analogous questions regarding the free finitary k-space algebras

in general, and the weakly hausdorff separation axiom.

Relationships with other problems in k-space theory are

described.

Introduction

The main motivation for the present article is LaMartin's definitive

account [6] on the foundations of k-space group theory. There exist many

accounts of the theory of k-spaces in the literature (both published and

otherwise) and, as there is no real point in enumerating them, we shall

simply assume some familiarity with LaMartin's exposition [6, Part 1] and

proceed forthwith. As we proceed, several additional needed properties of

k-spaces shall be recorded.

Now we turn to k-space algebra. As regards finitary k-space

universal algebra, for a given k-enriched theory, there exists a variety

of ways of presenting the free k-space algebra as a colimit (or direct
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limit) built on the given k-space. The presentation chosen by LaMartin,

for the case of free fe-space groups, is derived directly from the co-

product presentation of the free fc-space monoid on a given fe-space (see

also Ordman [7]). However, for the general case considered in this

article, a sometimes-better alternative seems to be the coend presentation

of the free algebra (see, for example, Borceux and Day [2]). The

computational advantages of this alternative will become apparent. Thus

ve shall assume some familiarity with the first section of [2] in order not

to make the present text too voluminous.

There will be several categories of importance in the present study.

The first is the cartesian closed category K of fc-spaces (equals all

topological quotients of locally compact hausdorff spaces) and continuous

maps. The second is the full reflective cartesian closed subcategory WK

of K comprising the weakly hausdorff, or t^ , ^-spaces. For notational

convenience, we shall term such a space a wk-space. Thirdly, we shall

make use of the quasi-topos 0. (see Penon [S]) of all Spanier's [9] quasi-

topological spaces (here called 17-spaces) and "continuous" maps (called

q-maps). The particular property we use is that QJQ is cartesian closed

for all objects Q £ Q. (originally due to Booth [7]). The category Q.

contains K as a full reflective subcategory with the reflector preserving

finite products and certain other pullbacks (as discussed in Day [3]).

Finally, we refer (but briefly) to the cartesian closed category WQ. of

"separated" <?-spaces (called wq-spaces).

In addition to the main aim of this article, namely to generalise some

of LaMartin's results, we can naturally make some deductions about free

topological k -algebras over a k -theory. These results are just

corollaries to the separation properties of free k -algebras, and they

will follow the results of [6, p. 21] analogously. In conclusion, some

questions concerning colimits are raised.

1. Separation properties

The idea of a wk-space has an analogue in Q_ . Let Q denote the

fe-space {0, l} where 0 is open and 1 is not open (this is a

topological quotient of the unit interval). Also, let t : 1 •*• Q denoted

insertion of 1 . A <?-map m : X -*• ¥ is called closed if there exists a
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pullback diagram in Q. of the following form:

X E—*Y

For example, let Y be a fe-space regarded as a cj-space and let X be a

topologically closed subspace of Y . Then X a Y is a closed q-map

since the natural embedding of K into Q. preserves limits, hence pull-

backs. In fact the inclusion of K in Q. has a left adjoint called

"realisation" and here denoted by R .

PROPOSITION 1.1. If m : X -* Y is a closed q-map then

Rm : RX •*• RY is closed in K , hence in Q. .

Proof. Let f : C •*• Y be any "admissible" map defining Y . Form

the double pullback:

f X C

Ix
>• Q

This shows that f X is closed in C , as required. //

Call a q-space X a wq-space if the diagonal map X -*• X x X is a

closed q-map. Proposition 1.1 thus asserts that if X is a uq-space

then RX is a wk-space, since R preserves finite products (see Day

[3]). Thus one obtains a full reflective embedding of ItIK in WQ_ .

An indexing functor X : $ -»• Q, will be called monofiltered if $ is

filtered and each of the transition maps in the diagram X , is a

monomorphism in Q. .

LEMMA 1.2. In Q. , a monofiltered colimit of wq-spaces is a

wq-space.

Proof. Each diagonal 6 = 6(4)) : X($) •*• X($) x x(<f>) gives a pull-

back
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in Q. .

that

Since each transition map h is a monomorphism in Q. , one has

commutes. Thus one obtains a colimit

in QJQ . But QJQ is cartesian closed, so filtered colimits commute

with finite products. This means that

C o l l m 6colim • colim

is a pullback diagram in Q. . Since Q. is cartesian closed, one has

colim(x(<f>) x X($)) ^ colim Z((J)) x colim X($) in ^ , whence colim X(<t>)

is a wq-space. //

LEMMA 1.3. Jn K , a monofilteved aolimit of wk-spaaes is a

wk-space.

