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Abstract

Let R and S be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals,
radical ideals, primary ideals, and maximal ideals of R × S. Unlike the case where R and S have an
identity, an ideal (or primary ideal, or maximal ideal) of R × S need not be a ‘subproduct’ I × J of
ideals. We show that for a ring R, for each commutative ring S every ideal (or primary ideal, or maximal
ideal) is a subproduct if and only if R is an e-ring (that is, for r ∈ R, there exists er ∈ R with er r = r ) (or
u-ring (that is, for each proper ideal A of R,

√
A 6= R)), the Abelian group (R/R2, +) has no maximal

subgroups).
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Suppose that R and S are commutative rings with identity. It is well known that the
ideals of R × S have the form I × J where I is an ideal of R and J is an ideal of S. It
easily follows that the prime (primary, maximal) ideals of R × S have the form P × S
or R × Q where P is a prime (primary, maximal) ideal of R or Q is a prime (primary,
maximal) ideal of S.

Suppose that R and S are commutative rings not necessarily with identity. If I is
an ideal of R and J is an ideal of S, then certainly I × J is an ideal of R × S. (It
is obvious that if I ⊆ R and J ⊆ S with I × J an ideal of R × S, then I is an ideal
of R and J is an ideal of S.) We call such an ideal I × J of R × S, a subproduct.
However, ideals of R × S need not be subproducts. For if A and B are non-zero
Abelian groups, then A × B with the zero product is a commutative ring whose ideals
are just the subgroups of A × B. However, it is rare [2, Theorem 2] that every subgroup
of A × B is a subproduct. For example, if A = B = Z2, then {(0, 0), (1, 1)} is an ideal
of Z2 × Z2 that is not a subproduct.

A commutative ring R is an e-ring [3] if for each r ∈ R, there exists an er ∈ R with
err = r . We show (Theorem 2) that a commutative ring R is an e-ring if and only if,
for each commutative ring S, every ideal of R × S is a subproduct. Now every prime

c© 2008 Australian Mathematical Society 0004-9727/08 $A2.00 + 0.00

477

https://doi.org/10.1017/S0004972708000415 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000415


478 D. D. Anderson and J. Kintzinger [2]

ideal of R × S has the form P × S where P is a prime ideal of R or R × Q where
Q is a prime ideal of S (Theorem 6). However, a commutative ring R is a u-ring (for
each proper ideal A of R,

√
A 6= R) [3] if and only if, for each commutative ring S,

every primary ideal of R × S has the form Q × S where Q is a primary ideal of R or
R × Q where Q is a primary ideal of S, or equivalently, each primary ideal of R × S
is a subproduct (Theorem 9). Finally, we determine (Theorem 12) the commutative
rings R with the property that, for each commutative ring S, each maximal ideal of
R × S is a subproduct.

We start with the following simple proposition whose proof is left to the reader.

PROPOSITION 1. Let R and S be commutative rings. Then the following conditions
are equivalent (for an ideal A of R × S).

(1) Every ideal of R × S (The ideal A of R × S) is a subproduct.
(2) For each r ∈ R and s ∈ S (with (r, s) ∈ A), ((r, s)) = (r) × (s).
(3) For each r ∈ R and s ∈ S (with (r, s) ∈ A), (r, 0) ∈ ((r, s)) ((r, 0) ∈ A).
(4) For each r ∈ R and s ∈ S (with (r, s) ∈ A), there exist a ∈ R, b ∈ S, and n ∈ Z

with r = ar + nr and 0 = bs + ns.

Of course, (3) of Proposition 1 is equivalent to (0, s) ∈ ((r, s)). Note that (4) is
equivalent to 0 = (−a) r + (1 − n) r and s = (−b) s + (1 − n) s. Also note that if
an ideal A of R × S is a subproduct, then A = I × J where I = {r ∈ R | (r, 0) ∈ A}

(= {r ∈ R | (r, s) ∈ A for some s ∈ S}) and J = {s ∈ S | (0, s) ∈ A} (= {s ∈ S | (r, s)
∈ A for some r ∈ R}).

We next characterize the commutative rings R with the property that for each
commutative ring S, every ideal of R × S is a subproduct. Most of Theorem 2 appears
in [1, Proposition 3.1].

THEOREM 2. For a commutative ring R the following conditions are equivalent.

(1) R is an e-ring (that is, for each r ∈ R, there exists an er ∈ R with err = r).
(2) For each commutative ring S, each ideal of R × S is a subproduct.
(3) For all n ≥ 2, each ideal of Rn has the form I1 × · · · × In where Ii is an ideal

of R.
(4) For some n ≥ 2, each ideal of Rn is a subproduct as in (3).
(5) Every ideal of R × R is a subproduct.

