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Abstract

Automated phase maps are an important tool for characterizing samples but the data quality must be evaluated. Common options include
the overlay of phases on backscattered electron (BSE) images and phase composition averages and standard deviations. Both these methods
have major limitations. We propose two methods of evaluation involving principal component analysis. First, a red—green-blue composite
image of the first three principal components, which comprise the majority of the chemical variation, which provides a good reference
against which phase maps can be compared. Advantages over a BSE image include discriminating between similar mean atomic number
phases and sensitivity across the entire range of mean atomic numbers present in a sample. Second, principal component maps for
identified phases, to examine for chemical variation within phases. This ensures the identification of unclassified phases and provides the
analyst with information regarding the chemical heterogeneity of phases (e.g., chemical zoning within a mineral or mineral chemistry
changing across an alteration zone). Spatial information permits a good understanding of heterogeneity within a phase and allows
analytical artifacts to be easily identified. These methods of evaluation were tested on a complex geological sample. K-means clustering and

K-nearest neighbor algorithms were used for phase classification, with the evaluation methods demonstrating their limitations.
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Introduction

Automated phase mapping is a widely available tool within
software suites for energy-dispersive spectrometers (EDS) on
scanning electron microscopes and is now available for electron
probe microanalysis (EPMA) using wavelength-dispersive
spectrometers (WDS). Phase mapping uses multidimensional
data (spatially defined element intensities or concentrations) and
identifies chemically distinct phases to give their spatial dis-
tribution. The automated algorithms included in the instrument
software make this process straightforward for the operator [e.g.,
a form of principal component analysis (PCA) using rotation
(Kotula et al., 2003), a clustering algorithm in Oxford Instruments
AutoPhaseMap software (Statham et al., 2013), K-means clus-
tering in Probe for EPMA software (www.probesoftware.com),
and hierarchical cluster analysis in JEOL EPMA software (Mori
et al., 2017)].

It is difficult to assess the quality of a phase classification,
Munch et al. (2015) demonstrate some of the limitations of phase
algorithms and suggest the need for expert review. Common
options to evaluate phase classifications include overlay on
backscattered electron (BSE) images and phase composition
averages and standard deviations. Liebske (2015) provides an
improvement in the open source package iSpectra which allows
overlays on principal component (PC) maps or red—green-blue
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(RGB) elemental maps. Phase composition averages are often
difficult to interpret, being affected by convoluted pixels at grain
boundaries, where the limits of analytical resolution results in
measured intensities consisting of a convolution of adjacent
phases. Van Hoek et al. (2011) and Liebske (2015) showed how
these “bad” pixels can be eroded to give phase composition
averages reflecting the true compositions, but this processing is
not available in most phase mapping packages. Algorithms can be
independently verified for reference samples against methods
such as manual thresholding (Maloy & Treiman, 2007) or EBSD
phase maps (Statham et al., 2013), but this does not ensure
the algorithm works correctly for all samples and operating

conditions (Munch et al., 2015).
In this study K-means clustering and K-nearest neighbor (KNN)

algorithms are used to demonstrate some of the problems and show
how, irrespective of the phase mapping algorithm, PCA can be used
to assess the quality of phase classification. PCA assigns new
dimensions which capture the variability of the data set; the first
dimension corresponds to maximum variance; each subsequent
dimension is orthogonal to the previous and captures the maximum
remaining variance (Tan et al., 2006). The merit of this technique is
it provides an unbiased method of reducing multiple dimensional
systems (e.g., ten chemical elements) to a small number of
dimensions which can be visualized graphically. PCA and various
refinements are commonly used in the generation of phase maps
(e.g., Kotula et al, 2003; Parish & Brewer, 2010), here we
demonstrate their strength in evaluation of phase maps.

This study uses quantitative maps for the phase classification.
Quantitative maps provide significant advantages over raw count
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maps, allowing the interrogation of phase data and, importantly,
average phase compositions to be extracted.

