
ON A QUESTION OF SEIDEL CONCERNING 
HOLOMORPHIC FUNCTIONS BOUNDED ON 

A SPIRAL 

K. F. BARTH AND W. J. SCHNEIDER 

Introduction. Let S be a spiral contained in D = {\z\ < 1} such that S 
tends to C — [\z\ = 1}. For the sake of brevity, by "f is bounded on 5" we 
shall mean that / is holomorphic in D, unbounded, and bounded on S. The 
existence of such functions was first discussed by Valiron (9; 10); see also 
(1; 3; 8). Valiron also proved that any function that is "bounded on a spiral" 
must have the asymptotic value oo (10, p. 432). Functions that are bounded 
on a spiral may also have finite asymptotic values (1, p. 1254). In view of the 
above, Seidel has raised the question (oral communication): "Does there exist 
a function bounded on a spiral that has only the asymptotic value oo ?". The 
following theorem answers this question affirmatively. 

1. Statement and proof of the main theorem. 

THEOREM. Let S be any spiral in D whose equation, in polar coordinates 
z = reie, is r = X(0), where X(0) is continuous and strictly increasing in 
0 ^ 0 < oo and satisfies 

X(0) = 0 and lim X(0) = 1. 

Then there exists a function w(z), holomorphic and unbounded in D, such that 
w (z) is bounded on S and w (z) has only the asymptotic value oo. 

Remark. The proof is based on an adaptation of techniques used previously 
in (4; 5). 

Proof. First we need some notation. Let 

C[a, r] = {z: \z — a\ = r}, 
D[a,r] = {z: \z - a\ < r}} 

A[a, ri, r2] = {z: rx S \z — a\ ^ r2}, 
T[a, 0i, 02] = {z: 0i ^ arg(z - a) ^ 02j (note that T[a, 6U 0i] is a half 

ray emanating from the point a). 

Next we shall make some technical, but straightforward, definitions which 
while fairly numerous can all be kept in mind quite easily by referring to 
Figures 1, 2, and 3. After the definitions, a short, intuitive summary of the 
proof will be given before going into the proof in detail. 

All definitions are for n = 0, 1, 2, . . . . 
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Definition 1. The points bn: Let {bn} denote the set of points at which 5 
intersects the positive real axis. We choose the notation so that 

0 = bo < 6i < b2 < . . . Î 1. 

Definition 2. The points cn and the points dn: Let 

Cn — b<Ln, dn = 02w+l. 

Definition 3. The points an and the semi-circular arcs <xn: Let 

On = ten + dn)/2, Gn = C[fl», | 4 ~ C»|/8] H T [ a n , -7T , 0 ] . 

(See Figure 1.) 

FIGURE 1 

Definition 4. The segments an, ani (3n, j3n: Let 

an = r [0 , 0, 0] H i4[0, * , cn + (3/8) • ( 4 - Cn)], 

ân = a» n il[0, ^ + (1/4) • ( 4 - O , ^ + (3/8) • (dn - O L 

A = HO, 0, 0] H i4[0, Cw + (5/8) • (dn - Cn), dn], 

& = fin nA[0, Cn + (5/8) • (dn - O , Cn + (3/4) • ( 4 - Cn)]. 

(See Figure 1.) 
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Definition 5. The arcs yn, An, and Tn: Let yn (A„) be the subarc of S with 
cn and dn (dn and cn+i) as its endpoints. Let 

(See Figure 2.) 
Tn = ynU anU pn\J <r„. 

FIGURE 2 

Definition 6. The sets Fn, Gn, and fl"n: Recall that the spiral 5 was defined as 

S = {z: z = X(0)*", 0 £0 <oo}. 
Let 

where 
Fn = {z: z = rei9, p(fl) < r < rid), 2n(2w) < d < oo}, 

p(0) = \(6) + (7/16) • [\(0 + 2TT) - X(«], 

r(0) = \(0) + (9/16) • [X(0 + 2TT) - \(fi)] 

(7/16 and 9/16 specifically chosen so that Fn does not intersect the a*'s 
and pk's) 

Gn= FnKJ D[on, (1/32) • ( 4 - cn)], 

Hn = Fn\JD[an,{V±)-(dn-cn)]. 
(See Figure 3.) 
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FIGURE 3 

The idea of the construction is as follows. Using Mergelyan's theorem 
(6, p. 3), we construct a function / such that / is bounded on S, non-zero 
in D[0, 1], approximately 1 on 72w U a2n^ Pu and approximately —1 on 
Y2w+i U a2w+i U j82n+i. Using functions of the form l/[^4 (z — a)]n and sweeping 
the poles out to C[0, 1] through the "channels" Gn, we construct a holo-
morphic function g ( = 1 + X^TLog») such that: 

(i) g is approximately 1 on 

5 U ( U [fe - 5.) U (fc - &)]), 
\ n = 0 / 

(ii) Re g ^ 1 and Im g is small on U«°°=o fe ^ &), 
(iii) g is so large on an that 

limmin |/(s) -g(«)| = oo. 

