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A RELATIONSHIP BETWEEN LEFT EXACT AND 
REPRESENTABLE FUNCTORS 

H. B. STAUFFER 

1. Introduction. Our aim in this paper is to demonstrate a relationship 
between left exact and representable functors. More precisely, in the functor 
category %bnov> whose objects are the additive functors from the dual of an 
abelian category 51 to the category of abelian groups 2tb and whose morphisms 
are the natural transformations between them, the left exact functors can be 
characterized as those equivalent to a direct limit of representable functors 
taken over a directed class. The proof will proceed in the following manner. 
Lambek [3] and Ulmer [7] have shown that any functor T in Sib5101* can be 
expressed as a direct limit of representable functors taken over a comma 
category. When T is left exact, it is easily observed that this comma category 
is a filtered category. We shall show that for any filtered category 35/ there 
exists a directed class I and a cofinal functor F: I —> £)/. Our result then 
follows. 

Acknowledgement. I would like to thank Saunders MacLane and R. G. Swan 
for many stimulating suggestions during the preparation of this paper. 

2. Filtered categories and directed classes. Let us fix some terminology 
and prove a proposition which will be useful later on. Our aim will be to show 
that, given any filtered category (small filtered category) 3)/, one can construct 
a directed class (directed set) / and a cofinal functor F: I —* 3)/. But first, 
let us note the precise definitions involved. 

A filtered category is a category 3)/ satisfying the following two axioms: 
(i) given D\, D2 G |£)/|, there exists Z>3 G |3)/| and maps oil D\ —» D3 and 

<52: D2 —> Dz in 35/, and, 
(ii) given two maps 5i, 82: D\ —> D2 in 3)/, there exists a third map 

53: D2 —> D% in 3)/ such that ô3 o 8i = Ô3 o 82. 
Given a directed set 7, a subset J C I is called cofinal if and only if for each 

i € I there is an element j G / such that i S j (cf. [5, pp. 47-48]). We wish 
to generalize this notion to include filtered categories. But first, we need to 
define the comma category (B, T), where T: 21 —> 33 is a functor and B G |93| 
(cf. [4, pp. 13-14]). The objects of (B, T) are maps 0: B-* T(A) in 93, ,4 G |Sl|. 
The morphisms of (B, T) from /3X: B —-> T(Ai) to (32: B —> T(A2) are maps 
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a: Ai—*A2 in 21 which yield the commutative diagram: 

B> 
K 

K 

rT(AÙ 

|r(«) 
lT(A2) 

Given any category (£, we say that two objects C and C are connected if and 
only if there exists a finite sequence of objects G = C, C2, C3, . . . , Cw = C 
and maps 7<: C* —» C i+i or C i+i -> Cj, 1 ^ i ^ w - 1, in Ë. A category 6 
is a connected category if and only if any two objects in 6 are connected. Then 
objects jfr: B -> r ( 4 ) and 0': JB -> 7X4') in the comma category (B, T) are 
connected if and only if there exist objects Ai = A, A2y AZy . . . y An = A' 
and maps at: Ai—>Ai+i or Ai+1-^>AU 1 ^ i ^ « - 1, in ?l and maps 
pt: B -> T ( ^ 0 , 1 ^ i g », in S3 with ft = 0 and pn = & yielding the follow
ing commutative diagram: 

T(At) 

^T(A) 

T(An-l) 

ï W l ) 

Now, a functor F: H-^ 3)/, where X is any category and 35/ is a filtered 
category, is called cofinal if and only if for each D G |35/| the comma category 
(7>, F) is non-empty and connected. 

One final definition. Let us say that a directed class 7 is pointwise finitely 
preceded (pfp) if and only if, for each i0 G 7, the subclass {i\ i ^ io in 7} is 
finite. 

Now we are ready for the proposition. 

PROPOSITION 2.1. Let 35/ be a filtered category. Then there exist a directed 
class I and a functor F: I —> 35/ which is cofinal. Furthermore, I is pfp. As a 
function, F: I —> |35/| is onto. If 35/ is small, then I is a set. 

Proof. The objects of the category 7 are all finite non-empty sets of maps 
from 35/. The maps in 7 are the set inclusions. It is immediately clear that 7 
is a pfp directed class. If 35/ is small, then 7 is a directed set. It remains to 
construct the cofinal functor F: I —> 2)/. 

