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DEGREE DISTRIBUTIONS IN RECURSIVE TREES WITH FITNESSES
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Abstract

We study a general model of recursive trees where vertices are equipped with inde-
pendent weights and at each time-step a vertex is sampled with probability proportional
to its fitness function, which is a function of its weight and degree, and connects to
� new-coming vertices. Under a certain technical assumption, applying the theory of
Crump–Mode–Jagers branching processes, we derive formulas for the limiting distribu-
tions of the proportion of vertices with a given degree and weight, and proportion of
edges with endpoint having a certain weight. As an application of this theorem, we rig-
orously prove observations of Bianconi related to the evolving Cayley tree (Phys. Rev.
E 66, paper no. 036116, 2002). We also study the process in depth when the techni-
cal condition can fail in the particular case when the fitness function is affine, a model
we call ‘generalised preferential attachment with fitness’. We show that this model can
exhibit condensation, where a positive proportion of edges accumulates around vertices
with maximal weight, or, more drastically, can have a degenerate limiting degree distri-
bution, where the entire proportion of edges accumulates around these vertices. Finally,
we prove stochastic convergence for the degree distribution under a different assumption
of a strong law of large numbers for the partition function associated with the process.
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1. Introduction

Recursive trees are rooted labelled trees that are increasing; that is, starting at a distin-
guished root vertex labelled 0, nodes are labelled in increasing order away from the root.
Recursive trees generated using stochastic processes have attracted widespread study, moti-
vated by, for example, their applications to the evolution of languages [29], the analysis of
algorithms [25], and the study of complex networks (see, for example, [38, Chapter 8.1]).
Other applications include modelling the spread of epidemics, modelling pyramid schemes,
and constructing family trees of ancient manuscripts (e.g. [15, p. 14]).

A common framework for randomly generating recursive trees is to have vertices arrive one
at a time and each connect to an existing vertex in the tree, selected according to some probabil-
ity distribution. In the uniform recursive tree, introduced by Na and Rapoport in [28], existing
vertices are chosen uniformly at random, whilst the well-known random ordered recursive tree,
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408 T. IYER

introduced by Prodinger and Urbanek in [32], may be interpreted as having existing vertices
chosen with probability proportional to their degree. The latter model has been studied and
rediscovered in various guises: under the names nonuniform recursive trees by Szymański in
[36], random plane-oriented recursive trees in [24, 26], random heap-ordered recursive trees
in [10], and scale-free trees in [6, 7, 35]. Random ordered recursive trees, or plane-oriented
recursive trees, are so named because the process stopped after n vertices arrive is distributed
like a tree chosen at random from the set of rooted labelled trees on n vertices embedded in the
plane where descendants of a node are ordered from left to right. However, as first observed by
Albert and Barabási in [2] and studied in a mathematically precise way in [7, 27], these trees,
and more generally graphs evolving according to a similar mechanism, possess many inter-
esting, non-trivial properties of real-world networks. These properties include having a power
law degree distribution with exponent between 2 and 3 and a diameter that scales logarithmi-
cally in the number of vertices. The latter may be interpreted as a ‘small-world’ phenomenon:
although the size of the network is large, the diameter of the network remains relatively small.
In this context, the fact that vertices are chosen according to their degree may be interpreted as
the network showing ‘preference’ for vertices of high degree; hence the model is often called
preferential attachment. This model has been generalised in a number of ways, to encompass
the cases where vertices are chosen according to a super-linear function of their degree [31]
and a sub-linear function of their degree [13], or indeed any positive function of the degree
[33]. In [20], this model is generalised to possibly non-negative functions of the degree and is
referred to as generalised preferential attachment.

In applications, it is often interesting to add weights to vertices as a measure of the intrin-
sic ‘fitness’ of the node the vertex represents. In the Bianconi–Barabási model, or preferential
attachment with multiplicative fitness, introduced in [5] and studied in a mathematically pre-
cise way in [3, 8, 11, 12, 14], vertices are equipped with independent, identically distributed
(i.i.d.) weights and connect to previous vertices with probability proportional to the product
of their weight and their degree. Interestingly, as observed in [5] and confirmed rigorously
in [8, 12, 14], there is a critical condition on the weight distribution under which this model
undergoes a phase transition, resulting in a Bose–Einstein condensation: in the limit, a positive
fraction of vertices accumulate around vertices of maximum weight. In a similar model known
as preferential attachment with additive fitness, introduced in [16] and studied mathematically
in [3, 23, 34], vertices connect to previous vertices with probability proportional to the sum
of their degree (or degree minus one) and their weight. A number of other interesting pref-
erential attachment models with fitness have been studied, including a model of preferential
attachment with both additive and multiplicative weights [16], a related continuous-time model
which incorporates ageing of vertices [18], and discrete-time models with co-existing additive
and multiplicative attachment rules [1, 22].

Adding weights also allows for a generalisation of the uniform recursive tree called the
weighted recursive tree, where now vertices connect to previous vertices with probability pro-
portional to their weight. This model was introduced in [9] for specific types of weights and
in [19] in full generality. It was also introduced independently by Janson in the case that all
weights are one except at the root, motivated by applications to infinite-colour Pólya urns [21].
In [34], Sénizergues showed that a preferential attachment tree with additive fitness with deter-
ministic weights is equal in distribution to an associated weighted random recursive tree with
random weights, an interesting link between the two classes of models.

Motivated by applications to invasive percolation models in physics, Bianconi [4] intro-
duced a similar model of growing Cayley trees. In this model, vertices are equipped with
independent weights and are either active or inactive. At each time-step an active vertex is
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chosen with probability proportional to its weight, produces � new vertices with weights of
their own, and then becomes inactive. Bianconi observed that in this model, the distribution
of weights of active vertices converges to a Fermi–Dirac distribution, in contrast to the Bose
distribution that emerges in the Bianconi–Barabási model.

1.1. Notation

Generally in this paper we set N0 := N∪ {0} and R+ := [0, ∞). We assume that R+ is
equipped with the usual Borel sigma-algebra, and μ will denote a fixed probability measure on
R+. Also, in general in this paper, W refers to a generic μ-distributed random variable. Finally,
we generally refer to an element of the Borel sigma-field as a measurable set. Given such a set
A, we denote by 1A(x) the indicator function associated with the set, so that 1A(x) = 1 if x ∈ A
and 0 otherwise. Moreover, if 1A(x) is a random variable on a probability space (�, F, P), we
often omit the dependence on x ∈ �, and simply write 1A.

1.2. Description of model

The goal of this paper is to present a unified model that encompasses most of the models
described in the introduction above. In order to define the model, we first require a probability
measure μ supported on R+ and a fitness function, which is a function f : N0 ×R+ →R+.
We consider evolving sequences of weighted oriented trees T := (Tt)t∈N0

; these are trees with
directed edges, where vertices have real-valued weights assigned to them. The model also has
an additional parameter � ∈N. We start with an initial tree T0 consisting of a single vertex 0
with weight W0 sampled from μ. To ensure that the evolution of the model is well-defined, for
brevity, we assume f (0, W0) > 0 almost surely. Then we define Tt+1 recursively as follows:

(i) Sample a vertex j from Tt with probability

f (deg+(j, Tt)/�, Wj)

Zt
,

where deg+(j, Tt) denotes the out-degree of the vertex j in the oriented tree Tt, and
Zt := ∑�t

j=0 f (deg+(j, Tt)/�, Wj) is the partition function associated with the process.

(ii) Introduce � new vertices t + 1, t + 2, . . . , t + � with weights Wt+1, Wt+2, . . . , Wt+�

sampled independently from μ and the directed edges (j, t + 1), (j, t + 2), . . . , (j, t + �)
oriented towards the newly arriving vertices. We say that j is the parent of the
new-coming vertices.

Note that, since � new vertices are connected to a parent at each time-step, for any vertex i
in the tree, � divides the out-degree of i. Moreover, the evolution of the out-degree of vertex i
with weight Wi is determined by the values (f (j, Wi))j∈N0 . In general, when the distribution μ,
fitness function f , and � are specified, we refer to this model as a (μ, f , �)-recursive tree with
independent fitnesses, often abbreviated as a ‘(μ, f , �)-RIF tree’ for brevity. Here ‘independent
fitnesses’ refers to the fact that the fitness associated with a given vertex does not depend on
the weights of its neighbours, in contrast to, for example, the models of dynamical simplicial
complexes studied in [17].

Remark 1.1. If we adopt the convention that the process terminates when no vertex can be
chosen in the next step, the assumption that f (0, W0) > 0 almost surely may be dropped in
many places in this paper, if we condition on the event that the number of vertices in the tree
tends to infinity as t → ∞.
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Remark 1.2. In this model, the law of the sequence (f (k, W))k∈N0 is more important than the
function f. It is possible, for example, to define this model so that (f (k, W))k∈N0 is any law

on R
N0+ depending on W, even if one cannot write f explicitly, and as long as the sequences

associated with different vertices are independent. For example, the sequence could be any
stochastic process indexed by the non-negative integers, depending on an initial source of
randomness W.

1.3. Quantities of interest studied in this paper

In this section, we will introduce the main quantities we will be interested in studying in
this paper, along with some important definitions. Note that the definitions we introduce in this
section will depend on the underlying parameters of the tree, μ, f , and �.

In this paper we will generally be concerned with the limiting behaviour of the following
quantities:

1. Given a Borel set B ⊆R+, the quantity Nk(t, B) denotes the number of vertices v in the
tree Tt with out-degree k� and weight Wv ∈ B; that is,

Nk(t, B) :=
∑

v∈Tt : deg+ (v,Tt)=k�

1B(Wv). (1)

2. Given a Borel set B ⊆R+, the quantity �(t, B) denotes the number of directed edges
(v, v′) in the tree Tt such that Wv ∈ B; that is,

�(t, B) :=
∑

(v,v′)∈Tt

1B(Wv). (2)

Now, reasoning informally and non-rigorously for a moment, suppose that W takes finitely
many values. In addition, suppose that for all t ≥ t′, where one considers t′ to be a ‘large’
constant, we have Zt = αt, and for all k ∈N0 we have Nk(t, {w}) =E[Nk(t, {w})] = �t · nk({w})
for some value nk({w}). The latter assumptions are motivated by the intuition that the respective
quantities obey strong laws of large numbers. Then, for t ≥ t′ and k ≥ 1, we have

�nk({w}) =E[E[Nk(t + 1, {w}) − Nk(t, {w})|Tt]]

= P(vertex of out-degree k and weight w chosen)

− P(vertex of out-degree k − 1 and weight w chosen)

= Nk−1(t, {w}) · f (k − 1, w)

Zt
− Nk(t, {w}) · f (k, w)

Zt

= �nk−1({w}) · f (k − 1, w)

α
− �nk({w}) · f (k, w)

α
.

Meanwhile, for k = 0 we have

�n0({w}) =E[E[N0(t + 1, {w}) − N0(t, {w})|Tt]]

= P(newly arriving vertex with weight w)

− P(vertex of out-degree 0 and weight w chosen)

= �μ({w}) − N0(t, {w}) · f (0, w)

Zt

= �μ({w}) − �n0({w}) · f (0, w)

α
.
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Solving the recursion from the above two displays, for all k ∈N0 we have

nk({w}) = μ({w}) · α

f (k, w) + α

k−1∏
i=0

f (i, w)

f (i, w) + α

=E

[
α

f (k, W) + α

k−1∏
i=0

f (i, W)

f (i, W) + α
1{w}(W)

]
.

It is therefore reasonable to expect that the limit of Nk(t,B)
�t belongs to a one-parameter family

pλ
k (·) indexed by a positive real number λ such that

pλ
k (B) := E

[
λ

f (k, W) + λ

k−1∏
i=0

f (i, W)

f (i, W) + λ
1B(W)

]
, (3)

where the parameter λ can be recovered by the asymptotics of the partition function, so that
the limit satisfies λ = α > 0. It is important to note that in this paper, it may be the case that
the limit of Nk(t,B)

�t belongs to this family, but we do not necessarily have a strong law for
the asymptotics of the partition function. For example, this is the case if the conditions of
Theorem 2.1 are satisfied, but not those of Theorem 2.4.

