LINEAR TRANSFORMATIONS ON MATRICES: THE INVARIANGE OF GENERALIZED PERMUTATION MATRICES, I

HOCK ONG AND E. P. BOTTA

1. Introduction. Let F be a field, $M_{n}(F)$ be the vector space of all n-square matrices with entries in F and \mathscr{U} a subset of $M_{n}(F)$. It is of interest to determine the structure of linear maps $T: M_{n}(F) \rightarrow M_{n}(F)$ such that $T(\mathscr{U}) \subseteq \mathscr{U}$. For example: Let \mathscr{U} be $G L(n, \mathbf{C})$, the group of all nonsingular $n \times n$ matrices over C [5]; the subset of all rank 1 matrices in $M_{m \times n}(F)$ [4] $\left(M_{m \times n}(F)\right.$ is the vector space of all $m \times n$ matrices over F); the unitary group [2]; or the set of all matrices X in $M_{n}(F)$ such that $\operatorname{det}(X)=0$ [1]. Other results in this direction can be found in [3]. In this paper we consider \mathscr{U} to be a set of generalized permutation matrices relative to some permutation group(set) and with entries in some nontrivial subgroup of F^{*} where F^{*} is the multiplicative group of F. We classify those $T: M_{n}(F) \rightarrow M_{n}(F)$ such that $T(\mathscr{U})=$ \mathscr{U}. Furthermore we also determine the structure of the set of all such T. The main results will be stated in Section 4.
2. Definitions and notation. We denote by S_{n} the symmetric group of degree n acting on the set $\{1,2, \ldots, n\}$. If S is a subset of F we define

$$
\Gamma_{n}(S)=\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): \alpha_{i} \in S\right\} .
$$

The identity element of S_{n}, the additive identity and the multiplicative identity of F will be denoted by $e, 0,1$ respectively. The matrix with 1 in the (i, j) position and 0 elsewhere will be denoted by $E_{i j}$. If $\alpha \in \Gamma_{n}\left(F^{*}\right)$ and $\sigma \in S_{n}$ then $P(\alpha, \sigma)$ will be the matrix whose (i, j) entry is $\alpha_{i} \delta_{i \sigma(j)}$ (where $\delta_{i, j}=1$ if $i=j$ and 0 elsewhere) and we call $P(\alpha, \sigma)$ a generalized permutation matrix. If $\epsilon \in \Gamma_{n}(F)$ is the sequence all of whose entries are equal to 1 we write $P(\sigma)$ for $P(\epsilon, \sigma)$ and call $P(\sigma)$ a permutation matrix corresponding to σ. If G is a nonempty subset of S_{n} and H a subgroup of F^{*} we define

$$
\begin{aligned}
P(G, H)= & \left\{P(\alpha, \sigma): \alpha \in \Gamma_{n}(H) \text { and } \sigma \in G\right\}, \\
\mathscr{T} P(G, H)= & \left\{T: T \text { is a linear transformation on } M_{n}(F)\right. \text { to itself } \\
& \text { and } T(P(G, H))=P(G, H)\} .
\end{aligned}
$$

If $\epsilon=\left\{E_{i}: i=1,2, \ldots, n\right\} \subset M_{n}(F)$ is a set of n matrices we say ϵ is a

[^0]$G-H$ unitary set if ϵ is a linearly independent set and for all $\alpha \in \Gamma_{n}(H)$,
$$
E(\alpha)=\sum_{i=1}^{n} \alpha_{i} E_{i}
$$
belongs to $P(G, H)$.
Let
$$
\mathscr{H}=\left\{H: H \text { is a subgroup of } F^{*}\right. \text { and there do not exist }
$$
$$
\left.a, b \in F^{*} \text { such that } H a+b \subseteq H\right\}
$$

The set \mathscr{H} is nonempty. For example:
(a) It is trivial that F^{*} is in \mathscr{H} for every field F.
(b) If H is a subgroup of the unit circle $C=\{z:|z|=1\}$ of the complex plane and $|H|>2$ where $|H|$ denotes the order of H then H is in \mathscr{H}.

Proof. If a, b are in F^{*} then the circle $|z a+b|=1$ intersects the unit circle at most two points.
(c) Every nontrivial finite subgroup H of F^{*} is in \mathscr{H}.

Proof. If there exist $a, b \in F^{*}$ such that $H a+b \subseteq H$ then since H is finite, $H a+b=H$. It is easily seen that when h runs over $H, h a+b$ also runs over H. Hence

$$
\left(\sum_{h \in H} h\right) a+|H| b=\sum_{n \in H} h
$$

It is well known that H is cyclic and elements in H are exactly the roots of $x^{|H|}=1$. Hence $\sum_{h \in H} h=0$ and so $|H| b=0$. Clearly this is impossible if char $F=0$. If $p=\operatorname{char} F \neq 0$ then $p\|H\| p^{r}-1$ for some positive integer r which is again impossible.

The n-square matrices all of whose entries are 0 , all of whose entries are 1 and the identity matrix will be denoted by $0_{n}, J_{n}, I_{n}$ respectively or $0, J, I$ if no ambiguity arises. If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are in $M_{n}(F)$ then their Hadamard product $A * B=C=\left(c_{i j}\right)$ is the n-square matrix defined by $c_{i j}=a_{i j} b_{i j}$. If A is n-square matrix and B is an m-square matrix then $A \oplus B$ will denote their direct sum. If $X=\left(x_{i j}\right) \in M_{n}(F)$ and $\sigma \in S_{n}, X_{\sigma}$ will be the matrix whose (i, j) entry is $x_{i j}$ if $\sigma(i)=j$ and 0 elsewhere.