Methods and Materials

A complex sample was selected with multiple minerals of varying
abundance and finely intergrown minerals at or below the limits
of analytical resolution (controlled by accelerating voltage and
pixel/step size) (see Fig. 1c). The sample is a metamorphosed
basalt xenolith within a kimberlite (for details see Buse et al.,
2010). The area mapped extends from the kimberlite into the
basalt xenolith (Fig. 1a) with alteration of the basalt most marked
adjacent to the kimberlite. Quantitative element maps were
collected using five WDS on a JEOL 8530F (JEOL Ltd., Tokyo,
Japan) EPMA at the University of Bristol. Elements collected were
Si, Na, Ca, Fe, and Ti in the first pass and Mg, Al, K, Mn in the
second pass. The operating conditions were 20kV accelerating
voltage, 40 nA beam current, 10 ms dwell time, and a 5um step
size. The quantitative element maps are combined into a single
array (X coordinate, Y coordinate, Si, Na, Ca, Fe, Ti, Mg, Al, K,
Mn) for processing.

The phase maps were generated and evaluated using R
(General Public License software for statistical computing), which
includes K-means clustering, KNN, and PCA packages.

K-means clustering requires the initial cluster centers to be
specified or determined randomly for a given number of clusters.
Data are classified through a series of iterative loops in which all
the points (pixels) are assigned to the nearest cluster center
(centroid) and the centroid position is updated. Here K-means
clustering was run in three variants: (1) using randomly assigned
initial cluster centers for 15 clusters; (2) using specified cluster
centers for discrete phases identified from the RGB composite
image of PCs. In total, nine discrete phases were identified
(Fig. 1b and Table 1). For each discrete phase a single area
composition was extracted from the element maps; (3) using
maximum element intensities as the initial cluster centers.
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Table 1. List of Phases Identified from Red-Green-Blue Composite Image of
the First Three Principal Components.

Phase Mineral Ideal Formula

1 Ilmenite FeTiO3

2 Pit

3 Bultfonteinite Ca,Si0,(OH,F),

4 Clinopyroxene Ca(Mg,Fe)Si,0¢

5 Serpentine/chlorite (Mg,Fe,Mn,Al);,
(SiAl)g020(OH)16

6 Perovskite CaTiOs

7 Hydrogarnet Cas(Fe,Ti,Al),Si,0g(0OH),

8 Serpentine + bultfonteinite intergrowth

9 Sr-apatite (CaSrBa)s(P04);(0OH,F)

Numbers correspond to those given on Figure 1b.

KNN requires a reference data set against which the pixel
compositions are checked. The reference data set consisted of the
compositions of the nine discrete phases (Fig. 1b and Table 1)
selected for K-means specified cluster centers. A normal
distribution using the measured standard deviation was applied to
each composition to present a range of compositions for each
phase. For each pixel the ten closest reference values in chemical
space were examined, a pixel was assigned to a phase if at least
seven of the reference values belonged to the same phase,
otherwise it was rejected.

For PCA, the data set was centered in PC space so that the
mean of each PC is 0 rather than the mean of the compositional
data. This ensures that the first PC is not dominated by the
position of the data set with respect to the origin (Jolliffe, 2002).

Figure 1. a: Backscattered electron (BSE) image showing mapped area from which the phase map was generated. Figures 2 and 3 correspond to expanded regions highlighting
features within the phase maps. b: Red-green-blue composite image of the first three principle components. Locations from which the area compositions where extracted for
each identified phase are shown. c: BSE Image showing the finely intergrown phase hydrogarnet and serpentine [purple colour on (b)]. Location of image is given by white

@

rectangle marked “c” on (b). Mineral abbreviations are as follows: Bul, bultfonteinite; Hgt, hydrogarnet; Srp, serpentine.
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The data set was not scaled (a covariance matrix was used);
scaling (a correlation matrix) gives equal weight to the variance of
each component (here chemical element) and is important where
components of different units (e.g., length, weight, etc.) are being
analyzed (Jolliffe, 2002). It is not desirable here, because the units
of each of component (wt%) are the same. By not scaling, the
variance is dominated by major element variance rather than
giving trace elements equal weight. This is desirable because the
phase separation is based on major constituents and noise
dominates the trace element signals (van den Berg et al., 2006).
PCA was conducted on the entire data set of multiple element
intensities for the whole map to produce RGB composite images
of the first three PCs. PCA was also conducted on subsets of the
data, consisting of the element intensity pixels for a single phase
to produce phase-PC maps and scatter graphs.