Now, note that for every t ∈N0, by computing the number of directed edges (v, v′) in Tt

with Wv ∈ B in two different ways, we have

�(t, B) =
t∑

k=0

�kNk(t, B). (4)

When we normalise by �t, if, for k ∈N0 the limit of Nk(t,B)
�t is pα

k (B), by Fatou’s lemma we get

lim inf
t→∞

�(t, B)

�t
≥

∞∑
k=0

�kpα
k (B), (5)

which motivates the definition of the following family indexed by a positive real number λ:

m(λ, B) :=
∞∑

k=0

�kpλ
k (B) = � ·E

[ ∞∑
n=1

n−1∏
i=0

f (i, W)

f (i, W) + λ
1B(W)

]
. (6)

Now, if the limit exists, since we add � edges at each time-step, the limit of the measures
�(t, ·)/�t is a probability measure. However, if m(α, ·) is not a probability distribution, we can
show that there exists a measurable set B such that

lim sup
t→∞

�(t, B)

�t
> m(λ, B).

In this case, the inequality in (5) is strict, so that, after normalising by �t, the operations of
taking limits in k and in t in (4) do not commute. Thus, the set B has acquired additional
‘mass’ in the limit. We call this phenomenon condensation, motivated by the term used in the
network science literature (e.g. [5]). In Section 3.2 we derive an example of this in the case
that f (i, W) = g(W)i + h(W), where g is bounded. This generalises the case f (i, W) = (i + 1)W
which has already been studied in [8, 12, 14] under the name preferential attachment with
multiplicative fitness.
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1.4. Open problems

The discussion in Section 1.3 shows that much of the analysis of this model depends on a
parameter α. We conjecture that, in general, this parameter makes m(λ, ·) ‘as close as possible’
to a probability distribution, so that

α = inf {λ > 0 : m(λ,R+) ≤ 1} if m(λ,R+) < ∞ for some λ > 0, (7)

where we follow the convention that inf ∅= ∞.

Conjecture 1.1. Let T be a (μ, f , �)-RIF tree, with α as defined in (7). Then, for each k ∈N0
and measurable set B, almost surely, we have

Nk(t, B)

�t
t→∞−−−→
⎧⎨
⎩

pα
k (B) if α < ∞,

μ(B)1{0}(k) otherwise.

The conjectured limit in the case when α = ∞ is obtained by taking the limit of pα
k (B) as

α → ∞. This limit is 0 unless k = 0, in which case it is μ(B).

Remark 1.3. Conjecture 1.1 has a natural analogue in the setting, as in Remark 1.2, that the
sequence (f (k, W))k∈N0 is instead given by a general stochastic process indexed by N0, depend-
ing on an initial source of randomness W. In this case, the expectation in (3) is instead taken
over evolution over all sequences, with initial W ∈ B. The techniques used in this paper trans-
late without modification to this case, the only important feature being that the sequences
corresponding to different vertices are independent of each other.

Remark 1.4. It is important to note the order of the quantifiers in Conjecture 1.1: given
a sequence (μj)j∈N of random measures on R+, we have that, for any measurable set B,
limj→∞ μj(B) = μ∞(B) almost surely. It is not necessarily the case, however, that, almost
surely, for all measurable sets B, we have limj→∞ μj(B) = μ∞(B). However, it is the case
that almost surely, μj → μ∞ in the weak topology. This uses the fact that there exists a count-
able family of measurable sets such that any open set in R+ may be expressed as a disjoint,
countable union of elements of this family. For example, one may take the set of all dyadic
intervals, with endpoints of the form j · 2−n, (j + 1) · 2−n, where j, n ∈N0, and then apply the
portmanteau theorem. This approach is also used in this paper in the proof of Corollary 3.1.

The discussion in Section 1.3 described the quantity α as being closely related to the
partition function. As a result, we also conjecture the following.

Conjecture 1.2. Let T be a (μ, f , �)-RIF tree, with α as defined in (7). Then we have

Zt

t
t→∞−−−→ α, almost surely.

1.5. Important technical conditions and overview of results

In this paper, we make partial progress towards the proofs of Conjecture 1.1 and
Conjecture 1.2. We will refer to the following technical conditions:

C1 With m(λ, ·) as defined in (6), there exists some λ > 0 such that

1 < m(λ,R+) < ∞. (8)

Under this condition, by monotonicity, there exists a unique α > 0 such that
m(α,R+) = 1; we call this the Malthusian parameter associated with the process.
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C2 There exists α > 0 such that

lim
t→∞

Zt

t
= α.

Note that in (7) and in Conditions C1 and C2 we use the same symbol α. This these coincide
in general. In general, as we only assume either C1 or C2 at a time, the definition will be clear
from context.

The paper will be structured as follows.
Section 2: We analyse the model under Condition C1.

• In Theorem 2.1 we prove Conjecture 1.1 under Condition C1, and as a consequence, in
Theorem 2.2 we show that, for any measurable set B, �(t, B)/�t converges almost surely
to m(α, B).

• In Theorem 2.4 we derive a condition under which C1 implies C2. In particular, this
proves Conjecture 1.2 under this condition and C1.

• The approaches used in this section are well established, applying classical results in
the theory of Crump–Mode–Jagers branching processes, in a similar manner to the
approaches taken by the authors of [3, 12, 20, 33]. Nevertheless, these theorems have
novel applications: we apply the theorems to the evolving Cayley tree considered by
Bianconi in Example 2.4.1 and the weighted random recursive tree.

Section 3: We analyse a particular case of the model when the fitness function is such
that f (i, W) = g(W)i + h(W), which we call the generalised preferential attachment tree with
fitness (GPAF-tree). This model, closely related to a model introduced in [16], extends the
existing models of preferential attachment with additive fitness, i.e., f (i, W) = i + 1 + W, and
multiplicative fitness, i.e., f (i, W) = (i + 1)W. When the function g is non-decreasing, we also
treat the cases where Condition C1 can fail. Let α be as defined in (7), and also define � :=
{λ > 0 : m(λ,R+) < ∞}.

• We consider the situation in which Condition C1 fails by having m(λ,R+) ≤ 1 for all
λ ∈ �. In this case, m(λ,R+) is finite for some λ > 0, but never exceeds 1, so that
m(α,R+) ≤ 1. In Theorem 3.1 we prove Conjecture 1.1 and Conjecture 1.2 in this
case, showing, in particular, that if m(α,R+) < 1 the GPAF-tree exhibits a condensation
phenomenon.

• Alternatively, Condition C1 may fail by having α = ∞. Theorem 3.2 also confirms
Conjecture 1.1 in this case, showing that the limiting degree distribution is degenerate:
almost surely the proportion of leaves in the tree tends to 1. Moreover, we show that
the fittest take all of the mass of the distribution of edges according to weight, in the
sense that a proportion of edges tending to 1 accumulates around the sets of vertices
with weights conferring higher and higher fitness.

• The techniques in this section are inspired by the coupling techniques exploited in
[8, 12], and extend the well-known phase transition associated with the model of prefer-
ential attachment with multiplicative fitnesses studied in [8, 12, 14]. This generalisation
shows that the phase transition depends on the parameter h too, so that, in some cir-
cumstances, condensation occurs, but vanishes if h is increased enough pointwise (see
Section 3.2.2). This is interesting because h(W) may be interpreted as the ‘initial’ pop-
ularity of a vertex when it arrives in the tree, showing that in order for the condensation
to occur, there need to be sufficiently many vertices of ‘low enough’ initial popularity.
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As far as the author is aware, this effect has not previously been observed in the general
scientific literature concerning complex networks.

Section 4: We analyse the model under Condition C2, proving general results for the
distribution of vertices with a given degree and weight.

• If the term α in Condition C2 is finite, Theorem 4.1 and Theorem 4.2 confirm a weaker
analogue of Conjecture 1.1 under this condition.

• The techniques used in this section are similar to those used in the proof of
[17, Theorem 6]; however, in this instance we present a considerably shorter proof.

2. Analysis of (μ, f , �)-RIF trees assuming C1

In order to apply Condition C1 in this section, we study a branching process with a
family tree made up of individuals and their offspring whose distribution is identical to the
discrete-time model at the times of the branching events. In Section 2.1, we describe this
continuous-time model, state Theorem 2.1, and state and prove Theorem 2.2. In Section 2.2 we
include the relevant theory of Crump–Mode–Jagers branching processes and use this to prove
Theorem 2.1. In Section 2.3 we apply the same theory, along with some technical lemmas, to
state and prove a strong law of large numbers for the partition function in Theorem 2.4. We
conclude the section with some interesting examples in Section 2.4.

2.1. Description of continuous-time embedding

In the continuous-time approach, we begin with a population consisting of a single vertex 0
with weight W0 sampled from μ and an associated exponential clock with parameter f (0, W0).
Then recursively, when the ith birth event occurs in the population, with the ringing of an
exponential clock associated to vertex j, the following occurs:

(i) Vertex j produces offspring �(i − 1) + 1, . . . , �i with independent weights
W�(i−1)+1, . . . , W�i sampled from μ and exponential clocks with parameters
f (0, W�(i−1)+1), . . . , f (0, W�i).

(ii) Suppose the number of offspring of j before the birth event was m, so that its out-degree
in the family tree is m. Then the exponential random variable associated with j is updated
to have rate f (m/� + 1, Wj). If f (m/� + 1, Wj) = 0, then j ceases to produce offspring
and we say j has died.

Now, if we let Zi−1 denote the sum of the rates of the exponential clocks in the popula-
tion when the population has size i − 1, the probability that the clock associated with j is the
first to ring is f (m/�, Wj)/Zi−1. Hence, the family tree of the continuous-time model at the
times of the birth events (σi)i≥0 has the same distribution as the associated (μ, f , �)-RIF tree.
The continuous-time branching process is actually a Crump–Mode–Jagers branching process,
which we will describe in more depth in Section 2.2.

To describe the evolution of the degree of a vertex in the continuous-time model, we define
the pure birth process with underlying probability space (�,F , P) and state space �N as
follows. First sample a weight W and set Y(0) = 0. Let Pw denote the probability measure
associated with the process when the weight sampled is w. Then define the birth rates of Y so
that

Pw(Y(t + h) = (k + 1)� | Y(t) = k�) = f (k, w)h + o(h). (9)
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In other words, the time taken to jump from k� to (k + 1)� is exponentially distributed with
parameter f (k, w).

Let ρ denote the point process corresponding to the jumps in Y , and denote by Ew[ρ(·)] the
intensity measure when the weight W = w. Also, denote by ρ̂w the Laplace–Stieltjes transform,
i.e.,

ρ̂w(λ) :=
∫ ∞

0
e−λtEw[ρ(dt)].

Note that, by Fubini’s theorem, we have

ρ̂w(λ) =
∫ ∞

0

(∫ ∞

t
λe−λsds

)
Ew[ρ(dt)] =

∫ ∞

0
λe−λs

(∫ s

0
Ew[ρ(dt)]

)
ds (10)

=
∫ ∞

0
λe−λsEw[Y(s)]ds.

Moreover, if we write τk for the time of the kth jump in Y , we have ρ =∑∞
k=0 �δτk . Note that

if the weight of Y is w, then τk is distributed as a sum of independent exponentially distributed
random variables with rates f (0, w), f (1, w), . . . , f (k − 1, w), where we follow the convention
that an exponentially distributed random variable with rate 0 is ∞. Thus, we have that

ρ̂w(λ) = �

∞∑
n=1

Ew
[
e−λτn
]= �

∞∑
n=1

n−1∏
i=0

f (i, w)

f (i, w) + λ
, (11)

where in the last equality we have used the facts that a Laplace–Stieltjes transform of a
convolution of measures is the product of Laplace–Stieltjes transforms, and the Laplace–
Stieltjes transform X̂(λ) of an exponentially distributed random variable with parameter s is∫∞

0 e−λtse−stdt = s
s+λ

. Therefore, we see that E
[
ρ̂W (λ)

]= m(λ,R+) as defined in (8), and
Condition C1 implies that there exists some λ > 0 such that 1 <E

[
ρ̂W (λ)

]
< ∞. In addition,

the Malthusian parameter α appearing in Condition C1 is the unique positive real number such
that

E
[
ρ̂W (α)

]= m(α,R+) = � ·E
[ ∞∑

n=1

n−1∏
i=0

f (i, W)

f (i, W) + α

]
= 1. (12)

Our first result is the following.

Theorem 2.1. (Convergence of the degree distribution under C1.) Let T be a (μ, f , �)-RIF
tree satisfying C1 with Malthusian parameter α. Then, for any measurable set B ⊆R+, with
Nk(t, B) as defined in (1) and pα

k (B) as defined in (3), we have

Nk(t, B)

�t
t→∞−−−→ pα

k (B),

almost surely.