If H is a subgroup of F^{*} let $M_{n}(H)$ be the set of all n-square matrices with entries in H. Since H is a group, it is easy to see that the set $M_{n}(H)$ with the operation Hadamard product is a group and will be denoted by $M_{n}(H)$. Under the correspondence

$$
A \rightarrow\left(a_{11}, \ldots, a_{1 n}, \ldots, a_{n 1}, \ldots, a_{n n}\right)
$$

where $A=\left(a_{i j}\right) \in M_{n}(H)$, it is obvious that $M_{n}(H)$ is isomorphic to the direct product $H \times \ldots \times H$ (n^{2} times).

We recall that a nonempty subset G of S_{n} is transitive if given $1 \leqq i, j \leqq n$ there exists $\sigma \in G$ such that $\sigma(i)=j$. A transitive subset G of S_{n} is regular if
given such a pair i and j there exists exactly one σ with $\sigma(i)=j$. A subset G of S_{n} is doubly transitive if given $1 \leqq i, j, p, q \leqq n$ with $i \neq p, j \neq q$ there exists $\sigma \in G$ with $\sigma(i)=j, \sigma(p)=q$. If G is a subgroup of S_{n} we denote by $N(G)$ the normalizer of G in S_{n}. If G is a regular subset of S_{n} we shall write $G=\left\{g_{1}, \ldots, g_{n}\right\}$ and for simplicity we shall write $g_{i}{ }^{-1}=h_{i}, i=1,2, \ldots, n$.

If S is a set and η a mapping of S into S then s^{η} will be the image of $s \in S$ under η. If G, K are two groups, $\xi: G \rightarrow \operatorname{Aut}(K)$ a homomorphism (respectively, anti-homomorphism) and for $k \in K, g_{1}, g_{2} \in G$,

$$
\left.\left(k^{\xi\left(\theta_{1}\right)}\right)^{\xi\left(g_{2}\right)}=k^{\xi\left(g_{2}\right) \xi\left(g_{1}\right)}, \quad \text { (respectively, } k^{\xi\left(g_{1}\right) \xi\left(g_{2}\right)}\right)
$$

then the symbols $\langle g, k\rangle, g \in G, k \in K$ form a group under the rule

$$
\begin{aligned}
& \left\langle g_{1}, k_{1}\right\rangle \cdot\left\langle g_{2}, k_{2}\right\rangle=\left\langle g_{1} g_{2}, k_{1} k_{2}^{\xi\left(q_{1}\right)}\right\rangle \\
& \left(\left\langle g_{1}, k_{1}\right\rangle \cdot\left\langle g_{2}, k_{2}\right\rangle=\left\langle g_{1} g_{2}, k_{1}^{\xi\left(g_{2}\right)} k_{2}\right\rangle\right),
\end{aligned}
$$

i.e. the semi-direct product of K by G with respect to ξ and will be denoted by $\langle G, K\rangle_{\xi}$ or $\langle G, K\rangle$.

For $T \in \mathscr{T} P(G, H)$ and $\sigma \in G$ we define

$$
\begin{aligned}
T(\sigma) & =\left\{T\left(E_{i \sigma(i)}: i=1,2, \ldots, n\right\}\right. \\
P(G) & =\{P(\sigma): \sigma \in G\}
\end{aligned}
$$

The linear transformations $P(\sigma), \sigma \in G$ and R on $M_{n}(F)$ to itself are defined as follows: For $X \in M_{n}(F)$,

$$
\begin{aligned}
P(\sigma)(X) & =P(\sigma) X, \\
R(X) & ={ }^{t} X
\end{aligned}
$$

where ${ }^{t} X$ is the transpose of X.
3. The groups $\left\langle\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle, M_{n}(H)\right\rangle$ and $\left\langle N(G), M_{n}(H)\right\rangle$. Let H be a subgroup of F^{*} and $S_{n} \times \ldots \times S_{n}$ denote the direct product of S_{n} by n times. For $\nu, \sigma \in S_{n},\left(\omega_{\nu(1)}, \ldots, \omega_{\nu(n)}\right)$ in $S_{n} \times \ldots \times S_{n}$ define $\varphi_{\sigma}: S_{n} \times \ldots \times S_{n} \rightarrow S_{n} \times \ldots \times S_{n}$ by

$$
\varphi_{\sigma}\left(\omega_{\nu(1)}, \ldots, \omega_{\nu(n)}\right)=\left(\omega_{\nu \sigma(1)}, \ldots, \omega_{\nu \sigma(n)}\right) .
$$

Then it is easy to see that φ_{σ} is an automorphism of $S_{n} \times \ldots \times S_{n}$, and defines φ, an anti-isomorphism of S_{n} into the group of all automorphisms of $S_{n} \times \ldots \times S_{n}$. We denote by $\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle$ the semi-direct product of $S_{n} \times \ldots \times S_{n}$ by S_{n} with respect to the anti-isomorphism φ.

Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a regular subset of S_{n}. For $A \in M_{n}(H)$ and $\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle \in\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle$ we define

$$
\begin{equation*}
A^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle}=\sum_{i=1}^{n} P\left(\mu_{i}\right) A_{h_{i}} P\left(h_{i} \mu_{i}^{-1} g_{\sigma(i)}\right) . \tag{3.1}
\end{equation*}
$$

Then for $A, B \in M_{n}(H)$, since $A_{h_{i}}$ and $B_{h_{i}}$ are h_{i}-diagonal matrices,

$$
\begin{aligned}
(A * & *)^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle} \\
& =\sum_{i=1}^{n} P\left(\mu_{i}\right)\left(A_{h_{i}} * B_{h_{i}}\right) P\left(h_{i} \mu_{i}{ }^{-1} g_{\sigma(i)}\right) \\
& =\sum_{i=1}^{n} P\left(\mu_{i}\right) A_{h_{i}} P\left(h_{i} \mu_{i}^{-1} g_{\sigma(i)}\right) * \sum_{j=1}^{n} P\left(\mu_{j}\right) B_{h_{j}} P\left(h_{j} \mu_{j}^{-1} g_{\sigma(j)}\right) \\
& =A^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle} * B^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle}
\end{aligned}
$$

and $A^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle}=J$ if and only if $A=J$. Therefore $\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle$ is an automorphism of $M_{n}(H)$. For $\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle$ and $\left\langle\tau,\left(\nu_{1}, \ldots, \nu_{n}\right)\right\rangle$ in $\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle$, a computation shows that

$$
\left.\left(A^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right\rangle\right\rangle}\right)\left\langle\tau,\left(\nu_{1}, \ldots, \nu_{n}\right)\right\rangle\right)=A^{\left\langle\tau,\left(\nu_{1}, \ldots, \nu_{n}\right)\right\rangle \cdot\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle} .
$$

Hence we may define $\left\langle\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle, M_{n}(H)\right\rangle$, the corresponding semidirect product of $M_{n}(H)$ by $\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle$.

Suppose now that G is a doubly transitive subgroup of S_{n} and for $\tau \in N(G)$, $A \in M_{n}(H)$ we define

$$
A^{\tau}=P(\tau) A P\left(\tau^{-1}\right)
$$

Then it is easy to see that τ is an automorphism of $M_{n}(H)$ and we denote the corresponding semi-direct product of $M_{n}(H)$ by $N(G)$ by $\left\langle N(G), M_{n}(H)\right\rangle$.
4. Main results. First we characterize all $G-H$ unitary sets for G a nonempty subset of S_{n} and H a nontrivial group in \mathscr{H} (Propositions 1 and 2). If G is a transitive subset of S_{n} and H is a nontrivial subgroup of F^{*} we show that $\mathscr{T} P(G, H)$ is a subgroup of $G L\left(n^{2}, F\right)$ (Proposition 3). If G is a regular subset or a doubly transitive subset of $S_{n}(n>2), H$ a nontrivial group in \mathscr{H} and $T \in \mathscr{T} P(G, H)$ then for $1 \leqq i, j \leqq n$ there exist $1 \leqq p, q \leqq n$ and $\alpha_{i j} \in H$ such that

$$
T\left(E_{i j}\right)=\alpha_{i j} E_{p q}
$$

and for distinct (i, j) we have distinct (p, q), i.e. the matrix representation of T with respect to the usual basis $\left\{E_{i j}: i, j=1,2, \ldots, n\right\}$ is a generalized permutation matrix (Lemmas 5 and 6). Furthermore we have the following results:

Theorem 1. Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a regular subset of $S_{n}(n>2)$ and H a nontrivial group in \mathscr{H}. Then $T \in \mathscr{T} P(G, H)$ if and only if there exist $\alpha_{i}=$ $\left(\alpha_{i 1}, \ldots, \alpha_{\text {tn }}\right) \in \Gamma_{n}(H), i=1,2, \ldots, n$ and $\mu_{1}, \ldots, \mu_{n}, \sigma \in S_{n}$ such that

$$
T\left(E_{i h_{k}(i)}\right)=\alpha_{i h_{k}(i)} E_{\mu_{k}(i) h_{\sigma(k)} \mu_{k}(i)}, \quad i, k=1, \ldots, n
$$

or in another form

$$
T(X)=A * \sum_{i=1}^{n} P\left(\mu_{i}\right) X_{h_{i}} P\left(h_{i} \mu_{i}^{-1} g_{\sigma(i)}\right), \quad X \in M_{n}(F)
$$

where $A=\left[\alpha_{i j}\right]^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle} \in M_{n}(H)$ and $h_{i}=g_{i}{ }^{-1}$.
Theorem 2. Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a regular subset of $S_{n}(n>2)$ and H a nontrivial group in \mathscr{H}. If for

$$
\left\langle\left\langle\epsilon,\left(\mu_{1}, \ldots, \mu_{n}\right)\right\rangle, A\right\rangle \in\left\langle\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle, M_{n}(H)\right\rangle
$$

and $X \in M_{n}(F)$ we define

$$
X^{\left\langle\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right\rangle\right\rangle, A\right\rangle}=A * X^{\left\langle\sigma,\left(\mu_{1}, \ldots, \mu_{n}\right\rangle\right)},
$$

then $\mathscr{T} P(G, H)$ is equal to the group $\left\langle\left\langle S_{n}, S_{n} \times \ldots \times S_{n}\right\rangle, M_{n}(H)\right\rangle$.
Theorem 3. Let G be a doubly transitive subgroup of $S_{n}(n>2)$ and $H a$ nontrivial group in \mathscr{H}. Then $T \in \mathscr{T} P(G, H)$ if and only if there exist $A \in M_{n}(H)$, $\mu \in N(G)$ and $\sigma \in G$ such that

$$
\begin{aligned}
& T(X)=A * P(\sigma \mu) X P\left(\mu^{-1}\right), \quad X \in M_{n}(F) \quad \text { or } \\
& T(X)=A * P(\sigma \mu)^{t} X P\left(\mu^{-1}\right), \quad X \in M_{n}(F) .
\end{aligned}
$$

