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FREE FINITARY ALGEBRAS
ON COMPACTLY GENERATED SPACES

Brian J. Day

An explicit colimit formula is used to describe the free k-space
algebra on a given Kk-space for any k-enriched finitary theory.
A question, raised and solved affirmatively by several authors,
has been that of whether the free k-space group on a weakly
hausdorff Kk-space is again weakly hausdorff and admits a closed
embedding of the generators. In the present article both these
features of finitary k-space algebra are combined to answer
analogous questions regarding the free finitary k-space algebras
in general, and the weakly hausdorff separation axiom.
Relationships with other problems in k-space theory are

described.

Introduction

The main motivation for the present article is LlaMartin's definitive
account [6] on the foundations of k-~space group theory. There exist many
accounts of the theory of k-spaces in the literature (both published and
otherwise) and, as there is no real point in enumerating them, we shall
simply assume some familiarity with LaMartin's exposition [6, Part 1] and
proceed forthwith. As we proceed, several additional needed properties of

k-spaces shall be recorded.

Now we turn to k-space algebra. As regards finitary k-space
universal algebra, for a given k-enriched theory, there exists a variety

of ways of presenting the free Kk-space algebra as a colimit (or direct
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limit) built on the given k-space. The presentation chosen by LaMartin,
for the case of free Kk-space groups, is derived directly from the co-
product presentation of the free k-space monoid on a given k-space (see
also Ordman [7]). However, for the general case considered in this
article, a sometimes-better alternative seems to be the coend presentation
of the free algebra (see, for example, Borceux and Day [2]). The
computational advantages of this alternative will become apparent. Thus
we shall assume some familiarity with the first section of [2] in order not

to make the present text too voluminous.

There will be several categories of importance in the present study.
The first is the cartesian closed category K of k-spaces (equals all
topological quotients of locally compact hausdorff spaces) and continuous
maps. The second is the full reflective cartesian closed subcategory WK
of K comprising the weakly hausdorff, or t2 , k-spaces. TFor notational
convenience, we shall term such a space a wk-space. Thirdly, we shall
make use of the quasi-topos @ (see Penon [8]) of all Spanier's [9] quasi-
topological spaces (here called ¢g-spaces) and "continuous" maps (called
q-maps). The particular property we use is that 0/ is cartesian closed
for all objects @ € @ (originally due to Booth [!]). The category @
contains K as a full reflective subcategory with the reflector preserving
finite products and certain other pullbacks {as discussed in Day [3]).
Finally, we refer (but briefly) to the cartesian closed category WQ of

"separated" ¢-spaces (called wqg-spaces).

In addition to the main aim of this article, namely to generalise some
of LaMartin's results, we can naturally make some deductions about free

topological km—algebras over a kw—theory. These results are just
corollaries to the separation properties of free km-algebras, and they

will follow the results of [6, p. 21] analogously. In conclusion, some

questions concerning colimits are raised.

1. Separation properties

The idea of a wk-space has an analogue in Q . Let & denote the
k-space {0, 1} where O is open and 1 is not open (this is a
topological quotient of the unit interval). Also, let ¢ : 1 + § denoted

insertion of 1 . A g-map m : X -+ Y 1is called elosed if there exists a
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pullback diagram in @ of the following form:

._m_-;_Y

X
l x(m)
1 t

.——-)Q

For example, let Y Dbe a k-space regarded as a g-space and let X bYe a
topologically closed subspace of Y . Then X c Y is a closed g-map
since the natural embedding of K into @ preserves limits, hence pull-
backs. In fact the inclusion of K in @ has a left adjoint called

"realisation" and here denoted by R .

PROPOSITION 1.1. If m: X+ Y <4s a closed q-map then
Rn : RX + RY 4<s closed in K , hence in Q .

Proof. Let f : C > Y %be any "admissible" map defining Y . Form
the double pullback:

This shows that fFlX is closed in (C , as required. //

Call a g-space X a wg-space if the diagonal map X + X X X is a
closed ¢-map. Proposition 1.1 thus asserts that if X 1is a wgqg-space
then RX is a wk-space, since R preserves finite products (see Day

[3]). Thus one obtains a full reflective embedding of WK in WQ .

An indexing functor X : & » Q will be called monofiltered if ¢ is
filtered and each of the transition maps in the diagram X , is a

monomorphism in Q .

