ON UNIT SOLUTIONS OF THE
 EQUATION $x y z=x+y+z$ IN NOT TOTALLY REAL CUBIC FIELDS

LIANG-CHENG ZHANG AND JONATHAN GORDON

Abstract. It is shown that the equation $x y z=x+y+z$ has unit solutions in only four not totally real cubic fields: two fields which are real and two fields which are imaginary. These fields are then listed.

1. Introduction. The equation

$$
x y z=x+y+z=1
$$

has been studied and shown to have no solution in the rational number field \mathbb{Q} ([1], [3], [4]). This leads to the study of the equation

$$
\begin{equation*}
u_{1} u_{2} u_{3}=u_{1}+u_{2}+u_{3} \tag{1.1}
\end{equation*}
$$

where $u_{i}, i=1,2,3$, is a unit in the ring of integers of an algebraic number field K. If K is a quadratic extension of the rationals, this problem has been completely solved by Mollin, Small, Varadarajan and Walsh [2]. We have shown that in a real number field, with unit group of rank 1 and a fundamental unit $\eta>3$, (1.1) has no solution, and consequently (1.1) has no solution in any pure cubic field [5]. In this paper, we shall solve this problem for not totally real cubic extensions of the rationals.

2. Results.

THEOREM. Let K be a real but not totally real cubic field. Then (1.1) has no solution except for two fields:

$$
K_{1}=\mathbb{Q}\left(\eta_{1}\right)
$$

where

$$
\operatorname{Irr}\left(\eta_{1}, \mathbb{Q}, x\right)=x^{3}-x^{2}-x-1
$$

and

$$
K_{2}=\mathbb{Q}\left(\eta_{2}\right),
$$

where

$$
\operatorname{Irr}\left(\eta_{2}, \mathbb{Q}, x\right)=x^{3}-x-1, \text { and } \eta_{i} \in \mathbb{R} .
$$

Proof. Let U_{K} be the group of units of the ring of integers of K. Then from the Dirichlet unit theorem, the rank of U_{K} is 1 . Let η be the fundamental unit of K which is greater than 1 , then $K=\mathbb{Q}(\eta)$.

Let $f(x)=\operatorname{Irr}(\eta, \mathbb{Q}, x)$. Since η is a unit,

$$
f(x)=x^{3}+a x^{2}+b x-1, \quad a, b \in \mathbb{Z}
$$

If U_{K} contains a solution of (1.1) then η satisfies

$$
\eta^{\ell_{1}+\ell_{2}+\ell_{3}}=\eta^{\ell_{1}}+\eta^{\ell_{2}}+\eta^{\ell_{3}}
$$

or

$$
\eta^{\ell_{1}+\ell_{2}+\ell_{3}}=\eta^{\ell_{1}}-\eta^{\ell_{2}}-\eta^{\ell_{3}} \text { for some } \ell_{i} \in \mathbb{Z} \text {. }
$$

Here we may assume $\ell_{1} \geq \ell_{2} \geq \ell_{3}$. So η satisfies some polynomial equation $h(x)=0$, where

$$
h(x)=x^{\ell_{1}+\ell_{2}}-x^{\ell_{1}-\ell_{3}}-x^{\ell_{2}-\ell_{3}}-1
$$

or

$$
h(x)=x^{\ell_{1}+\ell_{2}}-x^{\ell_{1}-\ell_{3}}+x^{\ell_{2}-\ell_{3}}+1
$$

Let

$$
h_{1}(x)=x^{\ell_{1}+\ell_{2}}-x^{\ell_{1}-\ell_{3}}-x^{\ell_{2}-\ell_{3}}-1
$$

and

$$
h_{2}(x)=x^{\ell_{1}+\ell_{2}}-x^{\ell_{1}-\ell_{3}}+x^{\ell_{2}-\ell_{3}}+1,
$$

so $h_{1}(1)=-2$ and $h_{2}(1)=2$.
If $\ell_{1}+\ell_{2}$ is even, then $\ell_{1}-\ell_{3}$ and $\ell_{2}-\ell_{3}$ have the same parity. Consequently,