The limiting formula for Theorem 2.1 has appeared in a number of contexts, and generalises
many known results. Under Condition C1 this result was proved by Rudas, Tóth and Valkó [33]
in the case that W is constant and � = 1. The cases f (i, W) = W(i + 1) and f (i, W) = i + 1 + W
with � = 1 correspond respectively to the preferential attachment models with multiplicative
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and additive fitness mentioned in the introduction. In the multiplicative model, the result was
first proved in [8] and later in [3]. In [3], Bhamidi also first proved the result for the case
f (i, W) = i + 1 + W. These models are examples of the generalised preferential attachment
tree with fitness, which we study in more depth in Section 3. Finally, the case f (i, W) = W,
� = 1 corresponds to a model of weighted random recursive trees (see Example 2.4.2). We
postpone the proof of Theorem 2.1 to the end of Section 2.2.

Remark 2.1. The limiting value has an interesting interpretation as a generalised geometric
distribution. Consider an experiment where W is sampled from μ and, given W, coins are
flipped, where the probability of heads in the ith coin flip is proportional to f(i,W) and tails
proportional to α. Then the limiting distribution in Theorem 2.1 is the distribution of first
occurrence of tails. Note that, by C1, the C1, the probability of infinite sequences of heads
is 0.

Remark 2.2. Note that Y(t) < ∞ for all t ≥ 0 almost surely if τ∞ := limk→∞ τk = ∞ almost
surely. The latter is satisfied if there exists λ > 0 such that for almost all w

Ew
[
e−λτ∞]= lim

n→∞ Ew
[
e−λτn
]= lim

n→∞

n∏
i=0

f (i, w)

f (i, w) + λ
= 0,

which is implied by C1. In the literature concerning pure birth Markov chains, this property is
known as non-explosivity.

Remark 2.3. In this paper, we have considered the case where the function f, and thus the
birth process Y as defined in (9), depends on a single random variable W taking values in
R+. However, there is no loss of generality in assuming the random variable W takes values
in an arbitrary measure space, so long as the function f is measurable. In particular, we may
consider the case where the weight is given by a vector (W1, W2) where W1 and W2 are possibly
correlated random variables.

Now, recall the definitions of �(t, ·) from (2) and m(α, ·) from (6). In the case that m(α, ·)
is a probability distribution, the almost sure convergence of Nk(t, B)/�n to pα

k (B) for any mea-
surable set B is enough to imply that for any measurable set B the quantity �(t, B) converges
almost surely to m(α, B). Note that this condition is weaker than directly assuming C1. In
particular, we have the following.

Theorem 2.2. Assume T is a (μ, f , �)-RIF tree with limiting degree distribution of the form
(pα

k (·))k∈N0 and such that m(α,R+) = 1. Then for any measurable set B we have

�(t, B)

�t
t→∞−−−→ m(α, B),

almost surely.

To prove this theorem, we will apply the following elementary bound: for any two sequences
(an)n∈N, (bn)n∈N such that either lim infn→∞ an > −∞ or lim supn→∞ bn < ∞, we have

lim inf
n→∞ (an + bn) ≤ lim inf

n→∞ an + lim sup
n→∞

bn ≤ lim sup
n→∞

(an + bn). (13)

https://doi.org/10.1017/apr.2022.40 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.40


Degree distributions in recursive trees with fitnesses 417

Proof of Theorem 2.2. Recall that, by (4), for each t, we have �(t, B) =∑t
k=1 k�Nk(t, B).

Also note that

∞∑
k=0

k�pα
k (B) = � ·E

[( ∞∑
k=1

kα

f (k, W) + α

k−1∏
i=0

f (i, W)

f (i, W) + α

)
1B(W)

]

= � ·E
[( ∞∑

k=1

k ·
(

1 − f (k, W)

f (k, W) + α

) k−1∏
i=0

f (i, W)

f (i, W) + α

)
1B(W)

]

= � ·E
[ ∞∑

k=1

(
k

k−1∏
i=0

f (i, W)

f (i, W) + α
− k

k∏
i=0

f (i, W)

f (i, W) + α

)
1B(W)

]

= � ·E
[( ∞∑

k=1

k−1∏
i=0

f (i, W)

f (i, W) + α

)
1B(W)

]
= m(α, B),

where the second-to-last equality follows from the telescoping nature of the sum inside the
expectation. Thus, by Fatou’s lemma, almost surely we have

m(α, B) =
∞∑

k=0

k�pα
k (B) =

∞∑
k=0

k� lim inf
t→∞

Nk(t, B)

�t
≤ lim inf

t→∞
�(t, B)

�t
; (14)

and likewise, almost surely, lim inft→∞ �(t,Bc)
�t ≥ m(α, Bc). Now, since we add � edges at every

time-step, �(t,R+) = �t. Thus, by (13),

1 = lim inf
t→∞

(
�(t, B)

�t
+ �(t, Bc)

�t

)
≤ lim inf

t→∞
�(t, Bc)

�t
+ lim sup

t→∞
�(t, B)

�t

≤ lim sup
t→∞

(
�(t, B)

�t
+ �(t, Bc)

�t

)
= 1.

But m(α, ·) is a probability measure; this is only possible if

lim inf
t→∞

�(t, Bc)

�t
= m(α, Bc) and lim sup

t→∞
�(t, B)

�t
= m(α, B) almost surely. (15)

Combining (14) and (15) completes the proof. �

2.2. Crump–Mode–Jagers branching processes

In the continuous-time setting, it is convenient not only to identify individuals of the
branching process according to the order in which they were born, but also to record their
lineage, in such a way that the labelling encodes the structure of the tree. Therefore we also
identify individuals of the branching process with elements of the infinite Ulam–Harris tree
U := ⋃n≥0 N

n, where N0 =∅ is the root. In this case, an individual u = u1u2 . . . uk is to be
interpreted recursively as the ukth child of u1 . . . uk−1. For example, 1, 2, . . . represent the
offspring of ∅.

In Crump–Mode–Jagers (CMJ) branching processes, individuals u ∈ U are equipped with
independent copies of a random point process ξ on R+. The point process ξ associates
birth times to the offspring of a given individual, and we also may assume that ξ has some
dependence on a random weight W associated with that individual. The process, together
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with birth times, may be regarded as a random variable in the probability space (�, , P) =∏
x∈U (�x, x, Px), where each (�x, x,Px) is a probability space with (ξx, Wx) having the

same distribution as (ξ, W). We denote by (σ x
i )i∈N points ordered in the point process ξx and,

for brevity, assume that ξ ({0}) = 0. We also drop the superscript when referring to the point
process associated to ∅, so that σi := σ

∅

i . Now, we set σ∅ := 0 and recursively, for x ∈ U ,
σxi := σx + σ x

i . Finally, we set Tt = {x ∈ U : σx ≤ t} and note that for each t ≥ 0, Tt may be
identified with the family tree of the process in the natural way. Informally, Tt can be described
as follows: at time zero, there is one vertex ∅, which reproduces according to (ξ∅, W∅).
Thereafter, at times corresponding to points in ξ∅, descendants of ∅ are formed, which in turn
produce offspring according to the same law. A crucial aspect of the study of CMJ processes
is the characteristics φx associated to each element x ∈ U . For x ∈ U , let Ux := {xu : u ∈ U}.
Then the processes φx are identically distributed, non-negative stochastic processes on the
space (�, , P) associated with individuals x, which may depend on (ξz, Wz)z∈Ux . Intuitively,
these are processes that track ‘characteristics’ not only of the individual x, but also of its
potential offspring {xy : y ∈ U}. We then define the general branching process counted with
characteristic as

Zφ(t) :=
∑

x∈U : σx≤t

φx
(
t − σx
)
;

thus this function keeps a ‘score’ of characteristics of individuals in the family tree associated
with the process up to time t.

Let ν be the intensity measure of ξ , that is, ν(B) := E[ξ (B)] for measurable sets B ⊆R+.
A crucial parameter in the study of CMJ processes is the Malthusian parameter α, which is
defined as the solution (if it exists) of

E

[∫ ∞

0
e−αuξ (du)

]
= 1.

Assume that ν is not supported on any lattice, i.e., for any h > 0, Supp(ν)� {0, h, 2h, . . .}, and
that the first moment of e−αuν(du) is finite, i.e.,

∫∞
0 ue−αuν(du) < ∞. Nerman [30] proved the

following theorem.

Theorem 2.3. ([30, Theorem 6.3]) Suppose that there exists λ < α satisfying

E

[∫ ∞

0
e−λsξ (ds)

]
< ∞. (16)

Then, for any two càdlàg characteristics φ(1), φ(2) such that E
[
supt≥0 e−λtφ(i)(t)

]
< ∞, i =

1, 2, we have

lim
t→∞

Zφ(1)
(t)

Zφ(2) (t)
=
∫∞

0 e−αsE
[
φ(1)(s)

]
ds∫∞

0 e−αsE
[
φ(2)(s)

]
ds

,

almost surely on the event {|Tt| → ∞}.
Recall the definition of ρ as the point process associated with the jumps in the process

Y defined in (9). Then the continuous-time model outlined in Section 2.1 is a CMJ process
having ρ as its associated random point process and weight W. In this case, the Malthusian
parameter is given by α in (12), and moreover, Condition C1 implies that the first moment∫∞

0 te−αtρ̂μ(dt) is finite.
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Theorem 2.1 is now an immediate application of Theorem 2.3.

Proof of Theorem 2.1. Consider the continuous-time branching process outlined in
Section 2.1 and denote by σ ′

1 < σ ′
2 · · · the times of births of individuals in the process. Then

Tn has the same distribution as the family tree Tσ ′
n
. For any measurable set B ⊆R, define

the characteristics φ(1)(t) = 1{Y(t)=k�,W∈B} and φ(2)(t) = 1{t≥0}, where W denotes the weight of

the process Y . Note that Zφ(1)
(t) is the number of individuals with k� offspring and weight

belonging to B up to time t, while Zφ(2)
(t) = |Tt|. Thus,

lim
t→∞

Zφ(1)
(t)

Zφ(2) (t)
= lim

t→∞
Nk(t, B)

�t
.

Note that both φ(1)(t) and φ(2)(t) are càdlàg and bounded, and moreover, Condition C1 implies
that (16) is satisfied. In addition, the assumption that f (0, W) > 0 almost surely implies that
|Tt| → ∞ almost surely. Thus, by applying Theorem 2.3, we have

lim
t→∞

Zφ(1)
(t)

Zφ(2) (t)
= α

∫ ∞

0
e−αsE

[
1{Y(s)=k�,W∈B}

]
ds

=E
[
EW
[(

e−ατk − e−ατk+1
)]

1B(W)
]
, (17)

where the last equality follows from Fubini’s theorem and we recall that τk is the time of the kth
event in the process YW (t). Now, since, when W = w, τk is distributed as a sum of independent
exponentially distributed random variables with rates f (0, w), f (1, w) . . ., we have

E
[
EW
[
e−ατk
]
1B(W)

]=E

[(
k−1∏
i=0

f (i, W)

f (i, W) + α

)
1B(W)

]
. (18)

The result follows from combining (17) and (18). �
Remark 2.4. As noted by the authors of [33], Theorem 2.3 can be applied to deduce a number
of other properties of the tree; in particular, the analogue of [33, Theorem 1] applies in this
case as well.

2.3. A strong law for the partition function

We can also apply Theorem 2.3 to show that the Malthusian parameter α emerges as the
almost sure limit of the partition function, under certain conditions on the fitness function f .

Theorem 2.4. Let (Tt)t≥0 be a (μ, f , �)-RIF tree satisfying C1 with Malthusian parameter
α. Moreover, assume that there exists a constant C < α and a non-negative function ϕ with
E[ϕ(W)] < ∞ such that, for all k ∈N0, f (k, W) ≤ Ck + ϕ(W) almost surely. Then, almost
surely,

Zt

t
t→∞−−−→ α.

To apply Theorem 2.3, we need to bound E
[
supt≥0 e−λtφ(1)(t)

]
for an appropriate choice of

λ < α and characteristic φ(1) that tracks the evolution of the partition function associated with
the process. In order to do so, using the assumptions on f (i, W), we will couple the process Y
defined in (9) with an appropriate pure birth process (Y(t))t≥0 (Lemma 2.3) and apply Doob’s
maximal inequality to a martingale associated with (Y(t))t≥0 (Lemma 2.2). As we will see,
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our choice of λ will be given by C, and this is the reason for the assumption that C < α in
Theorem 2.4.

