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Abstract

Let R and S be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals,
radical ideals, primary ideals, and maximal ideals of R x S. Unlike the case where R and S have an
identity, an ideal (or primary ideal, or maximal ideal) of R x § need not be a ‘subproduct’ I x J of
ideals. We show that for a ring R, for each commutative ring S every ideal (or primary ideal, or maximal
ideal) is a subproduct if and only if R is an e-ring (that is, for r € R, there exists e, € R with e,r =r) (or
u-ring (that is, for each proper ideal A of R, +/A # R)), the Abelian group (R/R2, +) has no maximal
subgroups).
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Suppose that R and S are commutative rings with identity. It is well known that the
ideals of R x § have the form / x J where [ is an ideal of R and J is an ideal of S. It
easily follows that the prime (primary, maximal) ideals of R x § have the form P x §
or R x Q where P is a prime (primary, maximal) ideal of R or Q is a prime (primary,
maximal) ideal of S.

Suppose that R and S are commutative rings not necessarily with identity. If 7 is
an ideal of R and J is an ideal of S, then certainly / x J is an ideal of R x S. (It
1s obvious that if / € R and J € S with / x J an ideal of R x S, then [ is an ideal
of R and J is an ideal of S.) We call such an ideal I x J of R x S, a subproduct.
However, ideals of R x S need not be subproducts. For if A and B are non-zero
Abelian groups, then A x B with the zero product is a commutative ring whose ideals
are just the subgroups of A x B. However, itis rare [2, Theorem 2] that every subgroup
of A x B is a subproduct. For example, if A = B = Z;, then {(6, 6), (1, T)} is an ideal
of Zy x Z; that is not a subproduct.

A commutative ring R is an e-ring [3] if for each r € R, there exists an ¢, € R with
e,r =r. We show (Theorem 2) that a commutative ring R is an e-ring if and only if,
for each commutative ring S, every ideal of R x S is a subproduct. Now every prime
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ideal of R x S has the form P x S where P is a prime ideal of R or R x Q where
Q is a prime ideal of S (Theorem 6). However, a commutative ring R is a u-ring (for
each proper ideal A of R, v/A # R) [3] if and only if, for each commutative ring S,
every primary ideal of R x S has the form Q x S where Q is a primary ideal of R or
R x QO where Q is a primary ideal of S, or equivalently, each primary ideal of R x §
is a subproduct (Theorem 9). Finally, we determine (Theorem 12) the commutative
rings R with the property that, for each commutative ring S, each maximal ideal of
R x § is a subproduct.
We start with the following simple proposition whose proof is left to the reader.

PROPOSITION 1. Let R and S be commutative rings. Then the following conditions
are equivalent (for an ideal A of R x §).

(1) Everyideal of R x S (The ideal A of R x S) is a subproduct.

(2) Foreachr € Rands € S (with (r, s) € A), ((r, s)) = () x ().

(3) Foreachr € Rands € S (with (r, s) € A), (r, 0) € ((r, 5)) ((r, 0) € A).

(4) Foreachr € R and s € S (with (r, s) € A), there exista € R, be S, andn € Z
withr = ar + nr and 0 = bs + ns.

Of course, (3) of Proposition 1 is equivalent to (0, s) € ((r, s)). Note that (4) is
equivalent to 0= (—a)r 4+ (1 —n)r and s = (—b) s + (1 —n) s. Also note that if
an ideal A of R x S is a subproduct, then A=1 x J where [ ={r e R| (r, 0) € A}
(={reR|(r,s)e Aforsomese S}) and J={s€S5|(0,s) €A} (={seS|(,s)
€ A for some r € R}).

We next characterize the commutative rings R with the property that for each
commutative ring S, every ideal of R x § is a subproduct. Most of Theorem 2 appears
in [1, Proposition 3.1].

THEOREM 2. For a commutative ring R the following conditions are equivalent.

(1) R isan e-ring (that is, for each r € R, there exists an e, € R with e,r =r).

(2) For each commutative ring S, each ideal of R x S is a subproduct.

(3) Forall n =2, each ideal of R" has the form Iy x - - - x I,, where I; is an ideal
of R.

(4) For some n > 2, each ideal of R" is a subproduct as in (3).

(5) Everyideal of R x R is a subproduct.