PROOF. (1) ⇒ (2). Suppose that R is an e-ring. Let r ∈ R and s ∈ S. Choose er ∈ R
with err = r . Then (r, 0) = (er , 0) (r, s) ∈ ((r, s)). By Proposition 1, every ideal of
R × S is a subproduct.

(2) ⇒ (3). Assume the result for n − 1 and then take S = Rn−1.
(3) ⇒ (4) ⇒ (5) is clear.
(5) ⇒ (1). By Proposition 1(4) with R = S and r = s ∈ R, there exist a, b ∈ R and

n ∈ Z with r = ar + nr and 0 = br + nr . Hence r = ar − br = (a − b) r . So R is
an e-ring. 2

We next give a ‘local’ alternative approach to (1) ⇒ (2) of the previous theorem.
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PROPOSITION 3. Let R and S be commutative rings and let I be an ideal of R × S.
Let ϕ : R → R × S�I (ϕ (r) = (r, 0) + I ) be the natural map. If ϕ (R) is an e-ring,
then I is a subproduct.

PROOF. Now ϕ (R) an e-ring says that, for (r, 0) ∈ R × S�I , there exists (e, 0)

∈ R × S/I with (e, 0) (r, 0) = (r, 0), or (r − er, 0) ∈ I . Let (x, y) ∈ I . So there
exists e ∈ R with (x − ex, 0) ∈ I . Then (x, 0) = (x − ex, 0) + (e, 0) (x, y) ∈ I . So
by Proposition 1, I is a subproduct. 2

COROLLARY 4. Let R and S be commutative rings and I an ideal of R × S. If
R × S�I is an e-ring, then I is a subproduct.

PROOF. If R × S�I is an e-ring, then so is its subring ϕ (R) where ϕ (R) is as defined
in Proposition 3. Indeed, if (e1, e2) (r, 0) = (r, 0), then (e1, 0) (r, 0) = (r, 0). 2

COROLLARY 5. Let R be an e-ring. Then for any commutative ring S, every ideal of
R × S is a subproduct.

PROOF. Let I be an ideal of R × S. If R is an e-ring, then so is its homomorphic
image ϕ (R) in R × S�I . By Proposition 3, I is a subproduct. 2

We next determine the prime ideals of R × S. Here the situation is the same as in
the case where the rings have an identity.

THEOREM 6. Let R and S be commutative rings. Then an ideal P of R × S is prime
if and only if P has the form P × S where P is a prime ideal of R or R × Q where Q
is a prime ideal of S.

PROOF. (⇐) Clear. (⇒) Suppose that P is a prime ideal of R × S. Now
(0 × S) (R × 0) ⊆ P , so either 0 × S ⊆ P or R × 0 ⊆ P . Suppose that R × 0 ⊆ P . It
follows from Proposition 1 thatP = R × Q for some ideal Q of S. It is easily checked
that Q must be prime. The case where 0 × S ⊆ P is similar. 2

COROLLARY 7. Let R and S be commutative rings. The radical ideals of R × S have
the form I × J where I is a radical ideal of R and J is a radical ideal of S.

PROOF. Let I be a radical ideal of R × S. We may assume that I 6= R × S. So I
is an intersection of prime ideals, each of which is a subproduct. So I = I1 × I2 is
a subproduct where Ii is either the whole ring or an intersection of prime ideals. In
either case Ii is a radical ideal. 2

Our next goal is to characterize the commutative rings R with the property that for
each commutative ring S, every primary ideal of R × S is a subproduct. We need the
following lemma.
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LEMMA 8. Let R and S be commutative rings.

(1) If A 6= R is an ideal with
√

A = R, then A is primary.
(2) If Q is a primary ideal of R × S with

√
Q 6= R × S, then either Q = Q1 × S

where Q1 is a primary ideal of R or Q = R × Q2 where Q2 is a primary ideal
of S.

PROOF. (1) Suppose that ab ∈ A where a, b ∈ R. Then
√

A = R gives bn
∈ A for

some n ≥ 1 regardless of whether a ∈ A or not. (2) Now
√

Q is a prime ideal
of R × S, so by Theorem 6 either

√
Q = P × S where P is a prime ideal of R

or
√

Q = R × P where P is a prime ideal of S. Without loss of generality we
may assume that

√
Q = P × S. Let x ∈ R − P; so (x, 0) 6∈

√
Q. Let s ∈ S. Then

(0, s) (x, 0) = (0, 0) ∈ Q and (x, 0) 6∈
√

Q, so (0, s) ∈ Q since Q is primary. Hence
0 × S ⊆ Q. So by Proposition 1, Q = Q1 × S for some ideal Q1 of R which is easily
seen to be primary. 2

Concerning the condition in Lemma 8(2) that
√

Q 6= R × S, a primary ideal A of
R × S with

√
A = R × S may or may not be a subproduct. For example, {(0, 0)} and

{(0, 0), (1, 1)} are both primary ideals of Z2 × Z2 with radical Z2 × Z2, but the first
is a subproduct (but not of the form given in Lemma 8(2)), while the second is not.

