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SUMMARY

Statistical power in group-randomized vaccine trials is complex: group randomization may

increase power by capturing more transmission effects but may decrease power as more

individuals are affected by a common source of variance. The former effect dominates when most

infections arise from within the group and the latter when most arise outside. This process is

complicated further when individuals possess partial natural immunity. Vaccine trials typically

compare infection frequency (as measured by agent or antibody detection) in vaccinated vs.

unvaccinated groups. To assess the relative contributions to statistical power by direct agent

detection vs. serological detection of recent infection, we constructed stochastic compartmental

models using differential equations describing all possible discrete states of the group. We

contrasted models where natural immunity was absent, altered only the susceptible state, or

altered both the susceptible and infected states. We observed the effects of endemic infection

levels, the fraction of infection arising from outside the group, infectiousness vs. susceptibility

vaccine effects and waning rates. There was significant enhancement of statistical power when

serological testing separated infected and susceptible classes into subsets by natural immunity

status.

INTRODUCTION

Individual-based study designs in epidemiology

often work well for non-communicable diseases, since

disease in one individual is generally independent of

disease occurrence for others in the group. Infectious

diseases require a different approach, since infection

in one individual may generate a chain of trans-

mission to many others while reduction of infection

levels in some members of the community can

have large indirect effects to decrease infection risks

for others in the same group. Infectious disease

transmission within a group, therefore, has an

inherent intra-cluster correlation [1]. Vaccines may re-

duce a person’s infectiousness towards others, or may

reduce susceptibility to infection. The former effect

cannot be distinguished by individually randomized

trials [2], but requires group randomization. There is

a loss of statistical efficiency in cluster-randomized

trials, known as the design effect, D=1+(nx1)r,

where n is the unit size and r is the intra-class

correlation [3]. Design effect is the factor by which

the sample size needs to be increased compared

with an individually based randomized trial. There-

fore, cluster size and intra-class correlation both

influence the design effect. Investigation of trans-

mission dynamics within groups should, therefore,

enhance the understanding of the determinants of

statistical power in vaccine trials based on group

randomization.
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In our previous study of vaccine trials for endemic

infections using group randomization [4], we demon-

strated the importance of the contact function (the

relationship between unit size and contact rate) in

determining the fraction of infections generated inside

the unit and that greater statistical power was

obtained when most infections arose from within

the unit. We will now show how the strength and

duration of natural immunity influence the magnitude

of statistical power obtained from vaccine trials based

on group randomization. Specifically, we will contrast

the power obtainable from trials where the infected

and susceptible individuals are each aggregated into

one class vs. separable into subclasses with or without

natural immunity. To accomplish this, we extended

our previous stochastic compartmental model of en-

demic infection (i) without natural immunity to more

complex models with (ii) natural immunity involving

two susceptible states and (iii) natural immunity that

altered both susceptible and infected states.

METHODS

We modified our previous SIS model to include

additional states, representing (i) decreased suscep-

tibility (by proportion h) and (ii) both decreased sus-

ceptibility and infectiousness (by proportions h and

w) following a natural infection. Table 1 contrasts

these three models, in which the number of states for

an individual is 2, 3 and 4 while the number of system

states for the entire group is a linear, quadratic and

cubic function of unit size, respectively. The maxi-

mum number of terms per equation required to

describe each of these system states is respectively 6,

12 and 18. The motivation for our previous study [4]

was to model transmission of non-typable Haemo-

philus influenzae (NTHi) within day-care centres

(DCC). We used unit sizes and prevalence values

consistent with that study. In this study, our motiv-

ation was to extend the results from that of an

endemic infectionwithoutnatural immunity toamodel

with both natural immunity and vaccine effects.

SIS* model (Appendix 1)

The total number of states within a unit of size n can

be represented by the upper half of a (n+1)r(n+1)

square:

Y0, 0 Y1, 0 . . . Yn, 0

Y1, 0 Y1, 1 . . .

. . . . . .

Yn, 0

Rows are indexed by the number of infected, desig-

nated as I and columns by the number of naive

susceptible, S. Those with partial immunity are de-

signated as S*. The major diagonal contains all S*=0,

the immediate supradiagonal, S*=1, etc. to the upper

left corner where S*=n. Six processes describe the

state transitions in the SIS* model, four that generate

infections and one each representing recovery from

IpS* and waning immunity from S*p S:

(i) The outside force of infection acting on a

susceptible with no natural immunity at a

per capita rate, l, is represented as movement

along diagonals from upper right to lower left.

(ii) The outside force of infection acting on a

susceptible with natural immunity at a modified

Table 1. Comparison of three models

Model SIS SIS* SIS*I*

Number of possible states
for an individual

2 3 4

Total number of states for
a unit with n individuals

n+1 1/2 (n+2) (n+1)
Pk=N

k=0
1/2(n+2)(n+1)

Parameters C, l, c C, Ch, l, lh, c, v C, Ch, Cw, Chw, l, lh, v, c, c2

C, contact function Also h, v Also w, c2

l, outside force of
infection

h, effect to decrease
susceptibility, based on
natural immunity

w, effect to decrease
infectiousness, based on
natural immunity

c, recovery rate v, waning rate of immunity c2, enhanced recovery from
infection, based on natural
immunity

Maximum no. terms
per system state

6 12 18
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per capita rate of lh is represented by movement

down the columns.