Results
RGB-PC Images

Figure 2 compares several phase mapping algorithms to a BSE
image and an RGB composite image consisting of the first three
PC, derived from PCA. The RGB-PC image provides a good tool
to assess phase maps; similar to the use of BSE images in some
phase analysis software (e.g., Thermo Scientific NSS permits
overlays of phases onto a BSE image). Figure 2b shows that the
RGB-PC image provides a greater phase separation than the false-
color BSE image (Fig. 2e). The BSE image has difficultly both
separating phases with similar mean atomic number [e.g., on
Fig. 2e colors of bultfonteinite (yellow-green), clinopyroxence
(green-blue), and serpentine (blue) overlap; see Table 1 for
mineral compositions] and covering the range of mean atomic
numbers present in the image. The high atomic number phases
ilmenite, perovskite, and barite cannot be separated (red on
Fig. le) with the detector brightness and contrast set for
sensitivity at the low mean atomic numbers. BSE images are
more sensitive to topography than most X-ray intensities. The
RGB-PC image is derived from the same data set (X-ray inten-
sities) as the phase maps. BSE images can still make a contribu-
tion in checking phase maps; dependant on mean atomic number,
they can identify variations not measured by X-ray intensities
(e.g, H,O in normalized EDS data; Munch et al,, 2015). In the
case of Figure 2 only the BSE image differentiates between barite
and holes—with sulfur and barium not measured. Although the
phase mapping system, using only WDS data for the measured
elements, cannot be expected to differentiate between the
two, a comparison with the BSE image alerts the analyst. The
RGB-PC image extends the evaluation tools suggested by Liebske
(2015) and accounts for most of the chemical variation within
the sample.

The RGB-PC image provides a reference for a visual assess-
ment of the phase maps. The number of phases and textural
features (e.g., shape of grains) can be checked. In the examples
given, K-means with 15 random clusters (Fig. 2a) subdivided
hydrogarnet and serpentine into numerous phases (on Fig. 2a
hydrogarnet is orange, dark red, and black, and serpentine is blue,
pink, and violet; see also Table 2). The other phase maps (Figs. 2c,
2d, 2f) provide a close match to the RGB-PC image. In addition
K-means with 15 random clusters (Fig. 2a) identifies ilmenite and
perovskite as a single “oxide” phase, which from RGB-PC image
can be seen to consist of chemically distinct phases. The other
phase maps correctly separate this “oxide” phase into ilmenite
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and perovskite. This distinction is critical for interpreting the
sample, with ilmenite absence from the margin of the basalt
xenolith as a result of alteration penetrating into the basalt from
the kimberlite (Buse et al., 2010).

Serpentine and bultfonteinite form fine intergrowths below
analytical resolution; on the RGB-PC image (Figs. 2b, 2h) this
intergrowth forms a distinct phase (dark purple distinct from the
bright pink of serpentine). This phase is well characterized using
the KNN algorithm, which on Figure 2i in comparison with the
RGB-PC image can be seen to faithfully reproduce the serpentine,
serpentine-bultfonteinite intergrowth, and hydrogarnet phases.
Again K-means with 15 random clusters can be seen to split the
phases into many subdivisions (serpentine-bultfonteinite inter-
growth is split into dark brown and gray phases). The K-means,
using specified clusters or maximum intensity, struggles in the
classification of serpentine and serpentine-bultfonteinite inter-
growth. Serpentine and serpentine-bultfonteinite intergrowth are
under-represented, whereas a mixed serpentine phase (pink on
Figs. 21, 2j) and bultfonteinite are over-represented (see black
arrows on Fig. 2] in comparison with Figs. 2i, 2h).