In order to define Y(t), first sample a weight W and set Y(0) = 0. Then, if Pw denotes the
probability measure associated with the process when the weight is w, define the rates so that

Pw(Y(t + h) = k + 1 |Y(t) = k) = (Ck + ϕ(w))h + o(h).

We also let Yw denote the process with the same transition rates, but deterministic weight w.
It will be beneficial to state a more general result, about pure birth processes (X (t))t≥0 with

linear rates, from the paper by Holmgren and Janson [20]. For brevity, we adapt the notation
and only include some specific statements from both theorems.

Lemma 2.1. ([20, Theorem A.6 and Theorem A.7]) Let (X (t))t≥0 be a pure birth process with
X (0) = x0 and rates such that

P(X (t + h) = k + 1 |X (t) = k) = (c1k + c2)h + o(h),

for some constants c1, c2 > 0. Then, for each t ≥ 0,

E[X (t)] =
(

x0 + c2

c1

)
ec1t − c2

c1
. (19)

Moreover, if x0 = 0, the probability generating function is given by

E
[
zX (t)
]
=
(

e−c1t

1 − z
(
1 − e−c1t

)
)c2/c1

. (20)

Finally, we will require Lemma 2.2 and Lemma 2.3.

Lemma 2.2. For any w > 0, the process (e−Ct (Yw(t) + ϕ(w)/C) )t≥0 is a martingale with
respect to its natural filtration (Ft)t≥0. Moreover,

E

[
sup
t≥0

(
e−CtY(t)

)]
< ∞.

Proof. The process (Yw(t))t≥0 is a pure birth process satisfying the assumptions of
Lemma 2.1, with c1 = C and c2 = ϕ(w). Therefore, by (19) and the Markov property, for any
t > s > 0 we have

E[Yw(t) |Fs] =E[Yw(t) |Yw(s)] =
(
Yw(s) + ϕ(w)

C

)
eC(t−s) − ϕ(w)

C
,

which implies the martingale statement.
Moreover, applying (20) for the probability generating function, differentiating twice and

evaluating at z = 1, we obtain

E[Yw(t) (Yw(t) − 1)] = ϕ(w) (C + ϕ(w))

C2

(
eCt − 1

)2
,

and thus after some manipulations, we find that for all t ≥ 0

E
[
e−2Ct (Yw(t) + ϕ(w)/C)2

]
≤ ϕ(w)2

C2
+ ϕ(w)

C

(
1 − e−Ct).
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Combining this L2 quadratic bound with Doob’s maximal inequality, we have

E

[
sup
t≥0

(
e−CtYw(t)

)]
≤E

[
sup
t≥0

(
e−Ct (Yw(t) + ϕ(w)/C)

)]

≤ A + Bϕ(w),

for constants A, B depending only on C. Thus,

E

[
sup
t≥0

(
e−CtY(t)

)]
=E

[
sup
t≥0

(
e−CtYW (t)

)]
≤ A + BE[ϕ(W)] < ∞. �

Lemma 2.3. Recall the definition of Y in (9) and assume that there exists a constant C < α and
a non-negative function ϕ with E[ϕ(W)] < ∞ such that, for all k ∈N0, f (k, W) ≤ Ck + ϕ(W)
almost surely. Then there exists a coupling (Ŷ(t), Ŷ(t))t≥0 of (Y(t))t≥0 and (Y(t))t≥0 such that,
for all t ≥ 0,

Ŷ(t) ≤ � · Ŷ(t).

In the following proof, we denote by Exp(r) the exponential distribution with parameter r.

Proof. First, we sample Ŵ from μ and use this as a common weight for Ŷ and Ŷ . Now,

let (ςi)i≥0 be independent Exp
(

f (i, Ŵ)
)

-distributed random variables. Then, for all k > 0, set

τ̂k =∑k−1
i=0 ςi and

Ŷ(t) =
∞∑

k=1

k�1{τ̂k≤t<τ̂k+1}.

The ςi can be interpreted as the intermittent time between jumps from state i to i + �. For
all t > 0 construct the jump times of (Ŷ(t))t≥0 iteratively as follows:

• Note that by assumption f (0, Ŵ) ≤ ϕ(Ŵ). Let e0 ∼ Exp
(
ϕ(Ŵ) − f (0, Ŵ)

)
and set ς ′

0 =
min{e0, ς0}. We may interpret ς ′

0 as the time for Ŷ to jump from 0 to 1.

• Given ς ′
0, . . . , ς ′

j , let qj := ∑j
i=0 ς ′

i and define mj := Ŷ(qj)/�, i.e., the value of Ŷ/� once

Ŷ has reached j + 1. Assume inductively that mj ≤ j + 1 and set

ej+1 ∼ Exp
(

C(j + 1) + ϕ(Ŵ) − f
(
mj, Ŵ
))

and ς ′
j+1 = min

{
ej, ςmj

}
.

Observe that, since ς ′
j+1 ≤ ςmj+1, we have mj+1 ≤ j + 2, so we may iterate this procedure.

It is clear that (Ŷ(t))t≥0 is distributed like (Y(t))t≥0, and using the properties of the expo-
nential distribution one readily confirms that (Ŷ(t))t≥0 is distributed like (Y(t))t≥0. Finally, the
desired inequality follows from the fact that Ŷ(t) always jumps before or at the same time as
Ŷ(t). �

Proof of Theorem 2.4. Consider the continuous-time embedding of the (μ, f , �)-RIF tree
and define the characteristics φ(1)(t) := ∑∞

k=0 f (k, W)1{Y(t)=k�} and φ(2)(t) := 1{t≥0}. Recall
that we denote by (τi)i≥1 the times of the jumps in Y and that, for all k ≥ 0, f (k, W) ≤ Ck +
ϕ(W). Then, by Lemma 2.3, Lemma 2.2, and the assumptions of the theorem,

E

[
sup
t≥0

(
e−Ctφ(1)(t)

)] Lem. 2.3≤ E

[
sup
t≥0

(
e−Ct (CYW (t) + ϕ(W))

)]
Lem. 2.2

< ∞.
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Now, in this case Zφ(1)
(t) is the total sum of fitnesses of individuals born up to time t, while

Zφ(2)
(t) = |Tt|. Thus, by Theorem 2.3 and Fubini’s theorem in the second equality, almost

surely we have

lim
n→∞

Zn

�n
= α

∫ ∞

0
e−αsE

[ ∞∑
k=0

f (k, W)1{Y(s)=k�}

]
ds =E

[ ∞∑
k=0

f (k, W)
(
e−ατk − e−ατk+1

)]

(21)

=E

[ ∞∑
k=1

αf (k, W)

f (k, W) + α

k−1∏
i=0

f (i, W)

f (i, W) + α

]
.

Now, recall that by (12) we have

E

[ ∞∑
k=1

f (k, W)

f (k, W) + α

k−1∏
i=0

f (i, W)

f (i, W) + α

]
= 1

�
,

and combining this with (21) proves the result. �

2.4. Examples of applications of Theorem 2.1

2.4.1. Weighted Cayley trees. Consider the model where f (k, W) = 0 for k ≥ 1 and f (0, W) =
g(W). Thus, at each step, a vertex with degree 0 is chosen and produces � children, and thus
this model produces an (� + 1)-Cayley tree, i.e., a tree in which each node that is not a leaf
has degree � + 1. Without loss of generality, by considering the pushforward of μ under g if

necessary, we may assume that g(W) = W. In this case, ρ̂μ(λ) = � ·E
[

W
W+λ

]
and thus C1 is

satisfied as long as � ≥ 2. Thus, pα
k (B) = 0 for all k ≥ 2, and

p0(B) =E

[
α

W + α
1B(W)

]
, p1(B) =E

[
W

W + α
1B(W)

]
.

This rigorously confirms a result of Bianconi [4]. Note, however, that in [4] α is described as
the almost sure limit of the partition function, and we may only apply Theorem 2.4 under the
assumption that E[W] < ∞.

In the notation of [4], the weights W are called ‘energies’, using the symbol ε, the func-
tion g(ε) := eβε , where β > 0 is a parameter of the model, and α := eβμF is described as the
limit of the partition function. Thus, the proportion of vertices with out-degree 0 with ‘energy’
belonging to some measurable set B is

E

[
1

eβ(ε−μF) + 1
1B(W)

]
,

which is known as a Fermi–Dirac distribution in physics.

2.4.2. Weighted random recursive trees. In the case that f (k, W) = W, we obtain a model of
weighted random recursive trees with independent weights and C1 is satisfied with α =E[W]
provided E[W] < ∞. Theorem 2.1 then implies that

Nk(t, B)

�t
t→∞−−−→E

[
�E[W]Wk

(W + �E[W])k+1
1B(W)

]
,
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almost surely. This was observed in the case � = 1 by the authors of [17, Proposition 3]. Note
also that in this case Theorem 2.4 coincides with the usual strong law of large numbers.

The weighted random recursive tree has a natural generalisation to affine fitness functions.
This is the topic of the next section.

3. Generalised preferential attachment trees with fitnesses

In this section, we study (μ, f , �)-RIF trees in the specific case when the function f takes
an affine form, that is, f (i, W) = ig(W) + h(W), for positive, measurable functions g, h. We call
this particular case of the model a generalised preferential attachment tree with fitness (which
we abbreviate as a GPAF-tree). The affine form of this model means that it is tractable to apply
the coupling methods outlined in Section 3.2.3, when Condition C1 fails. Moreover, this model
is general enough to be an extension not only of the weighted random recursive tree, but also
of the additive and multiplicative models studied in [3, 8].

Below, in Section 3.1, we apply the theory of the previous section to this model when C1 is
satisfied. In satisfied. In Section 3.2, we analyse the model when Condition C1 fails by having
m(λ,R+) ≤ 1 for all λ > 0 such that m(λ,R+) < ∞, stating and proving Theorem 3.1. Then,
in Section 3.3, we analyse the model when Condition C1 fails by having m(λ,R+) = ∞ for
all λ > 0, stating and proving Theorem 3.2.

Note that in this section, we formulate our results in terms of functions g and h of a random
variable W taking values in R+. However, in the vein of Remark 2.3, we expect these results
to extend to cases where g and h are replaced respectively with possibly correlated random
variables W1 and W2 assigned to a given vertex, a model first analysed in [16]. In this case, the
coupling technique applied in Section 3.2.3 needs to be adjusted accordingly, with appropriate
‘truncations’ of the vector (W1, W2).

3.1. When the GPAF-tree satisfies Condition C1

In the context of the GPAF-tree, Condition C1 states that there exists λ > 0 such that

m(λ,R+) = � ·E
[ ∞∑

n=1

n−1∏
i=0

g(W)i + h(W)

g(W)i + h(W) + λ

]
> 1.

First recall the definition of the birth process Y from (9) in Section 2, with f (k, W) = g(W)k +
h(W). By applying (19) from Lemma 2.1 and the initial condition Y(0) = 0, for any w ∈R+ we
have

Ew [Y(t)] =
(

h(w)

g(w)

)
e�g(w)t − h(w)

g(w)
.

Now, (10) and (11) in Section 2 showed that

� ·
∞∑

n=1

n−1∏
i=0

g(W)i + h(W)

g(W)i + h(W) + λ
=
∫ ∞

0
λe−λsEw[Y(s)]ds =

⎧⎨
⎩

h(w)
λ/�−g(w) if λ/� > g(w);

∞ otherwise.
(22)

For a measurable function g : R+ →R+ we define ess sup(g) by

ess sup(g) := inf {a ∈R+ : μ({x : g(x) > a}) = 0} .

Therefore by (22), for λ ≥ � · ess sup(g) we have

m(λ,R+) =E

[
h(W)

λ/� − g(W)

]
,
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while if λ < � · ess sup(g) we have m(λ,R+) = ∞. Thus, Condition C1 is satisfied if
ess sup(g) < ∞, E[h(W)] < ∞, and for some λ ≥ � · ess sup(g)

1 <E

[
h(W)

λ/� − g(W)

]
< ∞.