(iii) Interaction, based on the term cIS/(nx1)

represents transmission between infected and a

susceptible without natural immunity. Move-

ment along the diagonals represents this tran-

sition, but the first row makes no contribution,

since there are no infected individuals re-

presented in that row.

(iv) Interaction is modified by natural immunity to

the term chIS*/(nx1). Like the outside force of

infection, transition is represented by movement

down the columns, but again the first row makes

no contribution.

(v) Recovery from the infected state occurs at a per

capita rate, c, represented by vertical movement

up the columns.

(vi) Waning of natural immunity occurs at a per

capita rate, v, represented by a horizontal left to

right movement along rows.

The full probability distribution at equilibrium of

this stochastic compartmental model was solved by

numerically integrating the forward Kolmogorov set

of equations [5, 6] (see Appendix 1), using Berkeley

Madonna software [7] and running them to equilib-

rium.

Overview of how the parameters influence

the distribution

The waning process directs flow left to right across the

rows and is maximized at column 1, row 1. The

recovery process directs flow up the columns and is

maximized at column 1, last row. The outside force

acting on the S class directs flow diagonally to

increase I while decreasing S, while the outside force

(modified by factor h) acting on S* directs flow down

the columns; the former is maximized at column 1,

row 1 and the latter is maximum at the last column,

row 1. While waning, recovery and outside force act

respectively to increase S, S* and I in a linear fashion,

the contact function acts nonlinearly and is at

maximum when I equals its median value, in the first

column, when infection involves S* and along the

major diagonal for S.

SIS*I* model (Appendix 1)

The total number of states within a unit of size n can

be represented by a pyramidal structure having n

stacked triangular strata as described for the SIS*

model, with the additional state I*, which describes an

infected individual, but with diminished infectious-

ness based on a recent infection. At the apex, there is a

single system state where all n individuals are in the I*

state ; in the next stratum (nx1) individuals are in the

I* state and there are three possible states (I, S or S*)

for the remaining individual, etc. The individual states

are designated Yi,j,k, where k denotes the stratum,

beginning with the apex. Compared to the SIS* model

three additional processes are added, a recovery from

I* to S*, and twomore contact processes, I*with S, and

I* with S*, along with the following modifications:

Processes (ii) and (iv) now involve transition to the

next I* stratum.

(vii) Recovery from the infected state I* occurs at a

per capita rate, c2, represented by movement

from higher to lower strata as I* decreases and

S* increases.

(viii) Transmission between I* and S, is expressed by

the term cwI*S/(nx1). Diagonal movement

within a stratum yields a net decrease in S and

increases in I. The lowest stratummakes no con-

tribution, since there are no I* infected

individuals.

(ix) Transmission between I* and S*, is expressed by

the term chw(I*)(S*)/(nx1). Transitions occur

to the next stratum, with a net decrease in S*

and an increase in I*; again the lowest stratum

makes no contribution.

Probability matrix

For each model, the matrix was evaluated to derive

the probability distributions for the equilibrium

values for the individual S, I, S* and I* states. In the

SIS* model, the row subtotals represent the prob-

ability that there are (0, …, n) infected, the column

subtotals represent the probability that there are

(0, …, n) naive susceptible and the diagonal subtotals

represent the probability that there are (0, …, n)

susceptible with partial natural immunity. Infection

prevalence is a weighted sum of the number of

infected multiplied by the corresponding marginal

row probability. In the SIS*I* model, the strata

represent sets of equal I* values, while the row and

column totals are summed across strata to arrive at the

probability distributions for the I, S and S* states.

Prevalence attributable from inside vs. outside the unit

In the SIS* model, the outside force of infection, l,

acts on n columns (1, …, n) to produce infections at

the rate=l.j.Sj and acts on the diagonals (except for
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the major diagonal) to produce infections at the

rate=l.h.(nxIxj).Si,j. The recovery rate, c, is con-

stant and was set to 1, therefore, the mean duration

of infection is (1/c) or one time unit ; since the

mean duration of infection is 1, the prevalence of

infection numerically equals the incidence. The

fraction of infections generated from outside the

unit is calculated by summing the infections generated

via l acting on the naive susceptible and l.h acting

on those with natural immunity vs. total prevalence

of infection within the unit. For the SIS*I* model,

the terms are summed across strata to arrive at

the total contribution from the outside force of

infection and infection prevalence was calculated for

both total infection prevalence and separately for I

and I* states.

Model analysis

Our primary outcome was equilibrium probability

distributions for the number in the S, I, and S* and I*

states. In the SIS* model, without loss of generality,

we set c=1, so that contact, l, v, and h would

determine prevalence and the fraction of infections

arising from outside the unit. Among the vaccinated,

the susceptibility effect, s, modifies transmission rates

of all susceptible (both inside and outside forces) ; the

infectiousness effect, k, modifies transmission inside

the unit. We adjusted the values of contact and l

that would maintain constant prevalence for the

unvaccinated (20 and 40%) as both natural immunity

levels and rates of waning immunity were varied.