The main distinction between KNN and K-means using
specified clusters or maximum intensity, is that in the latter the
cluster center can shift during the iterative process. The result of
this is shown in comparison with Table 1 where phase 2 has
shifted and now represents an additional mixed serpentine phase,
which diminishes the serpentine-bultfonteinite intergrowth phase
(pink phase; Figs. 21, 2j) and misclassifies convoluted boundary
pixels. The latter is seen in Figure 3c where the black arrow
identifies pink boundary pixels, a convolution of serpentine and
hydrogarnet, not visible on either the RGB-PC image (Fig. 3b)
nor the KNN phase classification (Fig. 3a). Another example of
iterative shifting of the cluster center is phase 9 in Table 1
(lilac phase on phase maps), which has shifted so that the phase
includes both the initial apatite (see Fig. 3c), mixed phases
(see Figs. 3¢, 2l circles), and pits and barite (Figs. 2d, 2f).

Phase analysis software commonly reports phase composition
averages and standard deviations. Table 2 gives the values for
K-means with 15 random clusters. The values are difficult to
interpret as averages may differ significantly from the true com-
position. Table 3 gives the composition of clinopyroxene extracted
from several pixels within a single clinopyroxene crystal, here the
composition closely matches stoichiometry. Poor phase composi-
tion averages are often the product of analytical resolution (see van
Hoek et al.,, 2011; Liebske, 2015) as pixels at the margins of grains
can have convoluted X-ray intensities of multiple phases. The
phase may also include bad pixels where topography gives poor
results again skewing the phase average. Table 2 also shows the
problems of identifying mixed phases resulting from small grains
dominated by convoluted pixels of boundaries or finely intergrown
phases. To correctly identify phases, comparison with a RGB-PC
image can be of considerable help.

Phase-PC Maps

Phase-PC maps provide a useful tool to assess the homogeneity of
each phase and determine whether it includes multiple phases
which the algorithm has failed to discriminate. Figure 4a shows a
phase-PC map of the “oxide” phase generated from the K-means
algorithm using 15 random clusters. The phase-PC map clearly
distinguishes ilmenite (orange) from perovskite (purple). The
spatial separation and the magnitude of variance provides strong
evidence for two distinct phases.
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a K-means (15 random clusters) b RGB Princple components ¢ KNN

Srp+Bul

d Kmeans (specified initial e BSE f Kmeans (max element for initial
clusters) clusters)

Sl

i KNN

] Kmeans (specified initial k BSE ! Kmeans (max element for initial
clusters) clusters)

Figure 2. Comparison of phase maps with a false-coloured backscattered electron (BSE) image and red-green-blue (RGB)-principal component image. The area shown is a
small region of the map, part of the basalt xenolith. The location is given on Figure la. For the K-nearest neighbor algorithm (c) black pixels are unclassified pixels. High
magnification images (g-1) are shown for the area represented by the white box in (b). Arrows in (l) correspond to areas where serpentine-bultfonteinite is underrepresented in
comparison to (h) and (i). Circles in (l) correspond to misclassified convoluted pixels. Mineral abbreviations are as follows: Brt, barite; Bul, bultfonteinite; Cpx, clinopyroxene;
Hgt, hydrogarnet; Ilm, ilmenite; Prv, perovskite; Srp, serpentine.

https://doi.org/10.1017/51431927618000090 Published online by Cambridge University Press


https://doi.org/10.1017/S1431927618000090

120 Ben Buse and Stuart Kearns

Table 2. Average Phase Compositions and Standard Deviations for K-Means Clustering Using 15 Random Clusters.

Identification Na,O MgO Al,03 Sio, K,0 Cao TiO, FeO MnO Total

Hydrogarnet 0.08 4.06 7.03 29.97 0.04 31.50 1.36 13.18 0.22 87.44
690.58 47.43 26.51 6.37 412.50 6.20 72.00 13.76 167.54

Serpentine + bultfonteinite 0.20 11.61 2.12 32.84 0.04 29.15 0.37 4.32 0.09 80.74
281.50 27.15 67.94 12.60 484.84 10.38 133.59 55.83 336.37

Oxides 0.71 2.63 2.90 8.96 0.05 26.39 36.74 12.66 0.23 91.27
157.87 151.71 75.29 66.45 377.52 39.64 32.41 113.57 219.36