Then it follows that w = f • g is bounded on 5 and that its only possible 
asymptotic value is oo. 

We first outline the construction of the function/. The construction is only 
a very slight variation of a now standard technique of Bagemihl and Seidel (2) ; 
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the interested reader may refer to (2) for the details of the construction. 
Following (2), by Mergelyan's theorem (6, p. 3), we can find a polynomial 
pi(z) such that ( = means "is approximately"): 

(i) Pi(z) « 0 for \z\ ^ do, 
(ii) pi(z) ~ iri for z £ 7 i U a i U fflt 

(iii) |/>i(z)| < 4 for z £ A0 (4 chosen here since \wi\ < 4). 
We next choose pz(z) so that: 

(i) p2(z) ~ 0 for |z| ^ du 
(ii) pi(z) + p2(z) « 0 for z e 72 VJ a2 U 02, 

(iii) |/>!(s) + />2(*)l < 4 for s 6 Ai. 
In general, pick £n(s) such that 

(i) pn(z) « O f o r | s | ^ 4 - i , 
(ii) £ 2 - i M « ) = ( « ) • (1 + (-l)n+1)/2iorze 7 ^ a B U ^ 

(iii) |£î-i/>*(*)| < 4 for s G A„_x. 
I t follows by the Weierstrass Af-test that p(z) = £w

œ
=i A* 0s) is holomorphic 

in D[0, 1] and t h a t / = ep has the following properties: 
(i) / is bounded on 5, 

(ii) / * 0 in D[0, 1], 
(iii) Given any e > 0 we could have constructed/ so that | / — 1| < e for 

z £ 72^ U a2n U 02n and 1/ + 1| < € for s Ç 72w+i \J a2n+i \J 182»+1. 
(We might note here that, in this case as in many other cases where 

Mergelyan's theorem is commonly used, a much older theorem of Walsh 
(11, p. 47, Theorem 15) is more than powerful enough to obtain the desired 
results.) 

We shall next construct g(z). The function g will be defined as 
00 

g = 1 + Jl gn, 

and we shall now define the gw's inductively. Let {en} be chosen so that en > 0 
and £w

œ=o en = e < 1/4. By proper choice of m0, 0o, and Ao the function 

h0(z) = l/[A0e
i9«(z - a0)]m° 

has the properties (£2 denotes the Riemann sphere): 
(i) \h0(z)\ < eo/2 in Q - D[a0, (1/4) • (do - c0)l 

(ii) ho(z) is real and positive on 5o W /?o, 
(iii) mmze<TQ\hQ(z)\ è 2/ô0

2 (where 50 = minfl, min2€<ro|/0s)|}). 
Note that do > 0 since/(s) ^ 0 in Z>[0, 1]. Next, using an analogous technique 
to that used in (7), we sweep the pole of ho at a0 out to C[0, 1] through the 
channel G0. The idea is to approximate h0(z) in 

0 - ((Go - GO U D[au (1/32) • (dx - a)]) 

by a rational function ho,i(z) with pole at ai, then approximate &o,i in 

0 - ((Gi - G2) U Z>[a2, (1/32) • (d2 - c2)]) 

by a rational function ho,i{z) with pole at a2, etc. In this way we obtain a 
function g0(z) (= lim*.^ ho,k(z)), holomorphic in Z>[0, 1], with the properties: 
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(i) |«o(*)| < 6o in D[0, 1] - H0, 
(ii) Re g0(z) > 0 and |Im go(z)\ < e0 on â0 U j$o, 

(iii) mmze<rQ\g0(z)\ ^ l/ô0
2. 