From the I distribution, we calculated vaccine efficacy

(VE) or 1xPrevalence(Ivac)/Prevalence(Iunvac) ; the

power to detect a vaccine effect along a range of

fraction of infections arising from outside the unit

(0.10, 0.50, 0.90) compared all three distributions in

vaccinated vs. unvaccinated units.

In the SIS*I* model, two additional parameters are

introduced (w decreases infectiousness and c2 alters

the recovery rate) of the I* state. The analysis can be

structured as outlined for the SIS* model, but now we

need to assess across values for w, c2 as well as h and

v. The outcome is the distribution of S, I, S* and I*,

from which infection prevalence can be calculated

separately for I, I* or for an aggregated infected state

while VE was calculated based on all infected (VE) or

based only on the infected with natural immunity

(VE*). Similarly, power was calculated based on I, S,

S* or I* states, as well as by aggregating the infected

into one class.

We chose to maintain the prevalence among the

unvaccinated at a constant level and to examine

power and VE at various proportions of infections

generated from outside the unit since the investigator

would know the endemic level of infection and could

estimate how much transmission occurred from inside

vs. outside the unit. This approach made us adjust the

values of the model parameters to fit the conditions

of prevalence and fraction of infections generated

externally ; the investigator would probably not have

exact estimates for all the model parameters.

The solution when there is no outside force of infection

In the SIS model, it can be shown that when there is

no outside force of infection, eventually no one in the

unit is infected [4]. When there is no outside force of

infection in the SIS* model, the only transition

involving the first row (I=0) is the flow of recovered

from the second row (I=1) and flow along the first

row by the process of waning immunity. That is, there

is a net flow from the first row to the second row, so

eventually there are no infections within the unit when

the outside force of infection is zero. When there is no

outside force of infection in the SIS*I* model, similar

transitions occur within each stratum to its first row

and recovery (c2) yields a net flow to the lowest

stratum. Again, eventually there are no infections

within the unit.

Calculation of power in vaccine trials

In a vaccine trial using group randomization, we

expect that vaccination will decrease the number of

infected and increase the number of susceptible

individuals in the group. The null hypothesis is that

there is no difference in the distributions from vacci-

nated groups vs. unvaccinated groups. This is an

important distinction from the usual hypothesis test-

ing, in that we are not testing an individual biological

effect, such as susceptibility, but rather we are evalu-

ating the total group effect from altering each

individual’s susceptibility. After determining the 5th

percentile for the number of infected individuals in the

unvaccinated group as a threshold, we measure stat-

istical power as the cumulative probability less than

that threshold among the infected, vaccinated in-

dividuals. We also estimated statistical power by

comparing the probability distributions of the

susceptible state for the unvaccinated vs. the vacci-

nated, by using the 95th percentile for the un-

vaccinated S distribution compared with the
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cumulative probability distribution for the vaccinated

S to the right of the same threshold. More generally,

the format for power determination was to designate

the unvaccinated as the control group and to use the

left tail (a<0.05) when the vaccinated group showed

a decrease and the right tail (a>0.95) when the vac-

cinated group showed an increase. We compared four

replications of n=12. Assuming independence for the

replications, we used the probability distribution from

one trial to calculate the expected distribution of four

replications by expanding the initial distribution to

the fourth power (Appendix 2). Table 2 summarizes

the approach for the three models.

RESULTS

No natural immunity

In the endemic SIS model, power based on the sus-

ceptible class contains the same information as power

based on the infected class, since each probability

distribution completely determines the other, e.g. the

probability that three are infected in a group of 12 is

the same as the probability that there are nine sus-

ceptibles in the group, or more generally, P[i]Inf=
P[nxi]Sus. In the SIS model, power is greater when

most infections are generated from inside the unit,

when the vaccine effect is on susceptibility and for a

higher endemic prevalence. VE is also higher when

most infections are generated from inside the unit and

when the vaccine effect is on susceptibility, but

decreases as endemic prevalence levels rise (Table 3).

Natural immunity affecting susceptibility alone

Probability distributions

The three classes in the SIS* model are also inter-

related, in that P[i]Inf=the sum of all P[j]Sus and

P[k]Sus*, conditional on [n=i+j+k]. Figure 1

illustrates the bivariate probability distributions from

four repetitions with units of size 12, while maintain-

ing 40% endemic prevalence, a small fraction of

infections arising externally and as the waning rate

was varied from 1.0 to 0.01. As waning slows, more

individuals within an unvaccinated group are likely to

be in the immune state, concentrating the probability

distribution along the first row (note the change in

scale across waning rates). Regardless of waning rate,

vaccination decreases the probability of infection and

increases the probability of being susceptible. Under

slower waning, vaccination has less effect to increase

the probability of being susceptible. Figure 2 separ-

ates the cumulative probability distributions of the I,

S and S* classes under the rapid waning rate scenario

shown in Figure 1, but contrasts low vs. high external

generation of infection. When most infections are

generated inside the unit, the variance within I and S

class is higher, but vaccination has both direct and

indirect effects to decrease transmission, resulting in a

stronger total effect. Figure 3 shows the cumulative

probability distributions for the immune state in vac-

cinated vs. unvaccinated groups as the waning rate is

varied. As shown earlier in Figure 1, vaccination de-

creases the probability of being immune when waning

is rapid, increases this probability when waning is slow

and has minimal effect at an intermediate waning rate.