Hydrogarnet 0.11 1.54 2.57 26.71 0.01 40.14 0.43 5.97 0.11 77.59
508.51 84.70 55.00 9.55 899.97 4.75 98.20 33.63 292.45

Hydrogarnet 0.07 2.01 7.36 24.95 0.03 33.22 3.07 11.75 0.18 82.64
743.48 85.81 34.04 8.50 464.74 6.44 104.75 16.55 199.97

Serpentine 0.16 23.61 5.79 33.52 0.21 10.44 0.46 7.16 0.15 81.51
310.02 13.17 62.19 12.43 261.26 36.97 110.00 38.96 214.63

Hydrogarnet 0.09 2.26 4.56 27.84 0.02 36.47 0.81 10.55 0.19 82.80
591.64 83.25 35.22 7.70 552.26 5.36 74.91 18.29 190.54

Serpentine 0.08 31.68 4.69 36.12 0.12 3.04 0.13 4.68 0.11 80.65
521.29 10.85 5541 10.33 393.15 93.63 175.92 45.56 268.42

Augite 0.67 15.47 1.45 49.23 0.02 20.79 0.56 6.48 0.13 94.80
127.56 22.36 110.15 9.87 901.96 16.23 64.61 29.59 246.93

Bultfonteinite + serpentine 0.14 6.39 1.37 28.78 0.02 36.60 0.19 241 0.06 75.95
379.70 36.03 78.49 10.10 686.74 7.04 149.18 75.24 519.18

Hydrogarnet 0.05 1.88 6.86 27.04 0.04 33.36 1.32 15.96 0.23 86.75
964.25 82.19 25.98 7.49 416.93 6.79 82.74 13.95 161.73

Apatite 0.76 1.74 3.32 14.92 0.08 28.55 0.73 4.19 0.09 60.38
137.05 56.73 124.80 35.46 207.64 23.65 177.01 64.07 347.44

Serpentine 0.18 16.98 5.14 30.61 0.11 19.10 0.83 8.16 0.16 81.27
317.18 19.57 62.35 14.06 285.14 17.29 122.78 41.28 210.56

? 0.10 9.70 6.02 28.58 0.06 26.35 1.42 11.94 0.20 84.38
529.96 26.32 41.95 11.15 323.73 11.17 105.09 24.38 175.08

Bulfonteinite 0.11 1.29 0.64 27.57 0.01 44.12 0.10 1.16 0.03 75.02
466.91 105.34 120.89 8.64 1202.30 5.07 213.24 101.80 1110.73

Phase identification was made with reference to spatial distribution, backscattered electron, and red-green-blue principal component images.
? indicates unidentified.
High abundance elements are shown in bold. Standard deviation % is given in italic. Bold-italics are the standard deviation of high abundance elements.

Phase-PC maps for perovskite and ilmenite, which the KNN
algorithm correctly identifies as two separate phases, shows the
perovskite to be relatively homogenous, whereas ilmenite contains
two spatially and chemically distinct phases. Both the perovskite and
ilmenite phases include some chemical variation from convolution
at the margins of grains. Using PC-1 ilmenite can be subdivided into
two compositions (Table 4). The small purple grains in the kim-
berlite (identified on Fig. 4c), representing Fe-Ti-Mg spinel, are
distinct from the ilmenite within the basalt xenolith.
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The PC-1 phase-PC map shows this distinction less clearly for
ilmenite identified using K-means with specified clusters. The ilme-
nite data contains more scatter than observed for the KNN ilmenite
phase. This is consistent with K-means not rejecting any “bad” pixels,
unlike KNN. For the low abundance phase this scatter has significant
influence and results in the rotation of the PCs (see Figs. 4g, 4h). In
this case the PC-2 phase-PC map most clearly distinguishes ilmenite
from Fe-Ti-Mg spinel, whereas PC-1 shows variations within grains
suggestive of distinguishing convoluted pixels.
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Figure 3. Comparison of phase maps with a red-green-blue (RGB)-principal component (PC) image for the kimberlite region of the map. The location is show on Figure 1a.
High magnification images are shown to the right for the area represented by the white box. For K-nearest neighbor (KNN) algorithm (a) black pixels are unclassified pixels.