PROOF. (1) = (2). Suppose that R is an e-ring. Let r € R and s € S. Choose ¢, € R
with e,r =r. Then (r, 0) = (e;, 0) (r, s) € ((r, 5)). By Proposition 1, every ideal of
R x S is a subproduct.

(2) = (3). Assume the result for n — 1 and then take § = R" .

3) = 4) = (5)is clear.

(5) = (1). By Proposition 1(4) with R = S and r = s € R, there exista, b € R and
n€Z withr =ar +nr and 0=br +nr. Hence r =ar —br =(a —b)r. So R is
an e-ring. O

We next give a ‘local’ alternative approach to (1) = (2) of the previous theorem.
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PROPOSITION 3. Let R and S be commutative rings and let I be an ideal of R x S.
Leto:R— R xS/ (¢ (r)=(r,0) + I) be the natural map. If ¢ (R) is an e-ring,
then I is a subproduct.

PROOF. Now ¢ (R) an e-ring says that, for (r,0) € R x S/1, there exists (e, 0)
€ R x S/I with (e,0) (r,0)=(r,0), or (r —er,0)el. Let (x,y)el. So there
exists e € R with (x —ex, 0) € I. Then (x,0) =(x —ex, 0) 4+ (e, 0) (x, y) € I. So
by Proposition 1, I is a subproduct. u

COROLLARY 4. Let R and S be commutative rings and I an ideal of R x S. If
R x S 1 is an e-ring, then I is a subproduct.

PROOF. If R x § /I is an e-ring, then so is its subring ¢ (R) where ¢ (R) is as defined
in Proposition 3. Indeed, if (e, e3) (r, 0) = (r, 0), then (ey, 0) (r, 0) = (7, 0). |

COROLLARY 5. Let R be an e-ring. Then for any commutative ring S, every ideal of
R x S is a subproduct.

PROOF. Let I be an ideal of R x S. If R is an e-ring, then so is its homomorphic
image ¢ (R) in R x S /1. By Proposition 3, I is a subproduct. O

We next determine the prime ideals of R x S. Here the situation is the same as in
the case where the rings have an identity.

THEOREM 6. Let R and S be commutative rings. Then an ideal P of R x S is prime
if and only if P has the form P x S where P is a prime ideal of R or R x Q where Q
is a prime ideal of S.

PROOF. («=) Clear. (=) Suppose that P is a prime ideal of R x S. Now
0 x8) (R x0)<CP,soeither0 x SCPorR x 0ZP. Suppose that R x 0 C P. It
follows from Proposition 1 that P = R x Q for some ideal Q of S. It is easily checked
that Q must be prime. The case where 0 x § C P is similar. O

COROLLARY 7. Let R and S be commutative rings. The radical ideals of R x S have
the form I x J where I is a radical ideal of R and J is a radical ideal of S.

PROOF. Let I be a radical ideal of R x S. We may assume that / # R x §. So [
is an intersection of prime ideals, each of which is a subproduct. So I = 1] x I is
a subproduct where I; is either the whole ring or an intersection of prime ideals. In
either case /; is a radical ideal. d

Our next goal is to characterize the commutative rings R with the property that for
each commutative ring S, every primary ideal of R x § is a subproduct. We need the
following lemma.
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LEMMA 8. Let R and S be commutative rings.

(1) If A # R is an ideal with /A = R, then A is primary.

(2) If Q is a primary ideal of R x S with /O # R x S, then either Q = Q1 x S
where Q1 is a primary ideal of R or Q = R x Qy where Q3 is a primary ideal
of S.

PROOF. (1) Suppose that ab € A where a, b € R. Then ~/A = R gives b" € A for
some n > 1 regardless of whether a € A or not. (2) Now /Q is a prime ideal
of R x S, so by Theorem 6 either /O = P x S where P is a prime ideal of R
or /O =R x P where P is a prime ideal of S. Without loss of generality we
may assume that /Q =P x S. Let x € R — P; so (x,0) & /0. Let s € S. Then
0, s) (x,0)=(0,0) € Q and (x, 0) € /O, so0 (0, s) € Q since Q is primary. Hence
0 x S € Q. So by Proposition 1, Q = Q1 x § for some ideal O of R which is easily
seen to be primary. O

Concerning the condition in Lemma 8(2) that /Q # R x S, a primary ideal A of
R x Swiths/A=Rx S may or may not be a subproduct. For example, {(0, 0)} and
{(0, 0), (1, 1)} are both primary ideals of Z, x Z, with radical Z, x Z, but the first
is a subproduct (but not of the form given in Lemma 8(2)), while the second is not.