Power based on direct agent detection

The power to detect vaccine effects is summarized in

Table 4, in which direct agent-based detection is

Table 2. Power analysis for three models

Model SIS SIS* SIS*I*

Infectious agent
based (current

infection)

I I I, I* or I-all

Immune based
(past infection)

n.a. S* S*, I*

Either current or
past infection

n.a. I[S*, which
is equivalent
to S

I[I*[S*, which
is equivalent
to S

Table 3. Statistical power and vaccine efficacy for the

SIS model at 40 and 20% prevalence

Proportion of infections from outside

the unit

Susceptibility
effect (s)=0.50

Infectiousness
effect (k)=0.50

0.10 0.50 0.90 0.10 0.50 0.90

Prevalence (40%)

Power [Agent] 0.921 0.816 0.735 0.696 0.221 0.066
Vaccine efficacy 0.758 0.499 0.393 0.593 0.202 0.031

Prevalence (20%)
Power [Agent] 0.611 0.470 0.414 0.335 0.092 0.036

Vaccine efficacy 0.839 0.593 0.468 0.698 0.264 0.041

Power [Agent] is based on comparison of distributions of
infected individuals, I.
Vaccine efficacy (VE)=1xprevalence of infected (vac)/
prevalence of infected (unvac).
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Fig. 1. Probability distributions for the SIS* model with a susceptibility vaccine effect at slow, intermediate and rapid waning
rates for the S* state. Each scenario has endemic prevalence of 40% with 10% of infections arising from outside the unit.
(Note the change in scale for probability.)
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measured via distributions of the I state, immune-

based detection of recent infection is determined

via the S* state and the S distribution represents

the individuals with neither current nor recent infec-

tion. (The latter is equivalent to the distribution

of those individuals with either current or recent

infection, in that the 5th percentile of one is the

95th percentile of the other.) As in the no natural

immunity model, power based on direct agent detec-

tion is greater for susceptibility than infectiousness

effects, greater when most infections are generated

inside the group and when endemic infection levels

are higher. Stronger natural immunity acts to

decrease statistical power, but this is modified by the

waning rate. As waning slows, the power first

decreases then increases.

Cumulative probability vs. no. in category
1·00

0·80

[I]
0·60

0·40

0·20

0·00
0 10 20 30 40

Cumulative probability vs. no. in category

1·00

0·80

[S]
0·60

0·40

0·20

0·00
0 10 20 30 40

Cumulative probability vs. no. in category

1·00

0·80

[S*]
0·60

0·40

0·20

0·00
0 10 20

unvac (low)

vac (low) vac (high)

unvac (high)

30 40

Fig. 2. Cumulative probability distributions for I, S and S*,
given 40% prevalence, natural immunity (h=0.50) with

rapid waning and a vaccine effect to reduce susceptibility by
50%. High outside force (90% of infections generated
externally) is shown with squares, low outside force (10% of

infections generated externally) without ; solid lines rep-
resent the unvaccinated, dotted lines the vaccinated.
Although the variance is greater when the outside force of
infection is low, power is greater because vaccination has

both direct and indirect effects.

ω = 1·0

Cumulative probability vs. waning rate

ω = 0·10

Cumulative probability vs. waning rate

ω = 0·01

Cumulative probability vs. waning rate

0

1·00

0·80

0·60

0·40

0·20

0·00

[S*]

1·00

0·80

0·60

0·40

0·20

0·00

[S*]

1·00

0·80

0·60

0·40

0·20

0·00

[S*]

10 20 30 40

0 10 20 30 40

0 10

unvac (low) unvac (high)

vac (high)vac (low)

20 30 40

Fig. 3. Cumulative probability distributions for S*, given
40% prevalence, natural immunity (h=0.50), vaccine sus-

ceptibility (s=0.50) effect and variable waning rates. High
outside force (90% of infections generated externally) is
shown with squares, low outside force (10% of infections

generated externally) without ; solid lines represent the
unvaccinated, dotted lines the vaccinated. Vaccination
decreases S* when the waning rate is fast, while S* increases

when the waning rate is slow. Maximum power to detect
vaccine effect based on S* distributions depends on the
interaction between the strength and duration of natural
immunity.
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Power using immune-based detection

Power based on immune-based detection was similar

to that based on direct agent detection vs. type of

vaccine effect, strength of natural immunity, the

unvaccinated prevalence level and fraction of infec-

tions arising from outside the unit. Immune-based

power showed the same biphasic response vs. the

waning rate as that based on direct agent detection;

Table 4. Statistical power and vaccine efficacy for SIS* model at 40 and 20% prevalence

Proportion of infections from outside the unit

0.10 0.50 0.90 0.10 0.50 0.90

Susceptibility effect (s)=0.50 Infectiousness effect (k)=0.50
Prevalence=40%

No natural immunity
Power [Agent] 0.921 0.816 0.735 0.696 0.221 0.066
Power [Immune] 0.757 0.348 0.197 0.416 0.084 0.042
Power [Either] 0.974 0.938 0.873 0.811 0.330 0.055
Vaccine efficacy 0.758 0.499 0.393 0.593 0.202 0.031