Mineral abbreviations are as follows: Ap, apatite; Hgt, hydrogarnet; Srp, serpentine.

Figure 5 shows phase-PC maps for clinopyroxene, serpentine,
and bultfonteinite, all of which are relatively homogenous. A
comparison with the PC scatter graphs illustrates the benefit of

spatial information. Both clinopyroxene and serpentine show
small PC variations. On the maps it is evident that for clino-
pyroxene this is uniformly distributed whereas for serpentine it

Table 3. Comparison of Phase Average and Extracted Composition for a Selected Area.

Wt% Na,0 MgO Al,O3 Sio, K;0 Ca0 TiO, FeO MnO Total

Phase average 0.67 15.47 1.45 49.23 0.02 20.79 0.56 6.48 0.13 94.80
127.56 22.36 110.15 9.87 901.96 16.23 64.61 29.59 246.93

Spot extract 0.18 15.40 0.18 55.16 -0.04 23.49 0.30 4.70 0.19 99.57
410.93 9.22 226.55 3.52 279.49 9.70 55.15 33.00 170.59 3.85

apfu Na Mg Al Si K Ca Ti Fe Mn Total

Phase average 0.051 0.902 0.067 1.926 0.001 0.871 0.016 0.212 0.004 4.050

Spot extract 0.013 0.843 0.008 2.024 0.000 0.924 0.008 0.144 0.006 3.970

Data are for the clinopyroxene phase, with phase average calculated from K-means clustering using 15 random clusters.
High abundance elements are shown in bold. Standard deviation % is given in italic. Bold-italics are the standard deviation of high abundance elements.
Atoms per formula unit (apfu) are calculated on the basis of 6 oxygens.
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Figure 4. Phase-PC Maps (a-e) examining variation within the oxide, perovskite and ilmenite phases. High magnification insets are shown for the bottom, middle and top of the
maps, which correspond to the kimberlite, xenolith margin and xenolith interior. PC scatter graphs (f-h) show the alignment of orthogonal PCs with data variance. KNN, K-
nearest neighbor; PC, principal component.
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Table 4. Extracted Compositions for the Discrete Groupings Identified from Phase-PC1 (Principal Component) Map of Ilmenite Phase (K-Nearest Neighbor

Algorithm).

<0 (In kimberlite) 0.00 14.01 4.05 3.89 0.00 4.68 16.42 48.37 0.92 Spinel
0.67 4.60 1.80 3.32 0.17 3.36 4.61 8.09 0.57

>0 (In xenolith) 0.00 2.13 2.25 7.70 0.00 9.45 39.58 33.62 0.71 Ilmenite
0.91 1.23 1.84 4.66 0.15 5.55 7.59 5.71 0.55

Reference composition (from xenolith) 1.97 3.43 0.00 0.00 0.00 0.92 46.93 43.15 0.10 Ilmenite

For comparison the extracted composition for ilmenite used in the reference data set is given.

Standard deviation are given in italic.

varies between the kimberlite and the xenolith. Variation within
the clinopyroxene probably relates to pixel convolution although
could relate to chemical zonation within the clinopyroxene.
Variations within the serpentine suggest the chemistry of the
serpentine differs spatially. The average compositions (Table 5)
are inaccurate and difficult to interpret possibly due to convoluted
pixels as discussed above. Beam damage may also add to the
reduced data quality. However, variations in Al, Si, Mg, and Fe,
with Al enriched in the kimberlite are clearly apparent. The
presence of spatial variations provides important information
about the sample, which should prompt further detailed investi-
gations to understand the cause. Element maps extracted for the

Phase clinopyroxene,
K-means 15 clusters

Phase serpentine,
K-means 15 clusters

0 50 100 150 200 250 300 350 400 450 500

-20 T T T T T T T -20 T T T T T T T

serpentine phase (Figure 6) confirm the variations suggested by
the average compositions (Table 5) with Al substituting for Si and
Mg for Fe.