Theorem 4. Let G be a doubly transitive subgroup of $S_{n}(n>2)$ and $H a$ nontrivial group in \mathscr{H}. If for $\langle\mu, A\rangle \in\left\langle N(G), M_{n}(H)\right\rangle$ we define

$$
X^{\langle\sigma, A\rangle}=A * P(\sigma) X P\left(\sigma^{-1}\right), \quad X \in M_{n}(F)
$$

then $\mathscr{T} P(G, H)$ is equal to the group

$$
P(G) \circ\left\langle N(G), M_{n}(H)\right\rangle \circ\{I, R\}
$$

where \circ is the usual composition of linear transformations. As an abstract group, there exists a subgroup $\mathscr{T}_{1} P(G, H)$ of index $2|G| \operatorname{in} \mathscr{T} P(G, H)$ and $\mathscr{T}_{1} P(G, H)$ is isomorphic to the group

$$
\begin{gathered}
\langle N(G), H \times \ldots \times H\rangle . \\
n^{2} \text { times }
\end{gathered}
$$

To complete our list we have the following
Theorem 5. If $|H|>2$ and $H \in \mathscr{H}$ then Theorems 1 and 2 are true when $n=2$. If $H=\{1,-1\}$ then $\mathscr{T} P\left(S_{2}, H\right)$ consists of the group of linear transformations generated by the set

$$
\left\{T: T(X)=A * \sum_{i=1}^{2} P\left(\mu_{i}\right) X_{g_{i}} P\left(g_{i} \mu_{i} g_{\sigma(i)}\right), \quad \sigma, \mu_{1}, \mu_{2} \in S_{2}, A \in M_{2}(H)\right\}
$$

together with the linear transformation S defined as follows:

$$
\begin{aligned}
& S\left(E_{11}\right)=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad S\left(E_{12}\right)=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right] \\
& S\left(E_{21}\right)=\frac{1}{2}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right], \quad S\left(E_{22}\right)=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] .
\end{aligned}
$$

5. Structure of $G-H$ unitary sets. Let G be a nonempty subset of S_{n} and H a group in \mathscr{H}.

Proposition 1. Suppose $|H|>2$ and $\left\{A_{1}, \ldots, A_{n}\right\} \subseteq M_{n}(F)$ is a $G-H$ unitary set. Then there exist $a_{1}, \ldots, a_{n} \in H, \tau \in S_{n}, \sigma \in G$ such that

$$
A_{i}=a_{i} E_{\tau(i) \sigma}-1 \boldsymbol{1}_{\tau(i)}, \quad i=1,2, \ldots, n
$$

Proof. It is obvious for $n=1$, hence assume $n>1$. Since $(1, \ldots, 1) \in \Gamma_{n}(H)$, $\sum_{i-1}^{n} A_{i}$ is in $P(G, H)$ hence there exist a $\sigma \in G$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \Gamma_{n}(H)$ such that

$$
\sum_{i=1}^{n} A_{i}=P(\beta, \sigma)
$$

Since $|H|>2$ there exist distinct $\xi, \eta \in H$ and both are distinct from 1 . Then there exist $\tau, \nu \in G$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right), \delta=\left(\delta_{1}, \ldots, \delta_{n}\right) \in \Gamma_{n}(H)$ such that

$$
\begin{aligned}
& \xi A_{1}+\sum_{i=2}^{n} A_{i}=P(\gamma, \tau) \\
& \eta A_{1}+\sum_{i=2}^{n} A_{i}=P(\delta, \nu)
\end{aligned}
$$

Hence

$$
A_{1}=(1-\xi)^{-1}(P(\beta, \sigma)-P(\gamma, \tau)) .
$$

Assume $\sigma \neq \tau$. Then there exists $1 \leqq i \leqq n$ such that $\sigma^{-1}(i) \neq \tau^{-1}(i)$. But

$$
A_{1}=(1-\eta)^{-1}(P(\beta, \sigma)-P(\delta, \nu))=(\xi-\eta)^{-1}(P(\gamma, \tau)-P(\delta, \nu)),
$$

or

$$
(1-\eta)^{-1} P(\beta, \sigma)-(\xi-\eta)^{-1} P(\gamma, \tau)=\left((1-\eta)^{-1}-(\xi-\eta)^{-1}\right) P(\delta, \nu)
$$

i.e. the matrix on the left hand side has two nonzero entries in the i th row and the right has at most one, a contradiction. Hence $\sigma=\tau$ and

$$
A_{1}=P\left((1-\xi)^{-1}(\beta-\gamma), \sigma\right)=P\left(\theta_{1}, \sigma\right)
$$