Natural immunity (h=0.50) fast waning (v=1.0)
Power [Agent] 0.848 0.681 0.617 0.590 0.169 0.061
Power [Immune] 0.619 0.265 0.151 0.291 0.057 0.058
Power [Either] 0.944 0.894 0.830 0.736 0.240 0.052
Vaccine efficacy 0.655 0.426 0.341 0.490 0.167 0.025

Natural immunity (h=0.50) intermediate waning (v=0.17)
Power [Agent] 0.847 0.727 0.668 0.642 0.193 0.065
Power [Immune] 0.084 0.232 0.294 0.189 0.106 0.050
Power [Either] 0.910 0.637 0.407 0.603 0.119 0.040
Vaccine efficacy 0.654 0.449 0.363 0.517 0.185 0.029

Natural immunity (h=0.50) slow waning (v=0.01)
Power [Agent] 0.900 0.804 0.727 0.673 0.217 0.066
Power [Immune] 0.839 0.736 0.662 0.658 0.188 0.058
Power [Either] 0.670 0.178 0.108 0.323 0.048 0.023
Vaccine efficacy 0.738 0.492 0.390 0.581 0.200 0.031

Prevalence=20%

No natural immunity
Power [Agent] 0.611 0.470 0.414 0.335 0.092 0.036
Power [Immune] 0.617 0.531 0.320 0.329 0.059 0.048
Power [Either] 0.755 0.759 0.744 0.442 0.163 0.061
Vaccine efficacy 0.839 0.593 0.468 0.698 0.264 0.041

Natural immunity (h=0.50) fast waning (v=1.0)
Power [Agent] 0.523 0.408 0.368 0.255 0.077 0.035
Power [Immune] 0.511 0.431 0.246 0.229 0.096 0.039
Power [Either] 0.737 0.764 0.653 0.416 0.175 0.049
Vaccine efficacy 0.795 0.556 0.439 0.632 0.238 0.037

Natural immunity (h=0.50) intermediate waning (v=0.10)
Power [Agent] 0.430 0.338 0.332 0.216 0.072 0.035
Power [Immune] 0.636 0.310 0.136 0.208 0.053 0.051
Power [Either] 0.892 0.825 0.680 0.527 0.155 0.071
Vaccine efficacy 0.729 0.509 0.409 0.588 0.225 0.036

Natural immunity (h=0.50) slow waning (v=0.01)
Power [Agent] 0.538 0.441 0.397 0.297 0.087 0.036
Power [Immune] 0.060 0.229 0.289 0.100 0.090 0.070
Power [Either] 0.755 0.223 0.256 0.366 0.040 0.040
Vaccine efficacy 0.804 0.576 0.457 0.672 0.258 0.041

Power [Agent] compares infected individuals, I ; Power [Immune] compares individuals with evidence of recent infection, S*;
Power [Either] compares individuals with either current infection or evidence of recent infection, which is equivalent to

comparison of S; Vaccine efficacy (VE)=1xprevalence infected (vac)/prevalence infected (unvac).
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when the immune class dominated, power based on

serological detection exceeded the other methods.

Power based on the naive susceptible class often

resulted in the greatest statistical power to detect

vaccine effects ; it was more robust for detection of a

vaccine susceptibility effect as the fraction of infec-

tions arising from outside the unit was varied. Power

based on the susceptible class was poor only when the

waning rate was very slow and the immune class

dominated. For a vaccine effect on infectiousness,

power based on the susceptible state was often greater

than that based on direct agent detection, although

both were very weak when most infections were

generated from outside the unit.

Vaccine efficacy

As in the SIS model, VE is higher when most infec-

tions are generated from inside the unit and when the

vaccine effect is on susceptibility, but decreases as

endemic prevalence levels rise (Table 4). VE is higher

when natural immunity is weak (we are comparing

groups with the same endemic prevalence among the

unvaccinated). As the waning rate of natural immun-

ity slows, VE first decreases then increases, i.e. the

same biphasic response exhibited by power based on

direct agent detection across waning rates.

Natural immunity affecting susceptibility and

infectiousness

Probability distributions

The four states in the SIS*I* model are also con-

strained in that any three determine the fourth, since

the grand total must equal the group size. Figure 4

illustrates the bivariate probability distribution in the

same scenario as described for Figure 1, as the waning

rate was varied. The axes represent (i) the number of

infected who lack any immunity and (ii) the number

of infected who had partial immunity based on

evidence of a recent infection. As waning slows, more

individuals within an unvaccinated group will be

infected and have partial immunity, i.e. concentrated

along the first column. Regardless of the waning rate,

vaccination will decrease the probability of being

infected, but the distribution is more concentrated

among infected who lack immunity when the waning

rate is rapid.

Power based on separation of infected classes

Figure 5 shows the cumulative probability distribu-

tions for each of the direct agent-based designations,

I, I* and I-all (the latter is represented by the diagonal

elements in Fig. 4) for fast vs. slow waning rates, using

the same scenario as Figure 4. Power based on direct

agent detection and partial immunity, the I* state,

was generally greater than that based on either direct

agent without immunity, the I state or their ag-

gregated infected state, I-all (Table 5). The difference

between the I* and I-all distributions decreased at

slower waning rates, so the power determinations

became equivalent.

Vaccine efficacy

When the full SIS*I* model is considered, VE can

now be calculated based on the I* class as VE* or

based on an aggregated infected class as the usual VE.