Proof. Form the colimit in Q. then apply R to the result, using

Proposition 1.1 to show that 6 : colim X($) •* colim X($) x colim X(ty) is

closed in K . //

THEOREM 1.4. A k-spaae X is a wk-space if and only if it is a

mono filtered colimit (in K ) of compact hausdorff spaces.

Proof. Any wk-space is the (monofiltered) colimit in K. of its

compact hausdorff subspaces; this observation appears in Hofmann [5]. The

converse is by Lemma 1.3. //

Similarly, one obtains:

PROPOSITION 1.5. If a monofiltered system u(^) : X(<t>) •
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<(> € <t , of closed maps in K has the property that

x«)\
Q

commutes for all transition maps h , then colim u(<J>) is a closed map in

K . II

2. Separation theorem

Throughout this section all categories, functors, Kan extensions, and

so forth, are assumed to be k-enriched. The internal-hom of K will be

denoted by [-, -] .

To each fe-space X one can assign the free k-space group GX on

X . Then we have

r [n, X] GX

in K , where n € F,tn (the category of discrete finite sets). By use of

this coend formula, let us first reprove a part of [6, Theorem 2.12] in a

manner which will lend itself to generalisation.

PROPOSITION 2.1. If X is a wk-space then so is GX .

Proof. As we are dealing with a fe-space group it suffices to show

that the identity element e € GX is a closed singleton. In order to do

this, first observe that the following diagram commutes by the definition

of a coend:

Fln(n,m)x[m,X]xGn •-+ [n,X]y-Gn

[m,X]xQn

(•)

q i,X]*Gn

where the unlabelled arrows are canonical and q is the coend quotient map

with nth component q . Let SuA.(n, m) c F-tn(n, m) denote the

surjections n to HI , and consider the following diagram derived from
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[m,X]xx{m,n) «- q^(e)

n

[m,X]xSuJi(n,m)y.Gn

J n

Y [m,X]xGm « • GX

m Q

Now r x 1 i s a closed re t rac t ion since X i s a u?c-space and Gn i s

d i sc re t e for a l l n € F-Ln . Also

O , X] x X(m, n) c [m, X] x SUA(M, m) x Gn

is a closed subset, for all m, n € F-tw , where #(m, n) = p~ (e) for e

the identity of Gm , and

p : SuA(n, m) x Gn •* Gm

i s the canonical map. But, by factoring each map n •*• X into a surjection

n •*• m followed by an inject ion m -*• X , i t i s seen that

1 T^
f o r a l l n € FAJI . This i m p l i e s t h a t q (e) i s c losed in L [n, X] * Gn ,

n

as required. //

Given a fc-space X , we consider the left Kan extension of

[-, X] : F-in p -»• K along the Yoneda embedding:

Y : Finop •+ [Fin, (UK) .

The value Lan(F) of this extension at F € [Fin, WK] is given by the

coend formula (see

Lan(F)U) = j [n, X] * Fn

computed in K . By the fe-Yoneda-lemma, we have a natural isomorphism:

https://doi.org/10.1017/S0004972700007644 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007644


F r e e f i n i t a r y a l g e b r a s 2 8 3

Lan(F)(m) = [n, m] x Fn S Fm .

Thus one essent ia l ly considers those endofunctors on K for which:

(i) the canonical transformation | [n, X] x Fn -* FX in an

isomorphism; and

(ii) for each n € F<Ln , Fn is a

Such an endofunctor on K will be called wk-finitary.

THEOREM 2.2 (Separation theorem). Given a wk-finitary endofunctor

F on K , its value FX at a wk-space X is again a wk-space.

Proof. It is easily seen that the canonical map FX •*• GFX is an

injection (see Lemma 3-1), so it suffices to show that the identity

element in GFX is closed. However, on combining the properties of G

and coends with the fe-enriched Yoneda lemma, we have the following

isomorphism:

GFX

rm

s 1 Gm
rm

3: Gm

3 I Gm

[n, X] x

, f [n,
rrmi

x f1"

H
AT] x

[V;
.nm

- . * ]

, AT] >

Pw x O J

a « - J
\nx + . . .

xft x .

by t

< [m, Fn]

nm, X} * ̂ x ... * FnJJ

by the ^-enriched Yoneda lemma applied twice,

S , X] x

By Proposition 2 . 1 , we have that GFn i s a ufe-space i f Fn i s a

wfc-space, for a l l f i n i t e n . Now the remainder of the proof that

[n, X] x <jf>j i s a y£_space i f # i s a ufc-space i s analogous to the
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proof of Proposition 2.1. Simply replace On by GFn , Gm by GFm ,

and observe that the new K(m, n) is closed in the space SuA(n, m) x GFn

since the identity element is closed in the uk-space GFm . //

Now call a monad (T, y, n) on K wk-finitary if this is so of its

functor part T . For example, any monad on K generated by a finitary

wfe-theory is ufe-finitary (see [2] for the notion of a finitary theory in a

closed category).