THEOREM 9. For a commutative ring R the following conditions are equivalent.

(1) R is a u-ring (that is, if A 6= R is an ideal of R, then
√

A 6= R).
(2) For each commutative ring S, each primary ideal of R × S has the form Q1 × S

where Q1 is a primary ideal of R or R × Q2 where Q2 is a primary ideal of S.
(3) For each commutative ring S, each primary ideal of R × S is a subproduct.
(4) Each primary ideal of R × R has the form Q × R or R × Q where Q is a

primary ideal of R.
(5) Each primary ideal of R × R is a subproduct.

PROOF. (1) ⇒ (2). Let Q be a primary ideal of R × S. If
√

Q 6= R × S,
the result follows from Lemma 8(2). So suppose that

√
Q = R × S. Let A

= {a ∈ R | (a, 0) ∈ Q}, an ideal of R. For r ∈ R, (r, 0) ∈ R × S =
√

Q, so (rn, 0) ∈

Q for some n ≥ 1, and hence rn
∈ A. So

√
A = R. Since R is a u-ring, A = R.

So R × 0 ⊆ Q. By Proposition 1 Q = R × Q2 for some ideal Q2 of S, necessarily
primary.

(2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are clear.
(5) ⇒ (1), Suppose that R is not a u-ring, so there is an ideal A ( R with

√
A = R.

So for each ideal B ⊇ A × A of R × R,
√

B = R × R. So by Lemma 8(1), B is
primary. So by hypothesis, B is a subproduct. So each ideal of R/A × R/A is a
subproduct. By Theorem 2, R/A is an e-ring. Let 0 6= x ∈ R/A. Then there is
an e ∈ R/A with ex = x . Since

√
A = R, there is an n ≥ 1 with en

= 0. But then
x = ex = e2x = · · · = enx = 0, a contradiction. 2

We next characterize the commutative rings R with the property that, for each
commutative ring S, the maximal ideals of R × S are subproducts. Of course a
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subproduct of R × S is a maximal ideal if and only if it has the form M × S where M
is a maximal ideal of R or R × N where N is a maximal ideal of S.

LEMMA 10. Let R be a commutative ring. If M is a maximal ideal of R that is
not prime, then R2

⊆ M. Thus M = M/R2 is a maximal subgroup of (R/R2, +).
Conversely, if R 6= R2 and M = M/R2 is a maximal subgroup of R/R2 where R2

⊆ M ( R with M a (maximal) subgroup of (R, +), then M is a maximal ideal of R
that is not prime.

PROOF. Suppose that M is a maximal ideal of R that is not prime. Choose a, b ∈ R
with ab ∈ M but a 6∈ M and b 6∈ M . Then since M is maximal, (M, a) = R = (M, b).
So R2

= (M, a) (M, b) ⊆ M . Since the ring R/R2 has the zero product, additive
subgroups are the same thing as ideals. Thus M/R2 is a maximal subgroup of R/R2.
The converse is immediate. 2

LEMMA 11. Let R and S be commutative rings with R = R2. Then every maximal
ideal of R × S has the form N1 × S or R × N2 where N1 (N2) is a maximal ideal
of R (S).

PROOF. Let M be a maximal ideal of R × S. If M is prime, then M has the desired
form by Theorem 6 and the remarks preceding Lemma 10. So we may suppose
that M is not prime. Then by Lemma 10, (R × S)2

⊆ M . But since R2
= R,

R × S2
= (R × S)2

⊆ M . Hence by Proposition 1, M is a subproduct necessarily of
the form R × N2 where N2 is a maximal ideal of S. 2

THEOREM 12. For a commutative ring R the following conditions are equivalent.

(1) The Abelian group (R/R2, +) has no maximal subgroups.
(2) For each commutative ring S, every maximal ideal of R × S has the form M × S

or R × N where M (N) is a maximal ideal of R (S).
(3) For each commutative ring S, every maximal ideal of R × S is a subproduct.
(4) Every maximal ideal of R × R has the form M × R or R × M where M is a

maximal ideal of R.
(5) Every maximal ideal of R × R is a subproduct.
(6) Every maximal ideal of R is prime.
(7) Every maximal ideal of R × R is prime.