$$
h_{1}(-1)=1-1-1-1=-2
$$

or

$$
h_{1}(-1)=1+1+1-1=2 .
$$

On the other hand, if $\ell_{1}+\ell_{2}$ is odd, then $\ell_{1}-\ell_{3}$ and $\ell_{2}-\ell_{3}$ have opposite parity. Consequently,

$$
h_{1}(-1)=-1+1-1-1=-2
$$

or

$$
h_{1}(-1)=-1-1+1-1=-2 .
$$

Thus $h_{1}(-1)$ is always ± 2. Similarly, $h_{2}(-1)$ is always ± 2. Therefore $h(\pm 1)= \pm 2$.
Since $f(x)=\operatorname{Irr}(\eta, \mathbb{Q}, x), f(x)$ divides $h(x)$, and $\mathrm{f}(\pm 1)$ divides $h(\pm 1)$. Thus $f(\pm 1)=$ ± 1 or ± 2. And since K is not totally real, $f(x)$ has only one real root, $\eta>1$, and thus
$f(x)<0$ if $x<\eta$. So since $\pm 1<\eta, f(\pm 1)<0$, which implies that $f(\pm 1)=-1$ or -2 .

Recall $f(x)=x^{3}+a x^{2}+b x-1$, so $f(1)=a+b$ and $f(-1)=a-b-2$. Then solving the system of simple linear equations in a and b :

$$
\begin{aligned}
a+b & =-1 \text { or }-2, \\
a-b-2 & =-1 \text { or }-2,
\end{aligned}
$$

and considering that a and b are integers, we find that $(a, b)=(-1,-1)$ or $(0,-1)$. Therefore

$$
\operatorname{Irr}\left(\eta_{1}, \mathbb{Q}, x\right)=x^{3}-x^{2}-x-1
$$

or

$$
\operatorname{Irr}\left(\eta_{2}, \mathbb{Q}, x\right)=x^{3}-x-1 .
$$

In $K_{1}=\mathbb{Q}\left(\eta_{1}\right)$, since $\eta_{1}^{3}-\eta_{1}^{2}-\eta_{1}-1=0$,

$$
u_{1}=\eta_{1}^{2}, u_{2}=\eta_{1}, u_{3}=1 \text { is a solution of (1.1). }
$$

In fact,

$$
\eta_{1}=\frac{\sqrt[3]{19+3 \sqrt{33}+\sqrt[3]{19}-3 \sqrt{33}+1}}{3}
$$

In $K_{2}=\mathbb{Q}\left(\eta_{2}\right)$, since $\eta_{2}^{3}-\eta_{2}-1=0$, and

$$
\begin{gathered}
\left(\eta_{2}^{3}+\eta_{2}\right)\left(\eta_{2}^{3}-\eta_{2}-1\right)=\eta_{2}^{6}-\eta_{2}^{3}-\eta_{2}^{2}-\eta_{2}=0 \\
u_{1}=\eta_{2}^{3}, u_{2}=\eta_{2}^{2}, u_{3}=\eta_{2} \text { is a solution of }(1.1)
\end{gathered}
$$

In fact,

$$
\eta_{2}=\frac{\sqrt[3]{108+12 \sqrt{69}+\sqrt[3]{108-12 \sqrt{69}}}}{6}
$$

We have proved the theorem.
Corollary. Let K^{\prime} be an imaginary cubic field, then (1.1) has a solution if and only if

$$
K^{\prime}=K_{1}^{\prime}=\mathbb{Q}\left(\eta_{1}^{\prime}\right)
$$

where

$$
\operatorname{Irr}\left(\eta_{1}^{\prime}, \mathbb{Q}, x\right)=x^{3}-x^{2}-x-1
$$

or

$$
K^{\prime}=K_{2}^{\prime}=\mathbb{Q}\left(\eta_{2}^{\prime}\right)
$$

where

$$
\operatorname{Irr}\left(\eta_{2}^{\prime}, \mathbb{Q}, x\right)=x^{3}-x-1, \eta_{i}^{\prime} \in C-\mathbb{R}
$$

PROOF. Let K^{\prime} be an imaginary cubic field and let η^{\prime} be a fundamental unit with $\left|\eta^{\prime}\right|<1$. Then $K^{\prime}=\mathbb{Q}\left(\eta^{\prime}\right)$.