LEMMA 1.2, In Q , a monofiltered colimit of wq-spaces is a
wq-space. '

Proof. Each diagonal & = 8{¢) : X(¢) + X{¢) x X(¢) gives a pull-
back
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8

X(¢) — x(¢)xx(¢)
lxm
1——— @
in Q. Since each transition map A is a monomorphism in @ , one has
that
hxh

x(9)xx(¢) ———— x(¢')xx(¢')

x(8) M)
Q

commutes. Thus one obtains a colimit

colim¢(X(¢) x x(¢)) > @

in Q/@ . But Q/Q is cartesian closed, so filtered colimits commute

with finite products. This means that

colim X(¢) colim & » colim(X(¢)xx(¢))
1 t -q
is a pullback diagram in @ . Since @ is cartesian closed, one has
colim(X(¢) x X(¢)) = colim X(¢) X colim X{¢) in Q , whence colim X(¢)
is a wqg-space. //

LEMMA 1.3. In K, a monofiltered colimit of wk-spaces is a

wk-space.

Proof. Form the colimit in Q +then apply R to the result, using
Proposition 1.1 to show that & : colim X(¢) + colim X(¢) X colim X(¢) is
closed in K . //

THEOREM 1.4. A k-space X is a wk-space if and only if it is a
monofiltered colimit (in K ) of compact hausdorff spaces.

Proof. Any wk-space is the (monofiltered) colimit in K of its
compact hausdorff subspaces; this observation appears in Hofmann [5]. The

converse is by Lemma 1.3. !/
Similarly, one obtains:

PROPOSITION 1.5. If a monofiltered system u(¢) : X{(¢) + ¥Y(¢) ,
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¢ €, of closed mape in K has the property that

¥(¢) — s ¥(¢")

x(¢)\ /w')
Q

commutes for all transition mape h , then colim u(9) is a closed map in

K. //

2. Separation theorem

Throughout this section all categories, functors, Kan extensions, and
so forth, are assumed to be k-enriched. The internal-hom of K will be
denoted by [-, -] .

To each k-space X one can assign the free k-space group GX on

X . Then we have

r[n, X] x on —=» ox

in K , where n € Fin (the category of discrete finite sets). By use of
this coend formula, let us first reprove a part of [6, Theorem 2.12] in a

manner which will lend itself to generalisation.
PROPOSITION 2.1. If X is a wk-space then so is GX .

Proof. As we are dealing with a k-space group it suffices to show
that the identity element e € GX 1is a closed singleton. In order to do
this, first observe that the following diagram commutes by the definition

of a coend:

Y Fin(n,m)x{m,X]x6n ———— [n,X]1xCn
m

(*) 9,

n
Y [m,X)xen ~—d s I [n,X]x0n
m

where the unlabelled arrows are canonical and g is the coend quotient map

with nth component ¢, . Let Sun(n, m) < Fin(n, m) denote the

surjections 7 to m , and consider the following diagram derived from

(*):
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¥ [m,X]xK(m,n) = g7 (e)
m
n n
r X1
Y (m,x1xSur(n ,m)xGn — s [n,X]xCn
m
r (1o, a,
Y [m,X1xGm 2 > GX

m
Now r, X 1 1is a closed retraction since X is a wk-space and Gn 1is

discrete for all »n € Fin . Also

[m, X} x K(m, n) < [m, X] x Sun(n, m) x Gn

is a closed subset, for all m, n € Fin , where K(m, n) = p;i(e) for e
the identity of Gm , and

Prp Sur(n, m) x Gn -~ Gm

is the canonical map. But, by factoring each map 7n + X into a surjection

n +m followed by an injection m > X , it is seen that

(rn x 1) [g (m, X] x K(m, n)| = q;l(e)

for all 7 € Fin , This implies that q-l(e) is closed in y [n, X] x Gn,
n

as required. //
Given a Kk-space X , we consider the left Kan extension of

[-, X] : Fin®® > K along the Yoneda embedding:

Y : Fin®P > (Fin, WK] .

The value Lan(F) of this extension at F € [Fin, WK] is given by the
coend formula (see [4]):

Lan(F)(X) = Jn [n, X] x Fn

computed in K . By the k-Yoneda-lemma, we have a natural isomorphism:
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Lan(F)(m) = In (n, m] x Fn = Fm .