say. Similarly we have $A_{i}=P\left(\theta_{i}, \sigma\right)$ where $\theta_{i} \in \Gamma_{n}(F), i=1,2, \ldots, n$.
Now if we write $A_{k}=\left(a_{i j}{ }^{k}\right), k=1,2, \ldots, n$ then $a_{i j}{ }^{k}=0$ if $j \neq \sigma^{-1}(i)$ and $\sum_{k-1}^{n} \alpha_{k} a^{k}{ }_{i \sigma \sigma^{-1}(i)} \in H$ for all $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Gamma_{n}(H), i=1,2, \ldots, n$. Suppose the number of nonzero terms in $\left\{a^{k}{ }_{i \sigma^{-1}(i)}: k=1,2, \ldots, n\right\}$ is not less than two, say $a^{1}{ }_{i \sigma^{-1}(i)} \neq 0$ and $a^{2}{ }_{i \sigma^{-1}(i)} \neq 0$. Then we may choose $\alpha_{2}, \ldots, \alpha_{n} \in H$ so that $\sum_{k-2}^{n} \alpha_{k} a^{k}{ }_{i \sigma-1(i)} \neq 0$. Let

$$
a=a^{1}{ }_{{ }^{\sigma}-1(i)}, \quad b=\sum_{k-2}^{n} \alpha_{k} a^{k}{ }_{i \sigma^{-1}(\mathfrak{i})} .
$$

Then $\alpha_{1} a+b \in H$ for all $\alpha_{1} \in H$, i.e. $H a+b \subseteq H$ which is a contradiction.

Hence for each $i=1,2, \ldots, n$ there exists exactly one k such that $a^{k}{ }_{i \sigma^{-1}(i)} \neq 0$ and $a^{l}{ }_{i \sigma^{-1}(i)}=0$ for all $l \neq k$. If for some $k, a^{k}{ }_{1 \sigma^{-1}(i)} \neq 0$ and $a^{k}{ }_{j \sigma-1(j)} \neq 0, i \neq j$ then there exists l such that $A_{l}=0$ which is impossible since A_{1}, \ldots, A_{n} are linearly independent. Hence there exist $\tau \in S_{n}$ and $a_{1}, \ldots, a_{n} \in H$ such that

$$
\begin{aligned}
& A_{\tau^{-1}(i)}=a_{\tau^{-1}(i)} E_{i \sigma^{-1}(i)}, \quad i=1,2, \ldots, n \quad \text { or } \\
& A_{i}=a_{i} E_{\tau(i) \sigma^{-1} \tau(i)}, \quad i=1,2, \ldots, n .
\end{aligned}
$$

Proposition 2. If $|H|=2$ and $\left\{A_{1}, \ldots, A_{n}\right\} \subseteq M_{n}(F)$ is a $G-H$ unitary set then there exist permutation matrices P and Q, an integer $r(0 \leqq r \leqq n)$ and $\epsilon_{i}, \zeta_{j k} \in H$ such that $n-r$ is even and if $P\left\{A_{1}, \ldots, A_{n}\right\} Q=\left\{E_{1}, \ldots, E_{n}\right\}$ then

$$
\begin{aligned}
& E_{1}=\left[\epsilon_{1}\right] \oplus O_{n-1}, \\
& E_{2}=O_{1} \oplus\left[\epsilon_{2}\right] \oplus O_{n-2}, \\
& \cdot \\
& \cdot \\
& \cdot \\
& E_{r}=O_{r-1} \oplus\left[\epsilon_{r}\right] \oplus O_{n-\tau}, \\
& E_{r+1}=O_{\tau} \oplus \frac{1}{2}\left[\begin{array}{ll}
\zeta_{11} & \zeta_{12} \\
\zeta_{13} & \zeta_{14}
\end{array}\right] \oplus O_{n-r-2}, \\
& E_{r+2}=O_{r} \oplus \frac{1}{2}\left[\begin{array}{ll}
\pm \zeta_{11} & \mp \zeta_{12} \\
\mp \zeta_{13} & \pm \zeta_{14}
\end{array}\right] \oplus O_{n-r-2}, \\
& \cdot \\
& \cdot \\
& \cdot \\
& E_{n-1}=O_{n-2} \oplus \frac{1}{2}\left[\begin{array}{ll}
\zeta_{t 1} & \zeta_{t 2} \\
\zeta_{t 3} & \zeta_{t 4}
\end{array}\right], t=\frac{1}{2}(n-r), \\
& E_{n}=O_{n-2} \oplus \frac{1}{2}\left[\begin{array}{ll}
\pm \zeta_{t 1} & \mp \zeta_{t 2} \\
\mp \zeta_{t 3} & \pm \zeta_{t 4}
\end{array}\right] .
\end{aligned}
$$

Proof. It is obvious for $n=1$ hence assume $n>1$.
Since $(1, \ldots, 1) \in \Gamma_{n}(H)$ there exist $\sigma \in G$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Gamma_{n}(H)$ such that

$$
\sum_{i=1}^{n} A_{i}=P(\alpha, \delta)
$$

For $k=1,2, \ldots, n$, let $\theta_{k i}=1$ if $i=k$ and $\theta_{k i}=-1$ if $i \neq k$. Then $\theta_{k}=\left(\theta_{k 1}, \ldots, \theta_{k n}\right) \in \Gamma_{n}(H)$ and hence there exist $\beta_{k}=\left(\beta_{k 1}, \ldots, \beta_{k n}\right)$ in $\Gamma_{n}(H), \tau_{i}$ in $G, i=1,2, \ldots, n$ such that

$$
A_{k}-\sum_{i \neq k} A_{i}=P\left(\beta_{k}, \tau_{k}\right), \quad k=1,2, \ldots, n .
$$