As in the previous models, VE is higher when most

infections are generated from inside the unit, when

natural immunity is weak and when the vaccine effect

is on susceptibility, but decreases as endemic preva-

lence levels rise. As the waning rate of natural im-

munity slows, VE first decreases then increases, i.e.

the same biphasic response exhibited by power based

on the infected state across waning rates. The magni-

tude of VE* is higher than VE, except when the

waning rate is very slow and two become equivalent

(Fig. 6).

Power using immune-based detection

Power based on immune-based detection was similar

to that found with the SIS* model ; the same biphasic

response vs. the waning rate was again documented.

Power using immune-based detection worked best

when the immune class dominated at slow waning

rates. Power based on the naive susceptible class

(which was equivalent to enumeration of all the other

classes) usually resulted in the greatest statistical

power to detect vaccine effects. It was more robust for

detection of a vaccine susceptibility effect as the frac-

tion of infections arising from outside the unit was

varied and provided greater power for detection of

infectiousness effects. Power based on the naive sus-

ceptible class was poor only when the waning rate was

very slow and the immune class dominated.

DISCUSSION

Vaccine trials typically compare the frequency of

agent or antibody detection in vaccinated vs. un-

vaccinated groups, while statistical power in such

trials compares their distributions. In our endemic
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model without natural immunity, individuals are

either infected or susceptible, so the distribution of

the number of infected inside a unit completely

determines the distribution of the number of suscep-

tible, making their power determinations equivalent.

When there are two susceptible classes, separable by
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serological detection of natural immunity, then power

based on analysis of the susceptible without natural

immunity was superior to that based on agent detec-

tion in the range of prevalence examined, across de-

grees of natural immunity, becoming poor only when

waning was very slow. In this SIS* model, the distri-

bution of the I state is equivalent to that based on

aggregating both susceptible states, while the distri-

bution of the S state is the complement of those in-

dividuals with either current or recent infections.

Power based on the latter was generally more robust

as the strength of natural immunity or the fraction of

infections arising from outside the unit was varied.

When the waning rate was very slow and the recently

immune state became dominant, then power was

greater using the direct agent or immune distribu-

tions.

When natural immunity affected both the suscep-

tible and the infected classes (SIS*I* model), then

power based on analysis of the I* state was superior to

that based on the I state when natural immunity re-

duced either susceptibility or infectiousness, for either

type of vaccine effect and across a wide range of

waning rates. The interaction of natural immunity

and the vaccine effect created a stronger protective

effect for the I* class.

Statistical power to detect an effect is enhanced by

decreasing the group variance or by amplifying the
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Fig. 5. Cumulative probability distributions for the infected classes I, I* and their aggregate, I-all, for 40% prevalence among
the unvaccinated and a slow vs. fast waning rate. High outside force (90% of infections generated externally), is shown with
squares, low outside force (10% of infections generated externally) without squares. Solid lines represent the unvaccinated,

dotted lines the vaccinated. Power based on the I* class is greater than that for the aggregated infected class, but when waning
is slow, the I class is almost zero and there is almost no difference between I* and I-all classes.
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effect. Although the variance in the number of

infected was lower when most infections were gener-

ated from outside the unit, the statistical power was

less when such units were compared in vaccine

trials [4]. That is, despite the larger variance in the

number of infected when most infections arose from

Table 5. Statistical power for SIS*I* model at 40% prevalence

Proportion of infections from outside the unit

0.10 0.50 0.90 0.10 0.50 0.90

Susceptibility effect (s)=0.50 Infectiousness effect (k)=0.50
No natural immunity

Power [I] 0.634 0.239 0.210 0.313 0.046 0.074

Power [I*] 0.942 0.700 0.707 0.792 0.142 0.065
Power [I-all] 0.921 0.816 0.735 0.696 0.221 0.067
Power [Immune] 0.757 0.348 0.197 0.416 0.084 0.042
Power [Either] 0.974 0.938 0.873 0.811 0.330 0.055

Natural immunity (h=0.50) fast waning (v=1.0)

Power [I] 0.510 0.296 0.166 0.131 0.069 0.060
Power [I*] 0.810 0.535 0.374 0.573 0.116 0.030
Power [I-all] 0.848 0.681 0.617 0.590 0.169 0.061

Power [Immune] 0.619 0.265 0.151 0.291 0.057 0.058
Power [Either] 0.944 0.894 0.830 0.736 0.240 0.052

Natural immunity (h=0.50) intermediate waning (v=0.10)
Power [I] 0.050 0.095 0.085 0.050 0.071 0.050

Power [I*] 0.942 0.772 0.696 0.776 0.167 0.050
Power [I-all] 0.847 0.727 0.668 0.642 0.193 0.065
Power [Immune] 0.084 0.232 0.294 0.189 0.106 0.050

Power [Either] 0.910 0.637 0.407 0.603 0.119 0.040

Natural immunity (h=0.50) slow waning (v=0.01)
Power [I] 0.070 0.060 0.050 0.070 0.060 0.040
Power [I*] 0.926 0.755 0.658 0.713 0.162 0.040
Power [I-all] 0.900 0.804 0.727 0.673 0.217 0.066