As a result, the Malthusian parameter α appearing in Condition C1 is given by the unique
α > 0 such that

E

[
h(W)

α/� − g(W)

]
= 1. (23)

Note that the parameter � in the model has the effect of re-scaling the Malthusian parameter
α. Also, since α ≥ � · ess sup(g), if E[h(W)] < ∞, Theorem 2.4 applies and α may also be
interpreted as the almost sure limit of the partition function associated with the process. Now,
in the context of this model, the limiting value pα

k (·) from Theorem 2.1 is such that

pα
k (B) =E

[
α

g(W)k + h(W) + α

k−1∏
i=0

g(W)i + h(W)

g(W)i + h(W) + α
1B(W)

]
. (24)

Now, recall Stirling’s approximation, which states that

�(z) = (1 + O(1/z)) zz− 1
2 e−z (25)

as z → ∞. If g(W) > 0 on B, by dividing the numerator and denominator of terms inside
the product in (24), we obtain a ratio of gamma functions. Thus, by applying Stirling’s
approximation, on any measurable set B on which g, h are bounded, we have

pα
k (B) = (1 + O(1/k))E

[
cBk

−
(

1+ α
g(W)

)
1B(W)

]
,

where cB, which comes from the term outside the product in (24), depends on g and h but not k.
Thus, the distribution of (pα

k (B))k∈N0 follows what one might describe as an ‘averaged’ power
law. Moreover, in the case that � = 1, we have α ≥ ess sup(g); thus,

E

[
cBk

−
(

1+ α
g(W)

)
1B(W)

]
≥ c′k−2

for some c′ > 0. It has been observed that real-world complex networks have power law degree
distributions where the observed power law exponent lies between 2 and 3 (see, for example,
[37]). Note that by (23), α depends on both h and g, so that keeping g fixed and making h
smaller has the effect of reducing the exponent of the power law.

In the remainder of this section we set � = 1, for brevity. The arguments may be adapted in
a similar manner to the case � > 1.

3.2. A condensation phenomenon in the GPAF-tree when Condition C1 fails Condition
C1 fails

Recall that, in the GPAF-tree, if λ ≥ ess sup(g) we have

m(λ,R+) =E

[
h(W)

λ − g(W)

]
,
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and if λ < ess sup(g) we have m(λ,R+) = ∞. If we define

� := {λ > 0 : m(λ,R+) < ∞} ,

in this subsection, we consider the case that the GPAF-tree fails to satisfy Condition C1 by hav-
ing m(λ,R+) ≤ 1 for all λ ∈ �. We show that in this case the GPAF-tree satisfies a formula for
the degree distribution of the same form as (3). Moreover, if λ∗ := inf (�) and m(λ∗,R+) < 1,
this model exhibits a condensation phenomenon, as described in Theorem 3.1. We remark that
such results have been proved for the case of the preferential attachment tree with multiplicative
fitness, i.e., the case h ≡ g, in [14], in a more general framework; that is to say, encompassing
other models apart from a tree.

In Section 3.2.1 we state our main result, Theorem 3.1; we discuss interesting implications
in Section 3.2.2. In Section 3.2.3 we state and prove Lemma 3.1, which is the crucial tool used
in proofs of the theorem. The proof of Theorem 3.1 is deferred to Section 3.2.4.

Remark 3.1. If T does not satisfy C1 and E[h(W)] < ∞, we must have
μ({x : g(x) = ess supg}) = 0, since otherwise, for each λ > λ∗, we have m(λ,R+) < ∞,
and by monotone convergence limλ↓λ∗ m(λ,R+) ↑ ∞.

3.2.1. Theorem 3.1: condensation in the GPAF-tree. Our main result in this subsection is the
following theorem, which demonstrates the possibility of condensation in this model. Recall
that in this section, we have λ∗ = ess sup(g). We then define the following family of sets of
positive μ-measure, depending on a parameter ε > 0:

Mε := {x : g(x) ≥ λ∗ − ε
}

. (26)

Theorem 3.1. Suppose T = (Tt)t≥0 is a GPAF-tree, with associated functions g, h, where g is
bounded, E[h(W)] < ∞, and Condition C1 fails. Then we have the following assertions:

1. For any measurable set B such that for some ε > 0 we have B ⊆Mc
ε,

�(t, B)

�t
t→∞−−−→E

[
h(W)

λ∗ − g(W)
1B(W)

]
, almost surely.

In particular, if

E

[
h(W)

g(w∗) − g(W)

]
< 1,

for ε > 0 sufficiently small we have

�(t,Mε)

�t
t→∞−−−→ 1 −E

[
h(W)

λ∗ − g(W)
1Mc

ε
(W)

]
>E

[
h(W)

λ∗ − g(W)
1Mε

(W)

]
= m(λ∗,Mε),

so that this model exhibits a condensation phenomenon, as described before
Conjecture 1.1 in Section 1.3.

2. For any measurable set B ⊆R+, almost surely we have

Nk(t, B)

t
t→∞−−−→E

[
λ∗

g(W)k + h(W) + λ∗
k−1∏
i=0

g(W)i + h(W)

g(W)i + h(W) + λ∗ 1B(W)

]
= pλ∗

k (B).
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3. The partition function satisfies

Zt

t
t→∞−−−→ λ∗, almost surely.

Suppose that w∗ := sup (Supp(μ)) < ∞, Supp(μ) ⊆ [0, w∗], and g is increasing. Define the
measure π (·) so that, for any measurable set B,

π (B) =E

[
h(W)

g(w∗) − g(W)
1B(W)

]
+
(

1 −E

[
h(W)

g(w∗) − g(W)

])
δw∗ (B).

Then Assertion 1 of Theorem 3.1 leads to the following result.

Corollary 3.1. Under the above assumptions, with respect to the weak topology,

�(t, ·)
�t

t→∞−−−→ π (·), almost surely.

Remark 3.2. Corollary 3.1 is the form in which condensation results usually appear in the
literature, showing that the limit of the sequence �(t,·)

�t is no longer absolutely continuous with
respect to μ. In this regard, Corollary 3.1 generalises the case f (i, W) = (i + 1)W which has
already been proved in [8].

Proof of Corollary 3.1. In view of the portmanteau theorem, it suffices to prove that, almost
surely, for any open set O of [0, w∗] we have

lim inf
t→∞

�(t, O)

�t
≥ π (O).

Now, it is well known that there exists a countable family of measurable sets D1, D2, . . . such
that any open subset of [0, w∗] may be expressed as a countable disjoint union of elements
of this family. For example, one may take the set of all dyadic intervals, with endpoints of
the form j · 2−nw∗, (j + 1) · 2−nw∗, where j, n ∈N0. Fix such a family. Now, by Assertion 1 of
Theorem 3.1, it is the case that, almost surely,

lim
t→∞

�(t, S)

t
= π (S) ∀S ∈ C,

where C is the countable collection of sets

C :=
{

Di ∩Mc
1/j, M1/j : i, j ∈N

}
.

Now, let O be an arbitrary open set. First, suppose that w∗ /∈ O. Then, for a pairwise disjoint
collection Di1 , Di2 , . . . such that O =⋃�∈N Di� , for each j, k ∈N we have

lim inf
t→∞

�(t, O)

t
≥

k∑
�=1

lim inf
t→∞

�
(
t, Di� ∩Mc

1/j

)
t

≥
k∑

�=1

π
(
Di� ∩Mc

1/j

)
.

Taking limits in j and k, the right-hand side converges to π (O), as required. On the other
hand, if w∗ ∈ O, since g is increasing, for each ε > 0 there exists δ = δ(ε) > 0 such that Mε ⊆
[w∗ − δ, w∗]. Therefore, because O is open, for all j sufficiently large, we have M1/j ⊆ O. But
then, for a pairwise disjoint collection Di1 , Di2 , . . . such that O =⋃�∈N Di� , we have

O =M1/j ∪
(⋃

�∈N
Di� ∩Mc

1/j

)
.

https://doi.org/10.1017/apr.2022.40 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.40


Degree distributions in recursive trees with fitnesses 427

Therefore,

lim inf
t→∞

�(t, O)

t
≥ lim inf

t→∞
�(t,M1/j)

t
+

k∑
�=1

lim inf
t→∞

�
(
t, Di� ∩Mc

1/j

)
t

≥ π (M1/j) +
k∑

�=1

π
(
Di� ∩Mc

1/j

)
,

so that, by again taking limits in j and k, the right-hand side converges to π (O). The result
follows. �
3.2.2. Some interesting implications of the condensation phenomenon. The condensation
result in Theorem 3.1 has interesting implications for the GPAF-tree. Informally, the parameter
g(w) measures the extent to which the ‘popularity’ of a vertex with weight w is reinforced by
the number of its neighbours, while the parameter h(w) represents its ‘initial popularity’. The
condensation phenomenon then depends on both μ and h, in the sense that condensation occurs
if vertices of high weight are ‘rare enough’ and the initial popularity is ‘low enough’. More
precisely, if E[h(W)] < ∞ and λ∗ < ∞ we see that the tree displays the following interesting
features:

1. By Remark 3.1, if μ and g are such that E
[

1
λ∗−g(W)

]
= ∞, Condition C1 is satisfied in

this model, and thus, the model does not demonstrate a condensation phenomenon.

2. Otherwise, if μ and g are such that E
[

1
λ∗−g(W)

]
= C′ < ∞, then either

E

[
h(W)

λ∗ − g(W)

]
> 1 or E

[
h(W)

λ∗ − g(W)

]
≤ 1.

Condition C1 is satisfied in the first case but fails in the second case. However, in the
second case, if the inequality is strict, condensation arises. Therefore, for fixed g, con-
densation in this model arises if we reduce h sufficiently pointwise, for example, by
replacing h by K · h where K < 1/C′ is a constant.

3. Informally, if one considers h to be a factor representing ‘initial popularity’ and g to
be a factor representing ‘reinforcement’, the condensation occurs around nodes of max-
imum ‘reinforcement’, rather than those of maximal ‘initial popularity’. It may even
be the case, for example, that h is minimised on the sets Mε where the condensation
occurs.

3.2.3. A coupling lemma. In order to prove Theorem 3.1, we first prove an additional lemma.
For each ε > 0 such that ε < λ∗, let T +ε = (T +ε

t )t≥0 and T −ε = (T −ε
t )t≥0 denote GPAF-trees

with the same set of weights, but with the function g modified to g+ε and g−ε respectively, on
the set Mε from (26), with

g+ε := g1Mc
ε
+ λ∗1Mε

and g−ε := g1Mc + (λ∗ − ε)1Mε
.

The motivation behind these choices of T +ε and T −ε is that, because T does not satisfy
Condition C1, g+ε and g−ε attain their essential suprema on sets of positive measure. Thus,
because E[h(W)] < ∞, by Remark 3.1 these auxiliary trees satisfy Condition C1, and we may
apply the theorems from Section 2 with regard to these trees. Then, using the fact that these
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trees provide sufficiently good ‘approximations’ of the tree T , we may deduce our results by
sending ε to 0.

In this vein, let N+ε
≥k (t, B), N≥k(t, B), and N−ε

≥k (t, B) denote the number of vertices with

out-degree ≥ k and weight belonging to the set B in T +ε
t , Tt, and T −ε

t , respectively. In their
respective trees, we also denote by Z+ε

t , Zt, and Z−ε
t the partition functions at time t. Finally,

for brevity, we write f (+ε)
t (v), ft(v), and f (−ε)

t (v) for the fitness of a vertex v at time t in each of
these models. For example, ft(v) = g(Wv)deg+(v, Tt) + h(Wv).

Lemma 3.1. For every ε > 0, there exists a coupling (T̂ +ε, T̂ , T̂ −ε) of these processes such
that, on the coupling, for all t ∈N0, the following hold:

1. For all measurable sets B ⊆Mc
ε we have �+ε(t, B) ≤ �(t, B) ≤ �−ε(t, B).

2. For all measurable sets B ⊆Mc
ε and k ∈N0, we have

N+ε
≥k (t, B) ≤ N≥k(t, B) ≤ N−ε

≥k (t, B).

3. We have the inequalities Z−ε
t ≤Zt ≤Z+ε

t .

Proof of Lemma 3.1. We construct the trees having the same sequence of weights (Wi)i≥0,
so that the dynamics of the models are only influenced by differences in the function g in the
respective models. Thus, at time 0 each model consists of a single vertex labelled 0 with weight
W0 and having fitness given by h(W0). Assume, that at the tth time-step,

(T̂ +ε
n )0≤n≤t ∼ (T +ε

n )0≤n≤t, (T̂n)0≤n≤t ∼ (Tn)0≤n≤t, and (T̂ −ε
n )0≤n≤t ∼ (T −ε

n )0≤n≤t.