Hence

$$
2 A_{k}=P(\alpha, \sigma)+P\left(\beta_{k}, \tau_{k}\right), \quad k=1,2, \ldots, n
$$

Since $|H|=2$ we must have $1 \neq-1$. Hence char $\neq 2$ and

$$
A_{k}=2^{-1} P(\alpha, \sigma)+2^{-1} P\left(\beta_{k}, \tau_{k}\right), \quad k=1,2, \ldots, n
$$

To complete the proof we need the following lemmas, using the above notations.

Lemma 1. If $\sigma^{-1}(q) \neq \tau_{s}^{-1}(q)$ for some $1 \leqq s, q \leqq n$ then there exists a $t \neq s$ such that $\tau_{t}^{-1}(q)=\tau_{s}^{-1}(q)$ and $\tau_{i}^{-1}(q) \neq \tau_{s}^{-1}(q)$ for all $i \neq s, t$.

Proof. We may assume $s=q=1$.
If $\tau_{i}^{-1}(1) \neq \tau_{1}^{-1}(1)$ for all $i \neq 1$ then clearly it is impossible. If $n=2$ the statement is then clear. Hence assume $n>2$ and there are r integers, say $1,2, \ldots, r$, such that $r>2, \tau_{1}^{-1}(1)=\ldots=\tau_{r}^{-1}(1)$ and $\tau_{i}^{-1}(1) \neq \tau_{1}^{-1}(1)$ for $i=r+1, \ldots, n$. Now since $A_{j}-\sum_{i \neq j} A_{i}=P\left(\beta_{j}, \tau_{j}\right), j=1,2, \ldots, r$ we have

$$
\left(A_{j}-\sum_{i \neq j} A_{i}\right)_{1 \sigma^{-1}(1)}=0, \quad j=1,2, \ldots, r
$$

Since for $k=1,2, \ldots, r,\left(A_{k}\right)_{1_{\sigma^{-1}(1)}}=2^{-1} \alpha_{1} \neq 0$; hence for $j \neq k, 1 \leqq j$, $k \leqq r$

$$
\left(A_{j}-A_{k}-\sum_{i \neq j, k} A_{i}\right)_{1 \sigma^{-1}(1)} \neq 0 .
$$

Since $A_{j}+A_{k}-\sum_{i \neq j, k} A_{i}$ is a generalized permutation matrix and $\sigma^{-1}(1) \neq \tau_{1}^{-1}(1)$,

$$
\left(A_{j}+A_{k}-\sum_{i \neq j, k} A_{i}\right)_{1_{\tau_{1}}^{-1}(1)}=0
$$

Comparing this with $\sum_{i-1}^{n} A_{i}=P(\alpha, \sigma)$ we conclude that

$$
2\left(A_{j}+\mathrm{A}_{k}\right)_{1 \tau_{1}-1(1)}=0
$$

Since char $F \neq 2$,

$$
\left(A_{j}+A_{k}\right)_{1 \tau_{1}-1(1)}=0
$$

But this is true for all $k \neq j, 1 \leqq j, k \leqq r$ and $r>2$; hence

$$
\left(A_{i}\right)_{1 r_{1}-1(1)}=0, \quad i=1,2, \ldots, r
$$

a contradiction.
Lemma 2. If $\tau_{r}^{-1}(t)=\tau_{s}^{-1}(t) \neq \sigma^{-1}(t)$ for some $1 \leqq r, s, t \leqq n$ then for $i \neq r, s,\left(A_{i}\right)_{t j}=0$ for each $j=1,2, \ldots, n$.

Proof. We may assume $r=1, s=2$ and $t=1$.

If $n=2$, the statement is clear. Hence assume $n>2$. We have seen that $\tau_{i}^{-1}(1) \neq \tau_{1}^{-1}(1)$ for $i \neq 1,2$ in Lemma 1 hence $\left(A_{i}\right)_{\left.{1 r_{1}-1}^{-1}\right)}=0$ for all $i \neq 1,2$.

Suppose there are some $i \neq 1,2$ such that $\left(A_{i}\right)_{1 k} \neq 0, k \neq \tau_{1}{ }^{-1}(1)$. We may assume $\left(A_{i}\right)_{1 k} \neq 0$ for $i=3,4, \ldots, r, 3 \leqq r \leqq n$ and $\left(A_{i}\right)_{1 k}=0$ for $i=r+1, r+2, \ldots, n$. We choose $\theta_{i} \in H, i=3,4, \ldots, n$, according to r is even or r is odd and $k \neq \sigma^{-1}(1), k=\sigma^{-1}(1) \neq \tau_{i}^{-1}(1)$ or $k=\sigma^{-1}(1)=$ $\tau_{i}^{-1}(1)$ as follows:

	r even		r odd	
	$\begin{gathered} k \neq \sigma^{-1}(1) \text { or } \\ k=\sigma^{-1}(1) \neq \tau_{i}^{-1}(1) \end{gathered}$	$\begin{gathered} k=\sigma^{-1}(1) \\ =\tau_{i}{ }^{-1}(1) \end{gathered}$	$\begin{gathered} k \neq \sigma^{-1}(1) \text { or } \\ k=\sigma^{-1}(1) \neq \tau_{i}^{-1}(1) \end{gathered}$	$\begin{gathered} k=\sigma^{-1}(1) \\ =\tau_{i}{ }^{-1}(1) \end{gathered}$
i even and $3 \leqq i \leqq r-2$	$\theta_{i}=-2\left(A_{i}\right)_{1 k}$	$\theta_{i}=-\left(A_{i}\right)_{1 k}$	$\theta_{i}=-2\left(A_{i}\right)_{1 k}$	$\theta_{i}=-\left(A_{i}\right)_{1 k}$
i even and $r-1 \leqq i \leqq r$	$\theta_{i}=2\left(A_{i}\right)_{1 k}$	$\theta_{i}=\left(A_{i}\right)_{1 k}$		
i odd and $3 \leqq i \leqq r$	$\theta_{i}=2\left(A_{i}\right)_{1 k}$	$\theta_{i}=\left(A_{i}\right)_{1 k}$	$\theta_{i}=2\left(A_{i}\right)_{1 k}$	$\theta_{i}=\left(A_{i}\right)_{1 k}$
$r<i \leqq n$	1	1	1	1

Since if $j \neq \sigma^{-1}(1), \tau_{1}^{-1}(1),\left(A_{i}\right)_{1 j}=0$ for each $i=1,2$ and $\left(A_{1}\right)_{1^{-1}(1)}=$ $\left(A_{2}\right)_{1 \sigma^{-1}(1)}=2^{-1} \alpha_{1}$ we have

$$
\left(A_{1}-A_{2}\right)_{1 j}=0 \quad \text { for } \quad j \neq \tau_{1}^{-1}(1)
$$

Hence whether r is even or odd,

$$
\left(A_{1}-A_{2}-\sum_{i=3}^{n} \theta_{i} A_{i}\right)_{1 k} \neq 0
$$

Since $A_{1}-\sum_{1=2}^{n} A_{i}=P\left(\beta_{1}, \tau_{1}\right)$ and $\left(A_{i}\right)_{1 \tau_{1}-1(1)}=0$ for $i \neq 1,2$ it follows that

$$
\left(A_{1}-A_{2}-\sum_{i=3}^{n} \theta_{i} A_{i}\right)_{1 \tau_{1}(1)}^{-1} \neq 0
$$

Since $k \neq \tau_{1}^{-1}(1)$ the matrix $A_{1}-A_{2}-\sum_{i-3}^{n} \theta_{i} A_{i}$ has two nonzero entries in the first row, a contradiction.

This proves $\left(A_{i}\right)_{1 j}=0$ for $i \neq 1,2$ and $j=1,2, \ldots, n$.
Lemma 3. If $\left(A_{s}\right)_{t \sigma-1(t)} \neq 0,\left(A_{s}\right)_{t j}=0$ for all $j \neq \sigma^{-1}(t)$, then $\left(A_{i}\right)_{t j}=0$ for all $i \neq s, j=1,2, \ldots, n$.

Proof. We may assume that $s=1$ and $t=1$.
Suppose there exist some $i \neq 1$ and $j \neq \sigma^{-1}(1)$ such that $\left(A_{i}\right)_{1 j} \neq 0$. Then $A_{i}=2^{-1} P(\alpha, \sigma)+2^{-1} P\left(\beta, \tau_{i}\right)$ and $\tau_{i}^{-1}(1)=j \neq \sigma^{-1}(1)$ hence $\tau_{i} \neq \sigma$. By Lemma 2 this is impossible. Hence $\left(A_{i}\right)_{1 j}=0$ for all $i \neq 1$ and $j \neq \sigma^{-1}(1)$.

Now suppose $\left(A_{i}\right)_{1_{\sigma^{-1}(1)}} \neq 0$ for some $i \neq 1$, say $i=2,3, \ldots, r, 2 \leqq r \leqq n$ and $\left(A_{i}\right)_{1 \sigma^{-1}(1)}=0$ for $r+1 \leqq i \leqq n$. If r is even, choose $\theta_{i}=\left(A_{i}\right)_{1 \sigma^{-1}(1)}$ if i is odd, $1 \leqq i \leqq r ; \theta_{i}=-\left(A_{i}\right)_{1 \sigma^{-1}(1)}$ if i is even, $1 \leqq i \leqq r$ and $\theta_{i}=1$ if $r<i \leqq n$. Then $\theta_{i} \in H$ for $i=1,2, \ldots, n$ and $\left(\sum_{i=1}^{n} \theta_{i} A_{i}\right)_{1 \sigma^{-1}(1)}=0$. If r is odd, choose θ_{i} as in the case r is even for $i=1,2, \ldots, r-2$ and $\theta_{i}=$ $\left(A_{i}\right)_{1^{-1}(1)}$ for $i=r-1, r ; \quad \theta_{i}=1$ for $i=r+1, r+2, \ldots, n$. Then $\left(\sum_{i=1}^{n} \theta_{i} A_{i}\right)_{\sigma^{-1}(1)}=3$. Since we have shown that $\left(A_{i}\right)_{1 j}=0$ for $2 \leqq i \leqq n$, $j \neq \tau^{-1}(1)$ we conclude that $\sum_{i=1}^{n} \theta_{i} A_{i} \notin P(G, H)$ which is a contradiction. This proves Lemma 3.