THEOREM 9. For a commutative ring R the following conditions are equivalent.

(1) R isau-ring (that is, if A # R is an ideal of R, then ~/A # R).

(2) For each commutative ring S, each primary ideal of R x S has the form Q1 x S
where Q1 is a primary ideal of R or R x Q> where Q3 is a primary ideal of S.

(3) For each commutative ring S, each primary ideal of R x S is a subproduct.

(4) Each primary ideal of R x R has the form Q x R or R x Q where Q is a
primary ideal of R.

(5) Each primary ideal of R x R is a subproduct.

PROOF. (1) = (2). Let Q be a primary ideal of R x S. If /O#R x S,
the result follows from Lemma 8(2). So suppose that /O =R x S. Let A
={aeR|(a,0) e Q}, anideal of R. Forr € R, (r,0) e R x S =./Q, so (r",0) €
Q for some n > 1, and hence r* € A. So «/Z: R. Since R is a u-ring, A = R.
So R x 0 C Q. By Proposition 1 Q = R x Q» for some ideal O, of S, necessarily
primary.

2)= B)= () and 2) = (4) = (5) are clear.

(5) = (1), Suppose that R is not a u-ring, so there is an ideal A C R with /A = R.
So for each ideal BD A x A of Rx R, V/B=R x R. So by Lemma 8(1), B is
primary. So by hypothesis, B is a subproduct. So each ideal of R/A X R/A is a
subproduct. By Theorem 2, R/A is an e-ring. Let 0# x € R/A. Then there is
an e € R/A with ex = x. Since /A =R, there is an n > 1 with ¢" = 0. But then

X=ex=e?x=-..-=¢"x =0, a contradiction. O

We next characterize the commutative rings R with the property that, for each
commutative ring S, the maximal ideals of R x § are subproducts. Of course a
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subproduct of R x § is a maximal ideal if and only if it has the form M x S where M
is a maximal ideal of R or R x N where N is a maximal ideal of S.

LEMMA 10. Let R be a commutative ring. If M is a maximal ideal of R that is
not prime, then R* C M. Thus M = M/R? is a maximal subgroup of (R/R?, +).
Conversely, if R # R> and M = M/R? is a maximal subgroup of R/R> where R?
C M C R with M a (maximal) subgroup of (R, +), then M is a maximal ideal of R
that is not prime.

PROOF. Suppose that M is a maximal ideal of R that is not prime. Choose a, b € R
withab € M buta & M and b ¢ M. Then since M is maximal, (M, a) = R = (M, b).
So R?= (M, a) (M, b) C M. Since the ring R/R2 has the zero product, additive
subgroups are the same thing as ideals. Thus M/R? is a maximal subgroup of R/R?.
The converse is immediate. O

LEMMA 11. Let R and S be commutative rings with R = R>. Then every maximal
ideal of R x S has the form Ny x S or R x N> where N1 (N3) is a maximal ideal

of R (S).

PROOF. Let M be a maximal ideal of R x S. If M is prime, then M has the desired
form by Theorem 6 and the remarks preceding Lemma 10. So we may suppose
that M is not prime. Then by Lemma 10, (R x S)2 C M. But since R? =R,
R x 82 =(R x §)?> € M. Hence by Proposition 1, M is a subproduct necessarily of
the form R x N, where N> is a maximal ideal of S. a

THEOREM 12. For a commutative ring R the following conditions are equivalent.

(1)  The Abelian group (R/R?, +) has no maximal subgroups.

(2) For each commutative ring S, every maximal ideal of R x S has the form M x S
or R x N where M (N ) is a maximal ideal of R (S).

(3) For each commutative ring S, every maximal ideal of R x S is a subproduct.

(4) Every maximal ideal of R X R has the form M x R or R x M where M is a
maximal ideal of R.

(5) Every maximal ideal of R x R is a subproduct.

(6) Every maximal ideal of R is prime.