In order to construct gi(z) we first choose Ai, 0i, and m\ so that 

has the properties: 
(i) |*i(s)| < ei/2 in 12 - D[al9 (1/4) - ( ^ - a)], 

(ii) Ai (2) > O o n â i U f t , 
(iii) min2er i |^i(s)| — a>i ^ 2/<$i2 (where 5i = minjl, min^^l/Osjjf and 

«1 = max2eri|goOs)|). 
Again, in a manner analogous to the one used above, we sweep the poles out 
to C[0, 1] and obtain a gi(z) that satisfies: 

(i) | f t (*) | < €1 in Z?[0, 1] - Hl9 

(ii) Re gi(s) > 0 and |Im gi(z)\ < ei for z £ <*i U &, 
(iii) min8€<ri|gi(s)| - coi > l/5i2. 
In general, using the same techniques, we inductively construct gn(z), 

holomorphic in D[0, 1], with the properties: 
(i) l&(*)| < ^ , inZ)[0, l ] -£T n f 

(ii) Re gn(s) > 0 and |Im gn{z)\ < en for 2 f â B U &, 
(iii) min2(Ean|g„(z)| — co„^ l/ô„2 (where dn = min{l/w, minz6<rn|/(s)|} and 

cow = max2€,n £ Î ~ J |g*(*)|). 
Note that 8n > 0 since/ ^ 0 in D[0, 1]. 

By the Weierstrass ikf-test, we see that 
00 

g = 1 + L i» 

is holomorphic in D[0, 1]. We claim that 

is the desired function. First we shall prove that w has the properties: 
(i) w is bounded on S, 

(ii) Re w ^ 1/2 on a2n U /32» U 72», 
(iii) Re w ^ —1/2 on a2«+i W 02»+1 U y2n+u 
(iv) |w| ^ » for z Ç (T»+I, 

and then we shall prove that (ii), (iii), and (iv) imply that the only possible 
asymptotic value of / is 00. 

First we note that w is bounded on 5 since 

max \w(z)\ = max (\f(z)\ • \g(z)\) 
ZÇS zÇS 

^ m a x ( | / ( 2 ) | . ( l + Ë l g n ( s ) | ) ) 

= e\l + 0. 
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Next we shall prove (ii) and (iii). Suppose that 

z 6 72» U («2» - ôi») W (j8„ - &») (n = 0, 1, 2, . . . ) ; 

then we have (recalling that e < 1/4): 

Rew = (Re/) • (Reg) - ( Im/) • (Im*) à (l _ €) • (1 - « ) - ( « • « ) £ 1/2. 

If z Ç 52» ^ ftn. we obtain 

Rew = ( R e / ) • (Reg) - ( I m / ) • (Img) = ( R e / ) - ( l + Reg2n + Ê ' R e & ) 

- ( I m / ) . ( l m g 2 n + ; C ' I m g J 

oo f 

(where by ^ we mean the series ̂  with the 2nth term omitted) 

^ ( i - € ) - ( i + o - f ; ' e » ) - € - L „ + Ê € » ) 

g> ( l - e ) - ( l - e ) - ( € • € ) £ 1/2. 
Similarly, we can prove that: 

Re w ^ —1/2 for s € 72w+i U <x2n+i ^ 

Finally, to prove (iv), if z £ o-w, we see that: 

kWI = LKOI • l«(*)l = 1/(2)1 

S£5„ 

/ n— 1 \ 00 

1 + V S £* ) + gn + Z) £* 
\ A;=0 / k=n+l 

w—1 00 I 
2 l&tI - 1 - X) |g*I ~ S l&l è àn • | l / 5 n
2 + cow - 1 - cow - e| 

jc^O k=n+l I 

^ 5n • (1 /5 / - l - e ) ^ n - l . 

Recall that Yn — ynKJ an\J (5n\J <rn\ we now observe that Yn is a closed 
Jordan curve contained in Z)[0, 1], Tn+i separates Yn from C[0, 1] in D[Q, 1], 
and given any e > 0 there exists an iV(e) such that for all n ^ N(e)y 

TnC{z:l - e< \z\ < 1}. 

Let \[/ be any curve that is not contained in any compact subset of D[0, 1]. 
I t follows that \p must intersect all but a finite number of the Tn. We shall 
prove that the only possible asymptotic value of / on ^ is 00. This is clear if \p 
intersects infinitely many of the an. If \p intersects only finitely many of the ani 

then yf/ must intersect infinitely many of the arcs 72/1+1 \J où2n+i ^ i#2w+i and 
infinitely many of the arcs y2n U a2n W /32w. If we recall that 

Re w(z) ^ 1/2 on y2n U a2n U £2w 

and 

Re w(s) g - 1 / 2 on 72w+i U a2n+i U 02n+i, 
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we see that w(z) can have no finite asymptotic values on \f/ and the proof of 
the theorem is complete. 

2. Remarks. In conclusion, recall that we assumed that the equation of 
the spiral S was of the form z = \(d)eie, where A(0) ^ 0 and strictly in­
creasing. I t is clear from the proof that these assumptions, while helping to 
keep the technical details of the proof to a minimum, are not necessary and 
that with sufficient patience the proof could be carried through for almost 
any conceivable spiral. 
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