Figures 5c to 5d compare bultfonteinite from K-means using 15
clusters and from K-means-specified clusters. The difference can be
explained as K-means-specified clusters have fewer clusters resulting
in the bultfonteinite phase being less tightly constrained and con-
taining marginal data. This incorporation of marginal data is shown
in Figure 5d where the center of the grains (purple) corresponds
closely to Figure 5¢c, whereas the rest of the data (orange) consists of
increasingly mixed compositions excluded from the more tightly
constrained cluster of K-means using 15 clusters.

c d

Phase bultfonteinite,
K-means specified
clusters

Phase bultfonteinite,
K-means 15 clusters

PC1

10

-

Figure 5. Comparison of Phase-PC Maps and PC scatter graphs for (a) clinopyroxene, (b) serpentine, and (c-d) bultfonteinite. PC, principal component.
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Table 5. Extracted Compositions for the Discrete Groupings of Serpentine Identified in the Phase-PC (Principal Component) Map.

PC1 Threshold (Location) Na,O MgO Al,03 Sio, K,0 Ca0 Tio, FeO MnO Total
>0 (xenolith) 0.08 33.20 3.35 38.86 0.10 3.89 0.15 4.02 0.08 83.74
<-4 (kimberlite: rims of olivine pseudomorphs 0.09 28.79 7.56 32.05 0.21 2.12 0.12 6.25 0.17 77.36
<0 and >-4 (kimberlite: olivine pseudomorphs) 0.07 30.29 5.91 33.60 0.15 2.26 0.11 5.29 0.14 77.81

Olivine pseudomorphs are the large sub-rounded grains within the kimberlite which were originally olivine but have been replaced by serpentine.

Discussion

Phase classification is complex and subject to the limitations of the
algorithm used. PCA provides a method of evaluating the quality of
a given phase classification method. PCA is used in reference to
phase maps and element maps: checking that the phase maps
represent the variation identified in the RGB-PC image and checking
for any variation within an individual phase. In the latter case,
variation within a phase is explained by the elemental data extracted
for the discrete variations in PC identified (e.g, Table 4 where
extracted compositions allowed Fe-Ti-Mg spinel to be identified
within the ilmenite phase). This use of PCA in reference to phase
maps and element maps avoids the difficulties associated with
interpreting PCs from their component weights (see Kotula et al,
2003). PCA requires an orthogonal arrangement of components
which may not correspond to data variation (Kotula et al., 2003) as
shown in the phase-PC maps and scatter graphs in Figures 4d, 4e,
and 4h. This problem is mitigated in the case of RGB-PC images for
it is a composite of 3 PCs. In some cases the orthogonal requirement
can obscure variations in phase-PC maps, suggesting in these cases
phase-PC maps for each PC are required, or possibly scatter graphs
or RGB-PC images for the phase. Improvements might be possible
through rotating PC or by removing the orthogonal constraint.
Regardless the phase-PC maps show the value of this or similar
techniques in identifying variations in multidimensional space
within individual phases and displaying their spatial component.
The data presented show how PCA can be used to identify
incorrect phase classifications; here exposing the limitations of

MgO

K-means clustering using random clusters. K-means works best for
phases of similar abundance, which form spherical clusters in che-
mical space and where the initial allocated centers reflect phase
distribution (Tan et al, 2006). Both the RGB-PC image and the
phase-PC maps identify the “oxide” phase and the phase-PC maps
show the “oxide” phase to actually consist of perovskite and ilme-
nite. Due to their low abundance, these phases are not distinguished
using randomly allocated cluster centers, which only subdivides
more abundant phases (Fig. 7, see also Munch et al,, 2015).
Specifying initial cluster centers, either by identifying phases
beforehand (K-means specified clusters, Fig. 2d, see also Munch
et al,, 2015) or by using maximum element intensities (K-means
max element, Fig. 2f), to a large extent overcomes these limita-
tions by ensuring the initial cluster centers represent phase dis-
tribution. The use of maximum element intensities does not
require prior knowledge of phases but requires the number of
phases to match the number of elements and for phases to be
discriminated to a large extent by a particular element. A variant
on this is using the KNN algorithm which does not iteratively
shift cluster centers and allows pixels to be rejected (not classi-
fied). KNN gives consistent results for spatially distinct regions of
the same rock sample; the absence of iteration means it is largely
unaffected by the absence of a phase within an individual map.
The danger with these methods is, in the case of specifying
phases, not all the phases present in the sample may have been
identified, and in the case of maximum element intensities, there
may be more phases than elements. In these cases, the phase PC
maps work well at identifying aggregate phases in which discrete
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Figure 6. a-d: Element maps extracted for the serpentine phase (identified using K-means with 15 clusters).
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Figure 7. Clusters identified using K-means with 15 random clusters. Low abundance
phases ilmenite and perovskite are identified as a single cluster. PC, principal
component.