In addition, assume, by induction, that we have Z−ε
t ≤Zt ≤Z+ε

t and for each vertex v with
Wv ∈Mc

ε

deg+(v, T̂ +ε
t ) ≤ deg+(v, T̂t) ≤ deg+(v, T̂ −ε

t

)
. (27)

Note that (27) and the fact that the trees have the same number of directed edges imply
the first and the second assertions of the lemma up to time t. As a result, for each vertex
v with Wv ∈Mc

ε we have f (+ε)
t (v) ≤ ft(v) ≤ f (−ε)

t (v). Now, for the (t + 1)th step, we do the
following:

• Introduce a vertex t + 1 with weight Wt+1 sampled independently from μ.

• Form T̂ −ε
t+1 by sampling the parent v of t + 1 independently according to the law of T −ε,

i.e., with probability proportional to f (−ε)
t (v). Then, in order to form T̂t+1, sample an

independent uniformly distributed random variable U1 on [0, 1].
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• If

U1 ≤ Z−ε
t ft(v)

Ztf
(−ε)
t (v)

and Wv ∈Mc
ε, select v as the parent of t + 1 in T̂t+1 as well.

• Otherwise, form T̂t+1 by selecting the parent v′ of t + 1 with probability proportional
to ft(v′) out of all the vertices with weight Wv′ ∈Mε.

• Then form T̂ +ε
t+1 from T̂t+1 in an identical manner to the way T̂t+1 is formed from T̂ −ε,

with another, independent uniform random variable U2 on [0, 1].

It is clear that T̂ −ε
t+1 ∼ T −ε

t+1. On the other hand, in T̂t+1 the probability of choosing a parent v of
t + 1 with weight Wv ∈Mc

ε is

Z−ε
t ft(v)

Ztf
(−ε)
t (v)

× f (−ε)
t (v)

Z−ε
t

= ft(v)

Zt
,

whilst the probability of choosing a parent v′ with weight Wv′ ∈Mε is

ft(v′)∑
v : Wv≥w∗−ε ft(v)

⎛
⎝ ∑

v : Wv<w∗−ε

(
1 − Z−ε

t ft(v)

Ztf
(−ε)
t (v)

)
f (−ε)
t (v)

Z−ε
t

⎞
⎠

+ ft(v′)∑
v : Wv≥w∗−ε ft(v)

⎛
⎝ ∑

v : Wv≥w∗−ε

f (−ε)
t (v)

Z−ε
t

⎞
⎠

= ft(v′)∑
v : Wv≥w∗−ε ft(v)

⎛
⎝∑

v

f (−ε)
t (v)

Z−ε
t

−
∑

v : Wv<w∗−ε

ft(v)

Zt

⎞
⎠

= ft(v′)∑
v : Wv≥w∗−ε ft(v)

(
1 −
∑

v : Wv<w∗−ε ft(v)

Zt

)
= ft(v′)

Zt
,

where we use the fact that
∑

v ft(v) =Zt. Thus, we have T̂t+1 ∼ Tt+1. Moreover, either the same
vertex is chosen as the parent of t + 1 in both T̂ −ε

t+1 and T̂t+1, or a vertex of weight belonging to

Mε is chosen as the parent of t + 1 in T̂t+1. This implies the left inequality in (27); in addition,
when combined with the fact that g−ε(Wt+1) ≤ g(Wt+1), it guarantees that Z−ε

t+1 ≤Zt+1. The

proofs of the fact that T̂ +ε
t+1 ∼ T +ε

t+1, the right inequality in (27), and the fact that Zt+1 ≤Z+ε
t+1

are similar, so we may thus iterate the coupling. �
3.2.4. Proof of Theorem 3.1. In order to prove Theorem 3.1, we use the auxiliary GPAF-trees
T +ε and T −ε according to Lemma 3.1.

Proof of Theorem 3.1. For the first assertion, suppose that B is measurable, with B ⊆Mc
ε.

Then, if we define the corresponding quantities �+ε(t, ·), �−ε(t, ·) associated with T +ε and
T −ε, from the coupling in Lemma 3.1, we have

�+ε(t, B)

t
≤ �(t, B)

t
≤ �−ε(t, B)

t
.

https://doi.org/10.1017/apr.2022.40 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.40


430 T. IYER

Recall that the auxiliary trees T +ε and T −ε have associated functions g+ε and g−ε which attain
their maxima on a set of positive measure and thus satisfy Condition C1, with Malthusian
parameters α(+ε) > λ∗ and α(−ε) > λ∗ − ε. Moreover, note that, by the definition of g−ε,

E

[
h(W)

λ∗ − g−ε(W)

]
≤E

[
h(W)

λ∗ − g(W)

]
≤ 1,

so that, recalling (23), α(−ε) ≤ λ∗. As a result, λ∗ − ε < α(−ε) ≤ λ∗, so limε↓0 α(−ε) = λ∗. Thus,
by Lemma 3.1, Theorem 2.2, and dominated convergence, almost surely we have

lim sup
t→∞

�(t, B)

t
≤ lim

ε→0
E

[
h(W)

α(−ε) − g−ε(W)
1B(W)

]
=E

[
h(W)

λ∗ − g(W)
1B(W)

]
.

Now, we also have limε→0 α(+ε) = λ∗. Indeed, suppose for the sake of contradiction that
limε→0 α(+ε) = α′ > λ∗. Then, because E[h(W)] < ∞, by dominated convergence we have

1 = lim
ε→0

E

[
h(W)

α(+ε) − g+ε(W)

]
=E

[
h(W)

α′ − g(W)

]
.

But then, (23) is satisfied for λ such that λ∗ < λ < α′, contradicting the assumption that
Condition C1 fails for T .

It follows that limε→0 α(+ε) = λ∗, and thus, by Lemma 3.1 and dominated convergence,
almost surely we have

lim sup
t→∞

�(t, B)

t
≤ lim

ε→0
E

[
h(W)

α(−ε) − g−ε(W)
1B(W)

]
=E

[
h(W)

λ∗ − g(W)
1B(W)

]
.

The first assertion follows.
For the second assertion, given a measurable set B, for each ε > 0, set Bε := B ∩Mε. Then,

by Lemma 3.1, almost surely we have

lim sup
t→∞

N≥k(t, B)

t
≤ lim inf

ε→0

(
E

[
k−1∏
i=0

g−ε(W)i + h(W)

g−ε(W)i + h(W) + α(−ε)
1Bε (W)

]
+ μ(Mε)

)

= lim inf
ε→0

E

[
k−1∏
i=0

g(W)i + h(W)

g(W)i + h(W) + α(−ε)
1Bε (W)

]

=E

[
k−1∏
i=0

g(W)i + h(W)

g(W)i + h(W) + λ∗ 1B(W)

]
.

Similarly, almost surely,

lim inf
t→∞

N≥k(t, B)

t
≥ lim sup

ε→0
E

[
k−1∏
i=0

g+ε(W)i + h(W)

g+ε(W)i + h(W) + α(+ε)
1Bε (W)

]

= lim sup
ε→0

E

[
k−1∏
i=0

g(W)i + h(W))

g(W)i + h(W) + α(+ε)
1Bε (W)

]

=E

[
k−1∏
i=0

g(W)i + h(W))

g(W)i + h(W) + λ∗ 1B(W)

]
.
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Finally, for the last assertion, by Lemma 3.1, for each t ∈N0 we have

Z−ε
t

t
≤ Zt

t
≤ Z+ε

t

t
.

Taking limits as t goes to infinity and applying Theorem 2.4, the result follows similarly to the
previous assertions. �

3.3. Degenerate degrees in the GPAF-tree when Condition C1 fails

In this subsection, we show that if the GPAF-tree fails to satisfy Condition C1 by having
m(λ,R+) = ∞ for all λ > 0, almost surely the proportion of vertices that are leaves tends to
1. Consequently, the limiting mass of edges ‘escapes to infinity’, as described in Theorem 3.2
below. Note that Condition C1 fails in this manner in the GPAF tree if ess sup(g) = ∞ or
E[h(W)] = ∞. We remark that results similar to Theorem 3.2 have been shown in preferential
attachment models with multiplicative fitness with μ having finite support [8, Theorem 6]
and preferential attachment models with additive fitness (the extreme disorder regime in [23,
Theorem 2.6]). These cases correspond to h(x) ≡ 0 and g(x) ≡ 1, respectively. In a similar vein
to the start of Section 3.2.1, in this section we will require the following families of sets: for
each m ∈N, we set

Gm := {x : g(x) ≥ m} , Hm := {x : h(x) ≥ m} , and Mm := Gm ∪ Hm.

Theorem 3.2. Suppose T = (Tt)t≥0 is a GPAF-tree, with associated functions g,h, such that
ess sup(g) = ∞ or E[h(W)] = ∞. Then we have the following assertions:

1. For any measurable set B such that for some m′ ∈N we have B ⊆ Mc
m′ ,

�(t, B)

t
t→∞−−−→ 0, almost surely.

2. For any measurable set B ⊆R+, we have

N0(t, B)

t
t→∞−−−→ μ(B), almost surely.

3. The partition function satisfies

Zt

t
t→∞−−−→ ∞, almost surely.

Proof. This is similar to the proof of Theorem 3.1; however, we require some different
notation. For each m ∈N, let T m = (T m

t )t≥0 and T m,m = (T m,m
t≥0 ) denote analogues of the tree

process modified on the sets Gm and Hm. In particular, if we define gm, hm so that

gm := g1Gc
m

+ m1Gm and hm := h1Hc
m

+ m1Hm ,

we define T m with the associated functions gm, h, and T m,m with the associated functions
gm, hm. Then, by mimicking the approach from the coupling in Lemma 3.1, for each m ∈N

we may couple the processes (T̂ m,m, T̂ m, T̂ ) so that, for all t ∈N0, their respective partition
functions satisfy Zm,m

t ≤Zm
t ≤Zt; for each vertex v′ with Wv′ ∈ Hc

m,

deg+(v′, T̂ m
t

)≤ deg+(v, T̂ m,m
t
)
;

https://doi.org/10.1017/apr.2022.40 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.40


432 T. IYER

and for each vertex v with Wv ∈ Gc
m,

deg+(v, T̂t) ≤ deg+(v, T̂ m
t

)
.

In this coupling, at each time-step t, one samples T̂ m,m
t first, uses this (with another uniformly

distributed random variable) to construct T̂ m
t , and then uses this to construct T̂t. Therefore,

we have the following claim. For a measurable set B, let �m,m(t, B) and Nm,m
≥k (t, B) denote the

counterparts of �(t, B) and N≥k(t, B) with respect to the tree T m,m. �

Claim 3.1. For all m ∈N, there exists a coupling (T̂ m,m, T̂ ) of T m,m and T such that, on the
coupling, for all t ∈N0 we have the following:

1. For all measurable sets B ⊆ Mc
m we have �(t, B) ≤ �m,m(t, B).

2. For all measurable sets B ⊆ Mc
m and k ∈N0 we have N≥k(t, B) ≤ Nm,m

≥k (t, B).

3. We have the inequality Zm,m
t ≤Zt.

Now note that for all m sufficiently large, T m,m satisfies C1. Indeed, if ess sup(g) = ∞,
then because E[hm(W)] ≤ m and gm attains its maximum m on a set of positive measure, this
follows from Remark 3.1. Otherwise, for m sufficiently large we have gm = g, and for any
λ > ess sup(g),

E

[
hm(W)

λ − g(W)

]
< ∞, and, by monotone convergence, lim

m↑∞ E

[
hm(W)

λ − g(W)

]
= ∞.

Thus, making m larger if necessary, we have that C1 is satisfied for this choice of λ. In either
case, let α(m) denote the Malthusian parameter associated with T m,m. Then α(m) > ess sup(gm)
increases as m increases, and even if ess sup(gm) < ∞ we must have

lim
m↑∞ α(m) = ∞.

Indeed, suppose this were not the case, and limm↑∞ α(m) = α′ < ∞. Then, by monotone
convergence,

1 = lim
m→∞ E

[
hm(W)

α(m) − g(W)

]
=E

[
h(W)

α′ − g(W)

]
= ∞,

since E[h(W)] = ∞. Now, the assertions of Theorem 3.2 follow from the claim in a similar
manner to the way the assertions of Theorem 3.1 follow from Lemma 3.1.