(7)  Every maximal ideal of R x R is prime.

PROOF. We have already remarked that (2) < (3) and (4) < (5).

(1) = (2). Suppose that R x S has a maximal ideal M not of the form M x § or
R x N where M is a maximal ideal of R and N is a maximal ideal of S. So R? # R
and S2# S by Lemma 11 and R? x §? = (R x §)> € M by Lemma 10 since M
cannot be prime by Theorem 6. Hence T = (R x S)/M is a simple Abelian group.
Now the natural map R/R* x S/S? — T is an epimorphism. Since 7T is a simple
Abelian group, the natural map R/R?> — R/R? x §/S% — T is either onto or the zero
map. Since (R/R?, +) has no maximal subgroups, the map must be the zero map.
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Hence R x 0 € M. So by Proposition 1, M is a subproduct and hence has the form
R x N for some maximal ideal N of S.

(2) = (4) and (3) = (5) are clear.

(4) = (1). Suppose that (R/R?, 4+) has a maximal subgroup N, so (R/R%)/N
~Z, for some prime p. Then ((R/R?) x (R/R%)/N x N~ ((R/R*)/N)
x ((R/R?)/N) XLy x Lp. Now ((1, 1)) is a maximal subgroup of Lip X L.
Hence, by the correspondence theorem, (R/Rz) X (R/Rz) ~ (R x R)/R2 x R? has
a maximal subgroup not of the form (R/R?) x N’ or N’ x (R/R?) for some maximal
subgroup N’ of R/R?. Hence R x R has a maximal ideal that is not of the form
R x M or M x R for some maximal ideal M of R, a contradiction.

(1) < (6) by Lemma 10.

(7) = (5) by Theorem 6.

(6) = (7). Let M be a maximal idealof R x R. By (6) = (1) = 4 M =M x R
or R x M where M is a maximal ideal of R. But by hypothesis M is prime and hence
soare M x Rand R x M. O

REMARK 13. Observe that the proof of Theorem 12 shows that a non-zero Abelian
group A (R/R? in Theorem 12) has a maximal subgroup if and only if A x A has a
maximal subgroup and then A x A has a maximal subgroup that is not a subproduct.

However, we cannot conclude from Theorem 12 that if R is a ring for which
(R/R?, +) has no maximal subgroups, then every ideal of R x R is contained in a
maximal ideal of the form M x R or R x M for some maximal ideal M of R. For if
R? C R, then R? x R is a proper ideal of R x R that is not contained in a maximal
ideal of the form M x R (and hence is contained in no maximal ideal). For example,
if we take R = Zpoo with the zero product, then RZ=0and R x R has no maximal
ideals. Hence Zp,~ x Zp~ vacuously satisfies the condition that each maximal ideal
has the form M X Z,~ or Zp~ x M. One implication of the following result follows
from Theorem 12 and the preceding remarks.

THEOREM 14. Let R be a commutative ring. Then each proper ideal of R x R is
contained in a maximal ideal of the form M x R or R x M for some maximal ideal
of M of R if and only if R = R? and each proper ideal of R is contained in a maximal
ideal of R.

PROOF. (=) Suppose that each proper ideal of R x R is contained in a maximal ideal
of the form M x R or R x M for some maximal ideal M of R. By the above remarks,
R = R?. If A is a proper ideal of R, then A x R is contained in a maximal ideal of
R x R of the form M x R where M is a maximal ideal of R. Then M is a maximal
ideal of R containing A.

(<) Let A be a proper ideal of R x R. Let Ay ={r e R| (r,0) € A}. Suppose
that v/A = R x R. Then for r € R, (r",0) € A for some n>1, so r" € A;. Thus
VA1 =R. Thus Aj=R. For if not, then A; C M for some maximal ideal
M of R. Then R = R? gives that M is prime (see the proof of Lemma 10).
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So /A; C VM =M C R, a contradiction. Likewise A ={r € R|(0,r) € A} =R.
So A =R x R, a contradiction. Thus v/A # R x R. Hence A C P for some prime
ideal P of R x R. Without loss of generality, we can assume that P = P x R where
P is a prime ideal of R. By hypothesis P € M for some maximal ideal M of R. But
then A € M x R, a maximal ideal of R x R. a
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