Power [Immune] 0.839 0.736 0.662 0.658 0.188 0.058
Power [Either] 0.670 0.178 0.108 0.323 0.048 0.023

Natural immunity (w=0.50) fast waning (v=1.0)
Power [I] 0.529 0.221 0.209 0.251 0.046 0.040

Power [I*] 0.882 0.838 0.703 0.682 0.124 0.065
Power [I-all] 0.850 0.700 0.640 0.588 0.143 0.040
Power [Immune] 0.656 0.328 0.205 0.334 0.083 0.065

Power [Either] 0.931 0.992 0.887 0.700 0.270 0.065

Natural immunity (w=0.50) intermediate waning (v=0.10)
Power [I] 0.035 0.068 0.059 0.131 0.056 0.041
Power [I*] 0.932 0.871 0.726 0.748 0.251 0.042

Power [I-all] 0.807 0.772 0.729 0.562 0.209 0.066
Power [Immune] 0.063 0.132 0.140 0.063 0.100 0.056
Power [Either] 0.934 0.828 0.646 0.664 0.209 0.060

Natural immunity (w=0.50) slow waning (v=0.01)

Power [I] 0.070 0.060 0.060 0.064 0.050 0.040
Power [I*] 0.924 0.759 0.666 0.711 0.161 0.040
Power [I-all] 0.897 0.866 0.734 0.671 0.217 0.066
Power [Immune] 0.696 0.662 0.603 0.560 0.164 0.051

Power [Either] 0.714 0.191 0.101 0.356 0.040 0.020

Power [Agent] compares infected individuals as I*, I or total infected, I-all ; Power [Immune] compares individuals with
evidence of recent infection S*; Power [Either] compares individuals with either current infection or evidence of recent
infection, which is equivalent to comparison of S.
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inside the unit, vaccination of such groups produced

strong indirect as well as direct effects, so greater

separation of the distributions was obtained. The

same phenomenon of increased variance in the

number of infected (and the number of susceptible)

when most infections arose from inside the unit

was observed in the SIS* and the SIS*I* models.

Nonlinearity of the contact process generated this

variance vs. when most infections arose from outside

the unit and a more homogeneous distribution

developed. For both the SIS* and SIS*I* models,

when most infections arose inside the unit, there

were strong indirect and direct effects that resulted

in much greater separation between the vaccinated

and the unvaccinated groups and hence greater

power.

Exposure to other children, either through attend-

ance at a DCC or via household contacts, is an im-

portant source of transmission for both NTHi and S.

pneumoniae [8–10]. Greater size of the DCC increases

the transmission; the odds ratio (OR) for otitis media

increased (compared to no day care) from 1.5, 2.0, 3.0

and 3.8 as the number of children in the unit rose from

1–3, 4–6, 7–12, and>12 [11]. Among households, the

proportion of infections acquired within a household

increased with its size [9]. Carriage rates of S. pneu-

moniae in young children increased with household

size (OR 3), comparable to the increased odds found

with lower socio-economic status or attendance at a

DCC [12]. Groups therefore differ with regard to

likelihood of internal vs. external transmission; our

models suggest that characterizing the proportion of
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Fig. 6. Vaccine efficacy, based on all infected individuals (VE) is shown with solid lines, while vaccine efficacy, based only

on those infected who had recovered from a recent infection (VE*) is shown with dotted lines (prevalence among the
unvaccinated is constant at 40%). The left panels contrast levels of natural immunity, while the right panels contrast waning
rates. The upper panels show vaccine susceptibility effects, the lower panels show infectiousness effects. VE* is greater than

VE, both are higher when low outside force of infection dominates and susceptibility effects have a greater magnitude than
infectiousness effects. At very slow waning rates, there is little difference between the magnitude of VE and VE*, since almost
all infected are in the [I*] class.
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infection generated from inside the unit strongly

influences both the power to detect vaccine effects and

magnitude of VE.

VE is a proportion used to quantify the degree of

protection afforded by vaccination. It can manifest

as a reduction in susceptibility or infectiousness ;

Longini et al. [13] denote these as VES and VEI

respectively. The protection offered by a vaccine can

reduce the probability of acquiring infection by a

constant factor for all recipients, or a certain pro-

portion of vaccinees may be completely protected,

while the remainder have limited or no protection

[14]. In this study, we modelled susceptibility and

infectiousness effects separately and as a reduction in

transmission, rather than as a complete immunity, so

that the joint effect of natural immunity and vacci-

nation could be examined. Natural immunity and

vaccine effects were modelled as a multiplicative

interaction. We found that vaccine efficacy (VE*)

derived from a separate analysis of those with natural

immunity showed a greater protective effect than that

based on aggregating all infected into one class. The

interaction of natural immunity and the vaccine effect

magnified VE for the [I*] class. Halloran et al. [15]

described the use of validation sets for estimation of

VE, in vaccine field studies where the initial estimates

of disease are made based on a clinical case definition,

but later refined by studying a subset with a more

definitive test, e.g. culture confirmation. Although in

our model all infected subjects have the same disease,

a subset with natural immunity might only be

distinguishable by measuring antibody titres, etc. ;

analysis of this subset both increases the estimate of

VE and offers greater statistical power. Haber et al.