PROOF. We have already remarked that (2) ⇔ (3) and (4) ⇔ (5).
(1) ⇒ (2). Suppose that R × S has a maximal idealM not of the form M × S or

R × N where M is a maximal ideal of R and N is a maximal ideal of S. So R2
6= R

and S2
6= S by Lemma 11 and R2

× S2
= (R × S)2

⊆M by Lemma 10 since M
cannot be prime by Theorem 6. Hence T = (R × S)/M is a simple Abelian group.
Now the natural map R/R2

× S/S2
→ T is an epimorphism. Since T is a simple

Abelian group, the natural map R/R2
→ R/R2

× S/S2
→ T is either onto or the zero

map. Since (R/R2, +) has no maximal subgroups, the map must be the zero map.
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Hence R × 0 ⊆M. So by Proposition 1,M is a subproduct and hence has the form
R × N for some maximal ideal N of S.

(2) ⇒ (4) and (3) ⇒ (5) are clear.
(4) ⇒ (1). Suppose that (R/R2, +) has a maximal subgroup N , so (R/R2)/N

≈ Zp for some prime p. Then ((R/R2) × (R/R2))/N × N ≈ ((R/R2)/N )

× ((R/R2)/N ) ≈ Zp × Zp. Now 〈(1, 1)〉 is a maximal subgroup of Zp × Zp.
Hence, by the correspondence theorem, (R/R2) × (R/R2) ≈ (R × R)/R2

× R2 has
a maximal subgroup not of the form (R/R2) × N ′ or N ′

× (R/R2) for some maximal
subgroup N ′ of R/R2. Hence R × R has a maximal ideal that is not of the form
R × M or M × R for some maximal ideal M of R, a contradiction.

(1) ⇔ (6) by Lemma 10.
(7) ⇒ (5) by Theorem 6.
(6) ⇒ (7). LetM be a maximal ideal of R × R. By (6) ⇒ (1) ⇒ (4)M= M × R

or R × M where M is a maximal ideal of R. But by hypothesis M is prime and hence
so are M × R and R × M . 2

REMARK 13. Observe that the proof of Theorem 12 shows that a non-zero Abelian
group A (R/R2 in Theorem 12) has a maximal subgroup if and only if A × A has a
maximal subgroup and then A × A has a maximal subgroup that is not a subproduct.

However, we cannot conclude from Theorem 12 that if R is a ring for which
(R/R2, +) has no maximal subgroups, then every ideal of R × R is contained in a
maximal ideal of the form M × R or R × M for some maximal ideal M of R. For if
R2 ( R, then R2

× R is a proper ideal of R × R that is not contained in a maximal
ideal of the form M × R (and hence is contained in no maximal ideal). For example,
if we take R = Zp∞ with the zero product, then R2

= 0 and R × R has no maximal
ideals. Hence Zp∞ × Zp∞ vacuously satisfies the condition that each maximal ideal
has the form M × Zp∞ or Zp∞ × M . One implication of the following result follows
from Theorem 12 and the preceding remarks.

THEOREM 14. Let R be a commutative ring. Then each proper ideal of R × R is
contained in a maximal ideal of the form M × R or R × M for some maximal ideal
of M of R if and only if R = R2 and each proper ideal of R is contained in a maximal
ideal of R.

PROOF. (⇒) Suppose that each proper ideal of R × R is contained in a maximal ideal
of the form M × R or R × M for some maximal ideal M of R. By the above remarks,
R = R2. If A is a proper ideal of R, then A × R is contained in a maximal ideal of
R × R of the form M × R where M is a maximal ideal of R. Then M is a maximal
ideal of R containing A.

(⇐) Let A be a proper ideal of R × R. Let A1 = {r ∈ R | (r, 0) ∈ A}. Suppose
that

√
A = R × R. Then for r ∈ R, (rn, 0) ∈ A for some n ≥ 1, so rn

∈ A1. Thus
√

A1 = R. Thus A1 = R. For if not, then A1 ⊆ M for some maximal ideal
M of R. Then R = R2 gives that M is prime (see the proof of Lemma 10).
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So
√

A1 ⊆
√

M = M ( R, a contradiction. Likewise A2 = {r ∈ R |(0, r) ∈ A} = R.
So A = R × R, a contradiction. Thus

√
A 6= R × R. Hence A ⊆ P for some prime

ideal P of R × R. Without loss of generality, we can assume that P = P × R where
P is a prime ideal of R. By hypothesis P ⊆ M for some maximal ideal M of R. But
then A ⊆ M × R, a maximal ideal of R × R. 2
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