phases have been classified together—as shown in the case of the
“oxide” phase, and also the Fe-Ti-Mg spinel phase which was
identified subsequent to phase analysis.

An alternative approach to overcoming the tendency for
K-means to subdivide high abundance phases before distin-
guishing low abundance phases, is a set of criteria which
recombine phases if certain thresholds are exceeded (Statham
et al,, 2013; Munch et al.,, 2015). With this approach, similar to
using maximum element intensity, prior knowledge of phases is
not required. However, it is still important to evaluate the output
classification (Munch et al., 2015).

Convoluted pixels cause many problems in phase analysis and
algorithms must ensure they are not assigned to distinct “boundary”
phases. To identify true phase compositions these pixels should be
rejected (van Hoek et al, 2011; Liebske, 2015) but for phase
abundance, spatial distribution and textural shape they must be
considered (Liebske, 2015). For the KNN algorithm it is important
that the phases within the reference data set correspond approxi-
mately to the phases present in the sample. If the number of phases
in the reference data set greatly exceeds that in the sample, there is a
high probability that the convoluted boundary phase pixels will
have a composition similar to a phase in the reference data set and
be misidentified. When evaluating phases it is important to be able
to distinguish between variance due to convoluted pixels and actual
variation due to chemical variation within a phase or the presence
of multiple phases. The example of phase-PC maps for serpentine
and bultfonteinite (Figs. 5b, 5¢) show the importance of spatial
information in making this assessment.

PC maps demonstrate how the generation of a phase map need
not be the end of the process. New phases may be identified allowing
the initial phase map to be revised. A phase could be subdivided
based on PCs and its chemistry extracted or phase map algorithms
could be rerun with an additional specified cluster. Where phase-PC
maps suggest variations within phases, for example, as shown in the
compositional difference between serpentine in the kimberlite and
the basalt xenolith, the user can further investigate thus improving
the sample characterization.

Conclusions

In agreement with other work (e.g., Munch et al., 2015), the data
presented illustrates the need for phase maps to be subjected to
critical analysis, exposing any limitations of the algorithm, or
operating conditions resulting in incorrect classification. The
performance of phase algorithms will vary depending on the
sample (Munch et al, 2015) and the input parameters
(the number of phases for K-means using random clusters; the
phases specified for KNN and K-means using specified clusters),
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making it important to check the data has been correctly classi-
fied. PC maps provide an easy solution to evaluate phase classi-
fication. RGB-PC images provide a good visual reference for
checking phase maps, more clearly discriminating between phases
than BSE images. Phase-PC maps provide a good method of
assessing variation within phases and identifying unclassified
phases with the spatial information important for discriminating
real chemical variance from convoluted pixels. The role of an
operator in checking phase maps introduces subjectivity but the
provision of spatial information allows the operator to make
high-quality decisions as to the nature of variance, resulting in
robust sample characterization. This process of evaluation of
phase maps allows further refinement and can provide additional
information about a sample prompting further investigation.

KNN is potentially a very useful method of phase classification
for geological samples, where the analysist is familiar with the
possible phases within the rock sample. It produces consistent
results similar to manual thresholding (e.g., Muir et al.,, 2012).
K-means with specified clusters produces similar results but is
more affected by the absence of a particular phase, when shifting
from area to area within or between rock samples.
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