For n > 0, let 2n be the category whose objects are subsets s C {1, 2 , . . . , » } , 
5 ^ 0 , and whose morphisms are the set inclusions. We proceed to define F 
inductively. For each object {ô} in 7 consisting of one map d: D' —> D in 3)/ 
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we define F({ô}) = D. For each object {<5i, ô2} in 7 consisting of two maps, 
we use axiom (i) for a filtered category to fill in the diagram: 

12 

IV- +D9 

This yields a functor D: 82 —* 3)/ given by 

Define F({ôi,ô2}) = 7>i2 and F({5,} C {81, ô2}) = <5*12, i = 1, 2. Next, for 
each {ôi, Ô2, Ô3} in 7, take the previously designated objects and maps and 
use the two axioms for a filtered category to fill in the following commutative 
diagram: 

This yields a functor D: g3 —> 35/. Define F({ôu <52, <53} ) = -Dm and 
^({ôi, 5;} C {$i,Ô2, $3}) = 5fi

128, 1 g i < j ^ 3. The other inclusions into 
{5i, Ô2, $3} can be handled by composing the obvious ô maps, a process which is 
well-defined since D is a functor. 

Proceed inductively, defining F on each finite set of maps {5i, <52, . . . , at] 
and its subset inclusions, i — 1, 2, . . . , n — 1. Now consider the object 
{ôi, Ô2, . . . , 5W} in 7. Let / = {1, 2, . . . , n) and tt = {1, 2, . . . , 2, . . . , n\ in 
8». Using the two axioms for a filtered category, construct a diagram con
sisting of the previously designated objects 

D/, 1 g i ^ n, DS1 s£t, 

https://doi.org/10.4153/CJM-1971-038-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-038-2


LEFT EXACT AND REPRESENTABLE FUNCTORS 377 

and maps 

dt: D/ -*Dt, 1 S i û n, ô / , s £ sf £ t, 

plus object Dt and maps 8ti
l: Dti —» Dt, 1 ^ i ^ n, such that: 

(i) the diagram is commutative (i.e. D: %n —> 35/ defines a functor), and 
(ii) given ô<: D / —»£>* and Of D/ ->Dj with D{ = £>/> 1 ^ i, j ^ «, 

8s
l o 8i = 8s'* o 8j whenever the compositions are defined (we want this 

condition to hold for n ^ 4). 
Define F({8U 82y . . . , 8n}) = Dt and 

^ ( { « 1 , «2, • • • , lu • • • , *»} C {«1, «2, . . . , « » } ) = «l,-1. 

Define T7 on the other inclusions into {8i, 82, . . . , 8n} by taking compositions, 
a well-defined process since (i) holds, (ii) will ensure the cofinality of F. 

It is clear that F is a functor. It remains to show that F: I —» 3)/ is cofinal. 
For each D G |35/|, the comma category (D, F) is certainly non-empty, since 
F: I —> |35/| considered as a function is onto; i.e. F({idD}) = D for every 
Z> 6 135/|, where idz> is the identity map. We still need to show that (D, F) is 
connected for each D G |35/|. That is, we need to show that any two objects 

ô : 0 - > F ( { ô i , Ô 2 , . . . , « < } ) and «': D -> F({di+U 5*+2, . . . , ««+,}) 

in (D, F) are connected. But F was constructed to satisfy the following 
commutative diagram: 

F({5i,ô2 l . . . ,ô<}) 

D ^^({5i, Ô2, . . . , du 8i+i, 8i+2, . . . , 8i+j, 8, 8'}) 

\ 
F({8i+Xl 8i+2, . . . , 8i+j}) 

where "in" are the inclusions. Hence, (JD, F) is connected for each D G |35/|, 
and we have completed the proof of the proposition. 

3. Left exact and representable functors. Let 21 be an abelian category. 
I t is "well known" that every functor in %bn°v is a direct limit of representable 
functors. Let us sketch this result, referring the reader to [3; 7, pp. 79-82] 
for the details. 

Let J: 21 —> W be a functor between abelian categories, and, for each 
A' G I SI'|, let (/, A') be the comma category. The objects of (J, A') are pairs 
(A, a) where A G |2Ï| and a': J (A) -* A' is a map in 2T. A map in (/, A') 
from (A i, a\) to (A2l OL2) is a map a: Ax —> A2 in 21 such thata 2 ' o J (a) = a / . 
There exists a forgetful functor Fj(Af): (J, A') -» 21 defined by (A,a) ~> A. 

'F(m) 
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The functor J: St —> St7 is called dense if and only if, for each A' £ |2T|, 
the natural transformation ^ ( i ' ) : J o ^ ( i ; ) -^ cons^ ' , the constant 
functor, defined by 

MA')[(A,a')] =«' , 
is universal. Then 

inj lim J oFj(A') = A'. 

Let Y%>: 2T c-> 2lb(2I)OP denote the Yoneda embedding denned by 

4 ' - H o m r ( %A'). 