Now, as in the previous subsection, suppose that g and h are increasing, and Supp(μ) ⊆
[0, w∗], where w∗ := sup (Supp (μ)). The proof of the following corollary is similar to that of
Corollary 3.1, and we therefore again leave it to the reader.

Corollary 3.2. Under the above assumptions, with regard to the weak topology,

�(t, ·)
t

t→∞−−−→ δw∗ (·), almost surely.

4. Analysis of (μ, f , �)-RIF trees assuming C2

By Theorem 2.4, under certain conditions on the fitness function f and C1, Condition C2 is
satisfied, i.e.,

Zt

t
t→∞−−−→ α, almost surely.
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However, Theorem 3.1 shows that this condition may be satisfied despite Condition C1 failing.
Therefore, in this in this section, we analyse the model under Condition C2. We state and
prove Theorem 4.1 below and Theorem 4.2, leaving the details to the reader. These proofs rely
on Proposition 4.1, proved in Section 4.3 and Section 4.4, and on Proposition 4.2, proved in
Section 4.5.

4.1. Main results: convergence in probability of Nk(n, B)/�n under C2

Theorem 4.1. Assume Condition C2. Then, for any measurable set B, we have

Nk(t, B)

�t
t→∞−−−→E

[
α

f (k, W) + α

k−1∏
s=0

f (s, W)

f (s, W) + α
1B(W)

]
= pα

k (B), in probability.

In order to prove Theorem 4.1, we define the following family of sets:

F := {B : B is measurable and ∀s ∈N0, f (s, w) is bounded for w ∈ B} . (28)

We also require Proposition 4.1 and Proposition 4.2, proved in Section 4.4.1 and Section 4.5.1.
These proofs rely on the results stated in Section 4.2 and Section 4.3.

Proposition 4.1. For any set B ∈ F, for each k ∈N0 we have

lim
t→∞

E[Nk(t, B)]

�t
= pα

k (B).

Proposition 4.2. For any B ∈ F and k ∈N0 we have

lim
t→∞ E

[
(Nk(t, B))2

�2t2

]
= (pα

k (B))2.

Proof of Theorem 4.1. The result follows for all B ∈ F by combining Proposition 4.1 and
Proposition 4.2 and applying Chebyshev’s inequality.

Now, let B be an arbitrary measurable set and let ε > 0 be given. Then, since for each
s ∈ {1, . . . , k} the map w �→ f (s, w) is measurable, by Lusin’s theorem, we can find a compact
set E ⊆ B such that μ(B ∩ Ec) < ε/3 and for each s ∈ {1, . . . , k} the restriction of the map
w �→ f (s, w) to E is continuous. Moreover, note that pα

k (B) − pα
k (B ∩ E) ≤ μ(B ∩ Ec) < ε/3.

Then,

P

(∣∣∣∣Nk(t, B)

�t
− pα

k (B)

∣∣∣∣> ε

)
≤ P

(( ∣∣∣∣Nk(t, B)

�t
− Nk(t, B ∩ E)

�t

∣∣∣∣
+
∣∣∣∣Nk(t, B ∩ E)

�t
− pα

k (B ∩ E)

∣∣∣∣
+ ∣∣pα

k (B ∩ E) − pα
k (B)
∣∣ )> ε

)

≤ P

(∣∣∣∣Nk(t, B ∩ E)

�t
− pα

k (B ∩ E)

∣∣∣∣> ε/3

)

+ P

(∣∣∣∣Nk(t, B)

�t
− Nk(t, B ∩ E)

�t

∣∣∣∣> ε/3

)
. (29)
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Now, note that by the strong law of large numbers applied to N≥0(t, B ∩ Ec)/�t, i.e., the pro-
portion of all vertices with weight belonging to B ∩ Ec, and Egorov’s theorem, for any δ > 0
there exists an event G with P(G) < δ such that

lim sup
t→∞

(
Nk(t, B)

�t
− Nk(t, B ∩ E)

�t

)
= lim sup

t→∞
Nk(t, B ∩ Ec)

�t
≤ μ(B ∩ Ec)

uniformly on the complement of G. Therefore, the result follows from (29), Proposition 4.1,
and Proposition 4.2 by taking limits as t tends to infinity. �

Using the approach to the upper bound for the mean in the next subsection, and apply-
ing Corollary 4.1 stated below with k = 1 and e0, e1 = 0, if N≥1(t, B) denotes the number of
vertices of out-degree at least 1 in the tree with weight belonging to B, we actually have

lim sup
t→∞

E
[
N≥1(t, B)

]
�t

≤ 1

α′E
[
f (0, W)1B(W)

]
,

as long as lim inft→∞ Zt
t ≥ α′. By sending α′ to infinity, this yields the following analogue of

Theorem 3.2.

Theorem 4.2. Suppose T is a (μ, f , �)-RIF tree such that limt→∞ Zt
t = ∞. Then for any

measurable set B ⊆ [0, ∞), we have

N0(t, B)

�t
t→∞−−−→ μ(B), in probability.

4.2. Summation arguments

Here we state some summation arguments required for the subsequent proofs. The follow-
ing lemma and corollary are taken from [17]. We include them here, with minor changes in
notation, for completeness. For e0, . . . , ek ≥ 0, 0 ≤ η < 1, let

St(e0, . . . , ek, η) := 1

t

∑
ηt<i0<···<ik≤t

k−1∏
s=0

((
is

is+1

)es

· 1

is+1 − 1

)(
ik
t

)ek

.

Lemma 4.1. ([17, Lemma 4].) Uniformly in e0, . . . , ek ≥ 0, 0 ≤ η ≤ 1/2, we have

St(e0, . . . , ek, η) =
k∏

s=0

1

es + 1
+ θ (η) + O

(
1

t1/(k+2)
+
∑k

s=0 es logk+1 (t)

t

)
.

Here, θ (η) is a term satisfying |θ (η)| ≤ Mη1/(k+2) for some universal constant M depending
only on k.

Corollary 4.1. ([17, Corollary 5].) For e0, . . . , ek, f0, . . . , fk−1 ≥ 0, 0 ≤ η ≤ 1/2, we have

1

t

∑
ηt<i0≤t

∑
Ik∈
({

i0 + 1, . . . , t
}

k

)
k−1∏
s=0

((
is

is+1

)es

· fs
is+1 − 1

)(
ik
t

)ek

= 1

ek + 1

k−1∏
s=0

fs
es + 1

+ θ ′(η) + O

(
1

t1/(k+2)

)
.
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Here, θ ′(η) is a term satisfying |θ ′(η)| ≤ M′η1/(k+2) for some universal constant M′ depend-
ing only on k and f0, . . . , fk−1, and the constant in the big-O term may depend on
e0, . . . , ek, f0, . . . , fk.

4.3. Upper bound for the mean of Nk(t, B)/�t

In the following subsections, unless otherwise specified, we let B denote an arbitrary ele-
ment of the family F defined in (4.1). Let Nη,k(t, B) be the number of vertices of degree k�
with weight in B that arrived after time ηt. Then, since Nη,k(t, B) ≤ Nk(t, B) ≤ Nη,k(t, B) + η�t,
we have

E

[∣∣∣∣Nη,k(t, B)

�t
− Nk(t, B)

�t

∣∣∣∣
]

≤ η. (30)

Thus, to obtain an upper bound for the convergence of the mean, it suffices to prove that

lim sup
η→0

lim sup
t→∞

E

[
Nη,k(t, B)

�t

]
= pα

k (B).

In what follows, we use the notation di(t) to denote the out-degree at time t of the vertex i born
at time i0 := �i/��. We then have

E
[
Nη,k(t, B)

]= ∑
ηt<i0≤t−k

� · P(di(t) = k, Wi ∈ B),

since the probability is identical for each of the � vertices born at each time i0. In what follows,
for a given i we denote by Ik := {i1, . . . , ik} a collection of natural numbers i0 < i1 < . . . <

ik ≤ t. For ease of notation we exclude the dependence of Ik on i.
For a natural number s > i0, we use the notation i→s to denote that i is the vertex chosen at

the sth time-step; hence i gains � new neighbours at time s. Likewise, the notation i �→s denotes
that i is not chosen at the sth time-step. Then, let Ei(Ik, B) denote the event that Wi ∈ B and for
all s ∈ {i0 + 1, . . . , t}, i→s if and only if s ∈ Ik. Clearly, we have

P(di(t) = k, Wi ∈ B) =
∑

Ik∈
({

i0 + 1, . . . , t
}

k

) P(Ei(Ik, B)),

where
({

i0 + 1, . . . , t
}

k

)
denotes the set of all subsets of {i0 + 1, . . . , t} of size k. For ε > 0 and t ≥ 0

and natural numbers N1 ≤ N2, we let

Gε(t) = {|Zt − αt| < εαt} , and Gε(N1, N2) =
N2⋂

t=N1

Gε(t). (31)

Moreover, for t ≥ 1, we denote by Tt the σ -field generated by (Ts)1≤s≤t, containing all
the information generated by the process up to time t. By the assumption of almost sure
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convergence and Egorov’s theorem, for any δ, ε > 0, there exists N′ = N′(ε, δ) such that, for
all t ≥ N′, P

(
Gε(N′, t)

)≥ 1 − δ. Thus, for t ≥ N′/η, we have

E
[
Nη,k(t, B)

]≤E
[
Nη,k(t, B)1Gε(N′,t)

]+ �t
(
1 − P
(
Gε(N′, t)

))
(32)

≤ �

⎛
⎜⎜⎝ ∑

ηt<i0≤t

∑
Ik∈
({

i0 + 1, . . . , t
}

k

) P (Ei(Ik, B) ∩ Gε(i0, t)) + δt

⎞
⎟⎟⎠ .

We use the shorthand α±ε := (1 ± ε)α.

Proposition 4.3. Let B ∈ F and 0 < ε, η ≤ 1/2. As t → ∞, uniformly in ηt < i0 ≤ t − k, Ik =
{i1, . . . , ik} ∈ ({i0 + 1, . . . , t

}
k

)
, and the choice of ε, we have

P(Ei(Ik, B) ∩ Gε(i0, t))

≤ (1 + O(1/t))E

[(
ik
t

)f (k,W)/α+ε k−1∏
s=0

(
is

is+1

)f (s,W)/α+ε f (s, W)

α−ε(is+1 − 1)
1B(W)

]
.

Corollary 4.2. Let B ∈ F and 0 < δ, ε, η ≤ 1/2. Then there exists N = N(δ, ε, η) such that, for
all t ≥ N,

E
[
Nη,k(t, B)

]
�t

≤ (1 + δ)

(
1 + ε

1 − ε

)k

E

[
α+ε

f (k, W) + α+ε

k−1∏
s=0

f (s, W)

f (s, W) + α+ε

1B(W)

]

+ Cη1/(k+2) + δ,

where the constant C may depend on k and B but not on n and not on the choices of δ, ε, η. In
particular, for each B ∈ F and k ∈N0,

lim sup
t→∞

E[Nk(t, B)]/�t ≤ pα
k (B).

Proof. This follows from applying (32) and Proposition 4.3 and then applying Corollary 4.1
with ej = f (j, W)/α+ε and fj = f (j, W)/α−ε to bound the sum over the collection of indices.

Note that the term
(

1+ε
1−ε

)k
comes from replacing α−ε by α+ε. �

We proceed towards the proof of Proposition 4.3. Let ε, η be given such that 0 < ε, η ≤ 1/2.
For ηt < i0 ≤ t and Ik = {i1, . . . , ik} ∈ ({i0 + 1, . . . , t

}
k

)
, for each s ∈ {i0 + 1, . . . , t} we define

Ds :=
{

{i→s} if s ∈ Ik,

{i �→s} otherwise,
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and D̃s =Ds ∩ Gε(s). We also define D̃i0 = Gε(i0) ∩ {Wi ∈ B}, and for simplicity of notation
we write Dj and D̃j for the indicator random variables 1Dj and 1D̃j

, respectively. Note that

Ei(Ik, B) ∩ Gε(i0, t) =⋂t
j=i0 D̃j. To bound the probability of this event, we define

Xs =E

⎡
⎣ t∏

j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦D̃is , s ∈ {0, . . . , k}

and observe that E[X0] = P
(⋂t

s=i0 D̃s

)
is the probability we seek.