[16] analysed the effect of a disease prior to an out-

break on estimates of VE following the outbreak;

in their model, natural immunity would provide

complete protection from an infection, while only a

proportion of vaccinees would be completely im-

mune. They pointed out the problem of identifying

individuals based on case history alone vs. testing for

pre-existing immunity and the potential bias

introduced into estimates of VE when vaccinees and

non-vaccinees had different levels of immunity from

natural disease.

InDesign and analysis of group-randomized trials by

Murray [17], multiple steps are outlined for proper

analysis of statistical power in group-randomized

trials. Included among the steps are specifying the

form and magnitude of the intervention effect

and determining the distribution and variance of the

outcome. From the models we developed for an in-

fectious disease, it is clear that the relative value of the

internal vs. external force of infection in the group is

an important determinant of the intra-class corre-

lation, the magnitude of the intervention effect and

hence the statistical power. The baseline prevalence

among the unvaccinated group is insufficient to pre-

dict the statistical power of the trial ; one needs an

understanding of the group transmission dynamics to

predict the vaccine effect. The ability to discriminate a

subset possessing natural immunity within infected

and susceptible classes enhanced the statistical power

to detect a vaccine effect and increased VE. In the

range of prevalence we examined [S] or [S*] classes

represented a majority or a plurality in the unit. When

the naive susceptible could be differentiated from the

others, statistical power based on a vaccine effect to

increase their number was frequently superior to

power based on decreasing the infected.

Our analysis suggests that assessing the outcome

of a vaccine trial should include information beyond

the risk of infection among the unvaccinated vs. the

vaccinees. When there is natural immunity that

decreases the probability of acquiring and/or trans-

mitting an infection and some means (e.g. serological)

of identifying individuals possessing those character-

istics, then greater statistical power is possible by

separate analysis of those individual classes. In the

case of highly recurrent agents where natural

immunity rapidly wanes, power may be maximized

by analysis of the S class, i.e. those individuals lacking

any residual natural immunity. When the natural

infection provides long-lasting immunity, then power

estimates using immune-based detection or power

based on separation of the infected that have prior

evidence of a natural infection may provide maximum

power. When immunity wanes very slowly, then

power may be maximized by analysis of the immune

state. However, the duration of the vaccine trial may

be too short for the vaccine effects to come to

equilibrium in the latter situation. Vaccine trials that

are based on group randomization should also

include information about the nature of transmission

within the groups, since the proportion of infections

generated from within has a strong influence on

both vaccine efficacy and the power to detect vaccine

effects.
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APPENDIX 1. Summary of equations used for the SIS* and SIS*I* models

SIS* model

1st column (Yi,0)

d/dt(Y0, 0)=xvnY0, 0xnlhY0, 0+cY1, 0, (1)

d/dt(Y1, ..., nx1, 0)=xv(nxi)Yi, 0+lYix1, 1+lh((n+1xi)Yix1, 0x(nxi)Yi, 0)+c(ix1)Yix1, 1

+ch((n+1xi)(ix1)Yix1, 0x(nxi)iYi, 0)+c(i+1)Yi+1, 0xciYi, 0,
(2)

d/dt(Yn, 0)=lYnx1, 1+lhYnx1, 0+c(nx1)Ynx1, 1+ch(nx1)Ynx1, 0xncYn, 0: (3)

2nd column (Yi,1)

d/dt(Y0, 1)=v(nY0, 0x(nx1)Y0, 1)xl(1+h (nx1))Y0, 1+cY1, 1, etc: (4)

Each of the Yi,j entries represent the probability of the system being at that state, when equilibrium is reached.

The equations for the SIS*I* model are summarized as follows.

I*(n) stratum

d/dt(Y0, 0, 0)=xnc2Y0, 0, 0+lhY0, 0, 1+(nx1)chw(1/(nx1))Y0, 0, 1:

I*(nx1) stratum

d/dt(Y0, 0, 1)=+nc2Y0, 0, 0x(lh+v+(nx1)(c2+chw))Y0, 0, 1+c1Y1, 0, 1+2h(l+(nx2)cw/(nx1))Y0, 0, 2,

d/dt(Y1, 0, 1)=x(c1+(nx1)c2)Y1, 0, 1+(l+cw)Y0, 1, 1+(ch/(nx1))(w(nx2)+1)Y1, 0, 2,

d/dt(Y0, 1, 1)=+vY0, 0, 1x(l+(nx1)c2xcw)Y0, 1, 1+h(l+cw(nx2)/(nx1))Y1, 1, 2, etc:

APPENDIX 2. Multinomial expansion

An example of expansion of probability distribution from a group of size 12 to arrive at probability distributions

for four independent replications:

Let P[0], P[1], …, P[12] be the probability that 0, 1, …, 12 are infected within the unit :

Then the probability that 0 are infected among 48=P[0]4.

The probability that 1 is infected among 48=4.P[1].P[0]3.

The probability that 2 are infected among 48=4.P[2].P[0]3+6 P[1]2.P[0]2.

Or generally, the probability that k are infected among four replications is

X
(4 � P[k] � P[0]3+C4

2, 1, 1 � P[kx1] � P[1] � P[0]2+ . . . ),

i.e. across all combinations of probabilities that total k infected, where each probability P[i], is raised to the

power of the number of repeats and where the C notation represents all possible combinations of four items,

given the number of repeats.
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