Then we have the following result. 

LEMMA 3.1. Let J: 21 —> 2t' be a functor between abelian categories. J is dense 
if and only if the composite functor 

mj o F r : 21' c-> ab<*')QD -> 2lb2l°P 

defined by 

4 ' - > H o m r ( / ( ),A') 

is full and faithful. 

Using this we can conclude the following result. 

PROPOSITION 3.2. The Yoneda embedding Y%: 21 e-> 2lb2ï°P is dense; i.e. each 
functor from 2lop to 2lb is a direct limit of representable functors. 

For, the Yoneda lemma implies that the composite functor M: 2Ib?Ido —» 2Ib2t°P 

defined by 

r~»Homa6
aop(ra( ),T) 

is full and faithful. 
Now let us proceed to the main result of this paper. We have noted that 

each functor T in Sib8*05 is a direct limit of representable functors: 

T = inj lim Y% o FYfi(T), 

where F^ o FY%{T): (Fa> T) —» 21 <=-» 2lb^°P is the composite functor. Let us 
examine the comma category (F a , T). Using the Yoneda lemma again, it is 
clear that the objects of (F a , T) are the pairs {A, a) where A Ç |2l| and 
a £ T(i4). A map in (F a , r ) from (/li, ai) to (^42, «2) is a map a: ^4i —>A2 

such that r(a)[a2] = d\. 

LEMMA 3.3. Let 21 be abelian. Then any left exact functor L in 2lb9t°P is a 
direct limit of r epr es entable functor over a filtered category. If 21 is small, then 
so is the filtered category. 

Proof. We have shown that 

L = inj lim Y% o FY%(L), 

where the direct limit is taken over the comma category (F a , L) described 
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above. We now show that L left exact implies (F a , L) filtered. A left exact 
functor preserves biproducts (cf. [1, pp. 64-65]). Thus, given 

(i4i, aO, (A2,a2) 6 | (F a , L)\, 

the object (̂ 4i © ^42, a>\ © a2) is well-defined, since 

ai © a2 6 £(<4i) © L(4 2 ) = £ ( 4 i © 4 2 ) . 

Furthermore, we have the two maps \}\ (A\, ai) -+ (Ai ® A2, ai ® a2) and 
L2: (A2, a2) —> (̂ 4i © A2, a\ © a2) in (F a , L) induced from the biproduct 
injections, since L(il)[ai © a2] = ^ [ a i © a2] = ai and L(i2)[<7i © a2] = 
ir2[ai © a2] = a2, where 7T1 and T2 are the biproduct projections. Hence 
axiom (i) for a filtered category is satisfied. Given maps 

aua2: (Au a>i) —> (A2, a2) 

in (F a , L), let a: A2 —> C be the coequalizer of ax, a2: Ai—>A2 in 21. Then by 
the left exactness of L, the equalizer of L(ai), L(a2): L(A2)—> L(Ai) is 
L(a): L(C) -+ L(A2). Since L(ai)[a2] = L(a2)[a2] = ax, (C,a2) is well-
defined as an object in (Y^,L). Furthermore, we have the commutative 
diagram 

a i 

041, ai) a2* (A2, a2) > (C, a2) 
» 

in (F a , L). Thus axiom (ii) for a filtered category is satisfied. Note that if §1 
is small, then (Y%,L) is also small. 

The following lemma is "well known" (cf. [6, p. 225]); in fact, it has 
motivated the definition of cofinal. Its proof can be left to the reader. 

LEMMA 3.4. Let F: HL—^Qfbea cofinal functor from any category to a filtered 
category. Then, for any functor G: 35/ —» 21, where 21 is any category, we have 

inj lim G = inj lim G o F. 

Now we are ready for the main result. 

THEOREM 3.5. Let 21 be an abelian category (a small abelian category). Then 
a functor L in 2Ib3r°P is left exact if and only if L is a direct limit of representable 
functors over a directed class (directed set) I; i.e. 

L = inj lim Homsi( , ̂ 4.) = inj lim Hom§i( , A t). 
1 1 

Proof. The necessity follows from Lemma 3.3, Proposition 2.1, and 
Lemma 3.4. For let F: I —> (Y%, L) be a cofinal functor with I a directed 
class (directed set). Then A. = FY%(L) o F: I —> 21. The sufficiency follows, 
since a representable functor is left exact and the direct limit over a directed 
class (directed set) is exact in 216. 
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Remark. Note that the directed class (directed set) I constructed in 
Proposition 2.1 is also a lattice class (lattice). Hence Theorem 3.5 could be 
restated in terms of lattice classes (lattices). 
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