Lemma 4.2. For s ∈ {0, . . . , k}, we have

Xs ≤
n∏

u=ik+1

(
1 − f (k, W)

α+ε(u − 1)

)⎛⎝k−1∏
j=s

f (j, W)

α−ε(ij+1 − 1)

ij+1−1∏
j′=ij+1

(
1 − f (j, W)

α+ε(j′ − 1)

)⎞⎠ D̃is , (33)

where we interpret any empty products (for example when ik = n) as equal to 1. In particular,

E[X0] ≤E

⎡
⎣ n∏

u=ik+1

(
1 − f (k, W)

α+ε(u − 1)

)⎛⎝k−1∏
j=0

f (j, W)

α−ε(ij+1 − 1)

ij+1−1∏
j′=ij+1

(
1 − f (j, W)

α+ε(j′ − 1)

)⎞⎠ 1B(W)

⎤
⎦.

(34)

Proof. We prove (33) by backwards induction. For the base case, s = k, if ik = n, the
inequality is trivial, as Xk = D̃ik . Thus, assuming ik < n, by the tower property,

E

⎡
⎣ n∏

j=ik+1

D̃j

∣∣∣∣Tik

⎤
⎦=E

⎡
⎣E[D̃n

∣∣∣∣Tn−1

] n−1∏
j=ik+1

D̃j

∣∣∣∣Tik

⎤
⎦

≤E

⎡
⎣E[Dn

∣∣∣∣Tn−1

] n−1∏
j=ik+1

D̃j

∣∣∣∣Tik

⎤
⎦

=E

⎡
⎣(1 − f (k, W)

Zn−1

) n−1∏
j=ik+1

D̃j

∣∣∣∣Tik

⎤
⎦

≤
(

1 − f (k, W)

α+ε(n − 1)

)
E

⎡
⎣ n−1∏

j=ik+1

D̃j

∣∣∣∣Tik

⎤
⎦,

and iterating this argument with the conditional expectation on the right-hand side proves the
base case. Now, note that for s ∈ {0, . . . , k − 1}

Xs =E

⎡
⎣Xs+1

is+1−1∏
j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦D̃is .
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Applying the induction hypothesis, it suffices to bound the term E

[∏is+1
j=is+1 D̃j

∣∣∣∣Tis

]
, and,

similarly to the base case, we may assume is < is+1 − 1. But then we have

E

⎡
⎣ is+1∏

j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦=E

⎡
⎣E[D̃is+1

∣∣∣∣Tis+1−1

] is+1−2∏
j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦

≤E

⎡
⎣E[Dis+1

∣∣∣∣Tis+1−1

] is+1−2∏
j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦

≤ f (s, W)

α−ε(is+1 − 1)
E

⎡
⎣is+1−2∏

j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦

≤ f (s, W)

α−ε(is+1 − 1)
E

⎡
⎣E[Dis+1−1

∣∣∣∣Tis+1−1

] is+1−2∏
j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦

≤ f (s, W)

α−ε(is+1 − 1)

(
1 − f (s, W)

α+ε (is+1 − 2)

)
E

⎡
⎣is+1−2∏

j=is+1

D̃j

∣∣∣∣Tis

⎤
⎦.

Iterating these bounds, the inductive step follows in a similar manner to the base case. Finally,
noting that 1D̃i

≤ 1B(W) proves (34). �
The next lemma follows from a simple application of Stirling’s formula, i.e., (25).

Lemma 4.3. Let η, C > 0. Then, uniformly over ηt ≤ a ≤ b and 0 ≤ β ≤ C, we have

b−1∏
j=a+1

(
1 − β

j − 1

)
=
(a

b

)β (
1 + O

(
1

t

))
.

Proof of Proposition 4.3. We take the upper bound E[X0] from Lemma 4.2 and bound each
of the products by applying Lemma 4.3. �

4.4. Deducing convergence of the mean of Nk(t, B)/�t

In this subsection we deduce a lower bound on lim inft→∞ E[Nk(t, B)]/�t on measurable
sets B ∈ F. In what follows, denote by N≥M(t, B) the number of vertices of out-degree ≥
�M with weight belonging to B. Moreover, let N(t, B) = N≥0(t, B) denote the total number of
vertices at time t with weight belonging to B.

Lemma 4.4. For any measurable set B, we have

lim sup
t→∞

N≥M(t, B)

�t
≤ 1

M

almost surely.

Proof. Since we add � vertices at each time-step, we have lim supt→∞
|Tt|
�t = 1. However,

|Tt| ≥ MN≥M(t,R), since the right-hand side only provides a lower bound for the number of
vertices in the tree incident to those with out-degree at least M. The result follows from dividing
both sides by M�t and sending t to infinity. �
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4.4.1. Proof of Proposition 4.1 Proof. Recall that Corollary 4.2 showed that for each B ∈ F
and k ∈N0,

lim sup
t→∞

E[Nk(t, B)]/�t ≤ pα
k (B).

Now, suppose that Proposition 4.1 fails, so that in particular there exist some set B′ ∈ F and
some k′ ∈N0 such that

lim inf
t→∞

E
[
Nk′ (t, B′)

]
�t

< pα
k′ (B′).

Thus, for some ε′ > 0, we have

lim inf
t→∞

E
[
Nk′ (t, B′)

]
�t

≤ pα
k′ (B) − ε′.

Now, using Lemma 4.4, choose M > max
{

k′, 2
ε′
}

, so that

lim sup
t→∞

N≥M(t, B′)
�t

< ε′/2.

Then, recalling (13),

lim inf
t→∞ E

[
M∑

k=0

Nk(t, B′)
�t

]
≤ lim inf

t→∞ E

[
Nk′ (t, B′)

�t

]
+
∑
k �=k′

lim sup
t→∞

E

[
Nk(t, B′)

�t

]
(35)

≤
( ∞∑

k=0

pα
k (B′)
)

− ε′ ≤ μ(B′) − ε′.

On the other hand, by Fatou’s lemma, we have

lim inf
t→∞ E

[
M∑

k=0

Nk(t, B′)
�t

]
≥E

[
lim inf

t→∞

M∑
k=0

Nk(t, B′)
�t

]
(36)

=E

[
lim inf

t→∞

(
N(t, B′)

�t
− N≥M(t, B′)

�t

)]
≥ μ(B′) − ε′/2,

where the last inequality follows from the strong law of large numbers. But then, combining
(35) and (36), we have μ(B′) − ε′ ≥ μ(B′) − ε′/2, a contradiction. �

4.5. Second moment calculations

In order to bound the second moment, we apply calculations similar to those at the start of
the section to compute asymptotically the number of pairs of vertices of out-degree k� born
after time ηt. For vertices i and j, as in Section 4.3, we set i0 := �i/�� and j0 := �j/��, and note
that

E
[(

Nη,k(t, B)
)2]= ∑

ηt<i0,j0≤t−k

∑
j : �j/��=j0

∑
i : �i/��=i0

P
(
di(t) = k, Wi ∈ B, dj(t) = k, Wj ∈ B

)
.

(37)
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Note that, in a similar manner to (30), we have

E

[∣∣∣∣∣
(
Nη,k(t, B)

)2
�2t2

− (Nk(t, B))2

�2t2

∣∣∣∣∣
]

≤ η,

so that it suffices to prove that

lim sup
η→0

lim sup
t→∞

E

[(
Nη,k(t, B)

)2
�2t2

]
≤ (pα

k (B))2.

Recall that, for a given i, we denote by Ik a collection of natural numbers i0 < i1 < · · · <
ik ≤ t. Moreover, for a given j, we denote by Jk a collection of natural numbers j0 < j1 < · · · <
jk ≤ t. Similarly to Section 4.3, for s > j we use the notation j→s to denote that j is the vertex
chosen at the sth time-step, and likewise, we let Ej(Jk, B) denote the event that Wj ∈ B and for
all s ∈ {j0 + 1, . . . , t}, j→s if and only if s ∈Jk. Then we have

P
(
di(t) = k, Wi ∈ B, dj(t) = k, Wj ∈ B

)
=

∑
Jk∈
({

j0 + 1, . . . , t
}

k

)
∑

Ik∈
({

i0 + 1, . . . , t
}

k

) P
(
Ei(Ik, B) ∩ Ej(Jk, B)

)
.

Note that the contribution to the above sum corresponding to terms with Ik ∩Jk �=∅, and
i �= j, is zero, since it is impossible for distinct vertices to be chosen in a single time-step. But
then, the terms corresponding to i = j contribute at most E

[
Nη,k(n, B)

]≤ �n to the right side
of (37). Next, for any choice of indices with Ik ∩Jk = ∅, there are at most �2 pairs of vertices
(i, j) born at respective times (i0, j0) contributing to the sum in (37). Recalling the definitions
of Gε(t), Gε(N1, N2), and N′ = N′(ε, δ) from (31) and below in the previous subsection, in a
similar manner to (32) we have, for t ≥ N′/η,

E
[(

Nη,k(t, B)
)2]≤ �2

⎛
⎝ ∑

ηt<i0,j0≤t−k

∑
Ik∩Jk=∅

P
(
Ei(Ik, B) ∩ Ej(Jk, B) ∩ Gε(i0, t)

)+ δt2

⎞
⎠+ �t.

(38)
We then have the following.

Proposition 4.4. Let B ∈ F and 0 < ε, η ≤ 1/2. As t → ∞, uniformly in ηt < i0 ≤ j0 ≤ t − k,
in Ik ∈ ({i0 + 1, . . . , t

}
k

)
, Jk ∈ ({j0 + 1, . . . , t

}
k

)
such that Ik ∩Jk = ∅, and in the choice of ε, we have

P
(
Ei(Ik, B) ∩ Ej(Jk, B) ∩ Gε(i0, t)

)
≤ (1 + O(1/t))E

[(
ik
t

)f (k,W)/α+ε

·
k−1∏
s=0

((
is

is+1

)f (s,W)/α+ε f (s, W)

α−ε(is+1 − 1)

)
1B(W)

]

×E

[(
jk
t

)f (k,W)/α+ε

·
k−1∏
s=0

((
js

js+1

)f (s,W)/α+ε f (s, W)

α−ε(js+1 − 1

)
1B(W)

]
. (39)
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We leave the details of the proof of this proposition to the reader, as it follows an analogous
approach to the proof of Proposition 4.3, using a backwards induction argument.

Proof. sketch. Let u1, . . . , u2k denote the indices in Ik ∪Jk, and let fx(i), fx(j) denote the
fitnesses associated with vertex i and vertex j at time x. Then, when we bound the probabilities
{i �→x} ∩ {j �→x} for all x ∈ {us + 1, . . . , us+1 − 1} from above, we obtain terms of the form

us+1−1∏
x=us+1

(
1 − fx(i) + fx(j)

α+ε(x − 1)

)
=
(

us

us+1

)fx(i)+fx(j) (
1 + O

(
1

t

))
,

where the right side follows from Lemma 4.3. Then, when we evaluate the expectation analo-
gous to the expectation appearing in (34), we obtain an expectation involving products of terms
dependent on Wi and Wj, i.e., the weights associated with vertex i and vertex j. These terms
separate into a product of expectations by the independence of the random variables Wi, Wj,
and finally, many of the products telescope to yield the right side of (39). �
4.5.1. Proof of Proposition 4.2 Proof. We apply Proposition 4.4 to bound the summands in
(38). Then, as we are looking for an upper bound, we may drop the condition Ik ∩Jk = ∅
when evaluating the sum. But then, by Corollary 4.1, we have, uniformly in ε and η,

∑
ηt<i0,j0≤t

∑
Ik,Jk

E

[(
ik
t

)f (k,W)/α+ε

·
k−1∏
s=0

(
is

is+1

)f (s,W)/α+ε f (s, W)

α−ε(is+1 − 1)
1B(W)

]

×E

[(
jk
t

)f (k,W)/α+ε

·
k−1∏
s=0

(
js

js+1

)f (s,W)/α+ε f (s, W)

α−ε(js+1 − 1)
1B(W)

]

≤
(

1 + ε

1 − ε

)2k
(
E

[
α+ε

f (k, W) + α+ε

k−1∏
s=0

f (s, W)

f (s, W) + α+ε

1B(W)

])2

+ O
(

t−1/(k+2)
)

+ C′η1/k+2,

for some universal constant C′ > 0, depending only on B, f . The result follows. �
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