Thus one essentially considers those endofunctors on K for which:

(i) the canonical transformation Jﬂ [n, X] x Fn > FX in an
isomorphism; and
(ii) for each n € Fin , Fn is a wk-cpace.
Such an endofunctor on K will be called wk-finitary.

THEOREM 2.2 (Separation theorem). Given a wk-finitary endofunctor

F on K, its value FX at a wk-space X s again a uwk-space.

Proof. It is easily seen that the canonical map FX > GFX 1is an
injection (see Lemma 3.1), so it suffices to show that the identity
element in GFX 1is closed. However, on combining the properties of G

and coends with the k-enriched Yoneda lemma, we have the following

isomorphism:
n
GFX = GU [n, X] x Fn]
m n
gj Enj [n,X]XF‘n:'XGm
m ml ] . nm
gJ GmXU [”1’XJXF”1;X”‘XU [nm,X]anmJ
m nl...nm
sj Gm x ([nl+... nm,x]xmlx...xmm)
m n
gj C#nXJ ([s X1 % Pn X ... % Fn)
by the k-enriched Yoneda lemma applied twice,
m 143
= ["onx [ tn, 11 x (m, £

n
= J (n, X] x GFn .

By Proposition 2.1, we have that GFn 1is a wk-space if M is a

wk-space, for all finite n . Now the remainder of the proof that

n
I [n, X] x GFn is a wk-space if X is a wk-space is analogous to the
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proof of Proposition 2.1. Simply replace G by G , Gm by GFm ,
and observe that the new X(m, n) is closed in the space Sut(n, m) x GFn

since the identity element is closed in the wk-space GFm . //

Now call a monad (T, u, n) on K wk-finitary if this is so of its
functor part T . For example, any monad on K generated by a finitary
wk-theory is wk-finitary (see [?] for the notion of a finitary theory in a

closed category).

COROLLARY 2.3. rLet (T, u,n) be a wk-finitary monad on K . Then
the free algebra TX on a wk-space X 18 a wk-space.

3. Embedding theorem

A pointed endofunctor (T, n) on K (terminology of Kelly) is a
natural transformation n : 1 + 7 . We call it finitary if T is, and we

call it proper if n, : 7+ Tn is an injection for all n € Fin .

LEMMA 3.1. A4 finitary pointed endofunctor (T, n) on K <g proper

if and only if n is a monomorphism.

n
Proof. The colimit J {n, X] x T™n , computed in K , is preserved by

the faithful underlying-set functor K - Set , so it suffices to consider

X =2 colim n as the filted colimit of all its finite subsets. By well-

¢

known properties of filtered colimits in Set , we infer

n

n
X:X>—>J [n, X] x T =~ TX

an injection from

n
colimn, — J [n,colim nd)]XTn

¢
I IHZ
~ n
colim Tn¢ +——— colim I [n,nq)] xTn
where the lower isomorphism is by the Yoneda lemma. //

A proper monad (7, u, n) on K is called Yx-proper if, for all

injections u : m +n in Fin , the diagram
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Tm >———————————* ™
x(r\ /n)

commutes in K . It is easily deduced that if (T, u, n) 1is finitary and

x-proper on K then, for all injections u : X+ Y in K , the diagram

colim Tua
colim Tm -+ colim Tn
a a
ml lm
TX Tu - TY
x(N ()
Q

commutes in Set , hence in K .

THEOREM 3.2 (Fmbedding theorem). Let (T, u, n) be a X-proper and

wk-finitary monad on K. Then n, : X + TX is a closed subspace

X
embedding when X 1is a wk-space.

Proof. Let X = colim C(¢) , C(¢) € X and C(¢) compact hausdorff
for all ¢ € & . Each unit

‘m
n(e) : C(6) +J [n, C()] x T = 7C(¢)

is a closed morphism in K (Lemma 3.1 and Theorem 2.2). Moreover

colim n(¢) is closed (Proposition 1.5). But

n ~ n
colim j (n, C(8)] x Tn —=—»J [n, colim C(8)] X T

and the result follows. //

The inclusion WK & K has a finite-product-preserving left adjoint
which is here denoted by H . On applying H to the expression
n n
J [n, X] x Fn in K one obtains J [n, HX) x HFn computed in K by
Theorem 2.2. In this way, one can assign to each Xk-finitary pointed endo-
functor (T, n) on K, a wk—finitary pointed endofunctor on K ., If the

result is proper (that is, nn :n+ HMn is an injection for all finite

n ) and X is a wk-space then, from commutativity of
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n

x —X | [, x)xm
zul
an
HX ———— J’" [n,X]XHTn

and Theorem 3.2, we conclude that nX is a subspace embedding whenever

Hn is such.