Let $f(x)=\operatorname{Irr}\left(\eta^{\prime}, \mathbb{Q}, x\right), \eta$ be the real conjugate root of η^{\prime} and $K=\mathbb{Q}(\eta)$. Then it is obvious that there is an isomorphism $\sigma: K^{\prime} \rightarrow K$ with $\sigma\left(\eta^{\prime}\right)=\eta$. Thus

$$
\eta^{\prime \ell_{2}+\ell_{2}+\ell_{3}}=\eta^{\prime \ell_{1}} \pm \eta^{\prime \ell_{2}} \pm \eta^{\prime \ell_{3}}
$$

if and only if

$$
\eta^{\ell_{2}+\ell_{2}+\ell_{3}}=\eta^{\ell_{1}} \pm \eta^{\ell_{2}} \pm \eta^{\ell_{3}}
$$

Then the result follows from the theorem.
Remark. It is not difficult to calculate the values of η^{\prime}. In fact,
$\eta_{1}^{\prime}=\frac{-\sqrt[3]{19}+3 \sqrt{33}-\sqrt[3]{19}-3 \sqrt{33}+2}{6}+\frac{\sqrt{3}(\sqrt[3]{19-3 \sqrt{33}-\sqrt[3]{19}+3 \sqrt{33}) \sqrt{-1}}}{6}$,
or

$$
\begin{aligned}
& \eta_{1}^{\prime}= \frac{-\sqrt[3]{19}+3 \sqrt{33}-\sqrt[3]{19-3 \sqrt{33}+2}}{6}-\frac{\sqrt{3}(\sqrt[3]{19-3 \sqrt{33}-\sqrt[3]{19}+3 \sqrt{33}) \sqrt{-1}}}{6} \\
& \eta_{2}^{\prime}=\frac{-\sqrt[3]{108}+12 \sqrt{69}-\sqrt[3]{108}-12 \sqrt{69}}{12} \\
&+\frac{\sqrt{3}(\sqrt[3]{108}+12 \sqrt{69}-\sqrt[3]{108-12 \sqrt{69}) \sqrt{-1}}}{12}
\end{aligned}
$$

or

$$
\begin{aligned}
& \eta_{2}^{\prime}=\frac{-\sqrt[3]{108+12 \sqrt{69}}-\sqrt[3]{108-12 \sqrt{69}}}{12} \\
&- \frac{\sqrt{3}(\sqrt[3]{108+12 \sqrt{69}}-\sqrt[3]{108-12 \sqrt{69}}) \sqrt{-1}}{12}
\end{aligned}
$$

3. Acknowledgements. The first author wishes to thank B. C. Berndt for his encouragement, and to thank T. Cusick and H. Edgar for their helpful conversations.

REFERENCES

1. J. W. S. Cassels, On a diophantine equation, Acta. Arith. 6(1960), 47-52.
2. R. A. Mollin, C. Small, K. Varadarajan and P. G. Walsh. On unit solutions of the equation $x y z=x+y+z$ in the ring of integers of a quadratic field, Acta. Arith. 48(1987), 341-345.
3. W. Sierpinski, On some unsolved problems of Arithmetics, Scripta Math. 25(1960), 125-136.
4. , Remarques sur le travail de M. J. W. S. Cassels "On a diophantine equation", Acta. Arith. 6(1961), 469-471.
5. L. C. Zhang and J. R. Gordon, On unit solutions of the equation $x y z=x+y+z$ in a number field with unit group of rank 1 , to appear.

Department of Mathematics
University of Illinois
1409 West Green Street
Urbana, Illinois 6180I
USA