COROLLARY 2.3. Let (T, y, n) be a wk-finitary monad on K . Then

the free algebra TX on a wk-spaae X is a wk-spaae.

3. Embedding theorem

A pointed endofunator {T, n) on K (terminology of Kelly) is a

natural transformation r\ : 1 -*• T . We call it finitary if T is, and we

call it proper if r\ : n -*• Tn is an injection for all n 6 Tin .

LEMMA 3.1. A finitary pointed endofunator (T, r\) on K is proper

if and only if n is a monomorphism.

f«
Proof. The colimit [n, X] x Tn , computed in K , is preserved by

the faithful underlying-set functor K •*• SeX , so it suffices to consider

X ^colim n, as the filted colimit of all its finite subsets. By well-

known properties of filtered colimits in SeX , we infer

X] x Tn 3? TX

colim Tn, •>— colim I \n,n,\t-Tn

where the lower isomorphism is by the Yoneda lemma. //

A proper monad (T, y, r\) on K is called \-proper if, for all

injections u : m •*• n in fin , the diagram
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Tm > Tu -* Tn

x(n)

commutes in K. . It is easily deduced that if (T, u, n) is finitary and

X-proper on K. then, for all injections u : X •*• Y in K , the diagram

colim Tm

•I "
TX>-

Lm Tm

"I
x(n)

colim Tu
a

Tu

colim Tn
I a

r
•TY

x(n)

commutes in SeX , hence in K .

THEOREM 3.2 (Embedding theorem). Let {T, y, n) be a \-proper and

wk-finitary monad on K . Then ny : X -*• TX is a closed subspace

embedding when X is a wk-space.

Proof. Let X - colim C(<Ji) , C(<J>) c X and C(())) compact hausdorff

for all ((>€*. Each unit

[n, Tn <* TC(<f>)

is a closed morphism in K (Lemma 3.1 and Theorem 2.2). Moreover

colim n(<J>) is closed (Proposition 1.5). But

colim
(n

[n, Tn
^ tn

colim Tn

IIand the result follows.

The inclusion WK c—• K has a finite-product-preserving left adjoint

which is here denoted by H . On applying H to the expression

J In, X] x Fn in K one obtains J [n, computed in K by

Theorem 2.2. In this way, one can assign to each fe-finitary pointed endo-

functor (T, T\) on K. , a wfc-finitary pointed endofunctor on K . if the

result is proper (that is, n : n •*• HTn is an injection for all finite

n ) and X is a wfe-space then, from commutativity of
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X • j [n,X]*Tn
n

x

•1
+ Hr\
HX • I [n,X]*HTn

J" In,
and Theorem 3.2, we conclude that r\ is a subspace embedding whenever

Hr\y is such.

Let [T, n) again denote a wfc-finitary pointed endofunctor on K .

For each fe-space X and a € Ts , s € f-in , let W(a) c rjf denote the

image of i = i(o) , defined by commutativity of

|

[s,X]xi

The following follows from Theorem 2.2.

PROPOSITION 3.3. If C is a compact hausdorff space then W(o) is

a closed subspace of TC . II

4. Concluding remarks

REMARK 4.1. Let Top denote the category of all topological spaces

and continuous maps, and let t : f-Ln •*• T be a finitary K-theory (in

the sense of [2]). Let us call a finite-product-preserving functor from T

to Top a topological t-algebra. Then we have

t* -H [t, 1] : [I, Top] -> |Eai°P, Top| .

-jVThus, if t*(X) = * *c
 T(*«» *-) : T ~* ToP i s a topological algebra

then it *is the free such on AT € Top . Here x denotes the nth power

of X in Top and X x Y denotes the cartesian product in Top .

c

Now suppose each T(tn, tl) is a k -space (see [6, Proposition

2.2]), and let X be a k -space. Then
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I f1 *o T(tn, tl) % f [n, X] x T(tn, tl)

is a k -space. Also, for each m € F-cn , one has

, j [n, X) x T(tn, t l ) | ^ j [n, AT] * [m, T(tn, tl)]

-J"/1 by iterated use of the fc-Yoneda lemma,

x T(tw, tlf

x T{tn, tm) .

Thus [n, Af] x T(tn, tl) in K is the free topological t-algebra

{k -algebra) on the k -space X . //

REMARK 4.2. One knows that coproducts exist in the ((-category of

(T, u, n)-algebras if T is fc-finitary. Also, the forgetful functor into

K creates filtered colimits. TJhus, by Theorem l.U, a coproduct of

uk-algebras is a ufe-algebra if each finite summand is a ufc-algebra which

is canonically injected into the coproduct. In [6] this is shown to be

true for fe-space groups and it is obviously true if the K-category of

(T, u, n)-algebras is additive.
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