X

Let (T, n) again denote a wk-finitary pointed endofunctor on K .
For each k-space X and O € Ts , s € Fin , let W(0) © TX denote the

image of % = 2(0) , defined by commutativity of

(s,0] — L r (n,X1xTn

ZIII Iqs
1xg

[s,X]X) ——————— [s,X]xTs
The following follows from Theorem 2.2.

PROPOSITION 3.3. If C <48 a compact hausdorff space then W(c) 1is
a closed subspace of TC . //

4. Concluding remarks
REMARK 4.1. Let Top denote the category of all topological spaces

and continuous maps, and let ¢ : Fin®? > T bea finitary K-theory (in
the sense of [2]). Let us call a finite-product-preserving functor from T

to Top a topological t-algebra. Then we have

t* — (¢, 1] : [T, Topl = |Fin°P, Top| .

Thus, if t*(X) = [n x* %, T(tn, t-) : T > Top 1is a topological algebra

then it ‘is the free such on X € Top . Here Xn denotes the nth power

of X in Top and X x, Y denotes the cartesian product in Top .

Now suppose each T(tn, t1) is a km-space (see (6, Proposition

2.2])), and let X be a km—space. Then
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4

n
Jn b & x, T(tn, t1) = I (n, X] x T(tn, t1)

is a kw—space. Also, for each m € Fin , one has

n
E%, In [(n, X1 x T(tn, tl{] o~ I [n, X] x [m, T(tn, t1)]

by iterated use of the Kk-Yoneda lemma,

n
gj V& x, T(tn, )™

7
gj b x, T(tn, tm) .

Thus In [n, X] x T(tn, t1) in K is the free topological t-algebra

[kw-algebra) on the kw-space X . //

REMARK 4.2. One knows that coproducts exist in the K-category of
(T, v, n)-algebras if T is k-finitary. Also, the forgetful functor into

K creates filtered colimits. Thus, by Theorem 1.4, a coproduct of

wk-algebras is a wk-algebra if each finite summand is a wk-algebra which

is canonically injected into the coproduct. In [6] this is shown to be

true for k-space groups and it is obviously true if the K-category of

(T,

€1

{23

£3]

(4]

M, N)-algebras is additive.

References

P.1. Booth, "The exponential law of maps I", Proe. London Math. Soc.

(3) 20 (1970), 179-192.

Francis Borceux and Brian Day, "Universal algebra in a closed

category”, J. Pure Appl. Algebra 16 (1980), 133-1L47.

Brian Day, "A reflection theorem for closed categories", J. Pure Appl.

B.J.

Algebra 2 (1972), 1-11.

Day and G.M. Kelly, "Enriched functor categories", Reports of the
Midwest Category Seminar III, 178-191 (Lecture Notes in
Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York,
1969).

https://doi.org/10.1017/50004972700007644 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007644

288

£5]

[61

71

[8]

[91

Brian J. Day

Kar! Heinrich Hofmann, "Category theoretical methods in topological
algebra", Categorical topology, 345-403 (Proc. Conf. Mannheim,
1975. Lecture Notes in Mathematics, 540. Springer-Verlag,
Berlin, Heidelberg, New York, 1976).

W.F. LaMartin, "On the foundations of k-group theory", Dissertationes

Math. (Rozprawy Mat.) 146 (1977).

Edward T. Ordman, "Free k-groups and free topological groups",
General Topology Appl. 5 (1975), 205-219.

Jacques Penon, "Sur les quasi-topos", Cahiers Topologie Géom.
Différentielle 18 (1977), 181-218.

E. Spanier, "Quasi-topologies", Duke Math. J. 30 (1963), 1-1k.

School of Mathematics and Physics,

Macquarie University,
North Ryde,
New South Waies 2113,

Australia.

https://doi.org/10.1017/50004972700007644 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007644