Now for $A \in M_{n}(F)$ let $N(A)$ be the number of nonzero entries in A. Recall that

$$
A_{i}=2^{-1} P(\alpha, \sigma)+2^{-1} P\left(\beta_{i}, \tau_{i}\right), \quad i=1,2, \ldots, n
$$

If $\tau_{i}=\sigma$ then $N\left(A_{i}\right) \geqq 1$ since $A_{i} \neq 0$. If $\tau_{i} \neq \sigma$ then there exist $j \neq k$ such that $\tau_{i}^{-1}(j) \neq \sigma^{-1}(j), \tau_{i}^{-1}(k) \neq \sigma^{-1}(k)$ hence $N\left(A_{i}\right) \geqq 4$. Now with a rearrangement of the subscripts of A_{1}, \ldots, A_{n} there exists an integer $r, 0 \leqq r \leqq n$ such that $\tau_{1}=\tau_{2}=\ldots=\tau_{r}=\sigma$ and for $r<i \leqq n, \tau_{i} \neq \sigma$, i.e. for $1 \leqq i \leqq r$, $N\left(A_{i}\right) \geqq 1$ and $N\left(A_{i}\right) \geqq 4$ for $i=r+1, r+2, \ldots, n$. Then the number of nonzero entries in A_{1}, \ldots, A_{n} is

$$
\sum_{i=1}^{r} N\left(A_{i}\right)+\sum_{i=r+1}^{n} N\left(A_{i}\right) \geqslant r+4(n-r)
$$

On the other hand, by Lemmas 2 and 3 , for each $t, 1 \leqq t \leqq n$, if $\tau_{i}^{-1}(t)=$ $\sigma^{-1}(t)$ for all $i=1,2, \ldots, n$, there is at most one k such that $\left(A_{k}\right)_{\sigma^{-1}(t)} \neq 0$ and there is at least one such k for otherwise $\sum_{i=1}^{n} A_{i}$ has a zero t th row, a contradiction. If $\tau_{j}^{-1}(t) \neq \sigma^{-1}(t)$ for some j then there exist exactly one
 and $\left(A_{i}\right)_{t s}=0$ for $i \neq j, l, s=1,2, \ldots, n$. Hence in all $A_{1}, A_{2}, \ldots, A_{n}$ each row either has one nonzero entry or four nonzero entries. Hence there exists an integer $s, 0 \leqq s \leqq n$ such that there are s rows with one nonzero entry and $n-s$ rows with four nonzero entries and the number of nonzero entries in $A_{1}, A_{2}, \ldots, A_{n}$ is $s+4(n-s)$. Hence

$$
s+4(n-s) \geqq r+4(n-r) \quad \text { or } \quad s-r \geqq 4(s-r)
$$

which is possible if and only if $r \geqq s$. But r is the number of matrices among $A_{1}, A_{2}, \ldots, A_{n}$ in which there is at least one row with exactly one nonzero entry. Hence $r>s$ is impossible and $r=s$ or

$$
\sum_{i=1}^{r} N\left(A_{i}\right)+\sum_{i=r+1}^{n} N\left(A_{i}\right)=r+4(n-r)
$$

This forces $N\left(A_{i}\right)=1$ for $i=1,2, \ldots, r$ and $N\left(A_{i}\right)=4$ for $i=r+1$, $r+2, \ldots, n$. Now by multiplying the set $\left\{A_{1}, \ldots, A_{n}\right\}$ by suitable permutation matrices allows us to assume that for $i=1,2, \ldots, r,\left(A_{i}\right)_{i i} \neq 0$ and $\left(A_{i}\right)_{j k}=0$ for either $j \neq i$ or $k \neq i$.

Now if $r=n$ the result is established. If $r<n$ let $r<i \leqq n$. Since $\tau_{i} \neq \sigma$ there exist distinct $k, l, r<k, l \leqq n$ such that $\sigma^{-1}(k) \neq \tau_{i}^{-1}(k), \sigma^{-1}(l) \neq$ $\tau_{i}^{-1}(l)$. Since $N\left(A_{i}\right)=4$ we have $\sigma^{-1}(q)=\tau_{r+1}{ }^{-1}(q)$ for all $q \neq k$, l. Hence $\tau_{i} \sigma^{-1}=(k l)$. By Lemma 1 there exists a $j, r<j \leqq n$ and $j \neq i$ such that $\tau_{j}^{-1}(k)=\tau_{i}^{-1}(k) \neq \sigma^{-1}(k)$. Also $\tau_{j} \sigma^{-1}=\left(k l^{\prime}\right)$ for some $l^{\prime} \neq k$. But $\sigma^{-1}\left(l^{\prime}\right)=$ $\tau_{j}^{-1}(k)=\tau_{i}^{-1}(k)=\sigma^{-1}(l)$. Hence $l=l^{\prime}$ and $\tau_{i}=\tau_{j}$. Since $\sum_{i=1}^{n} A_{i}=P(\alpha, \sigma)$ it follows that $\beta_{j k}=-\beta_{i k}, \beta_{j l}=-\beta_{i l}$ and the matrices have the following form (if $k<l$ and $\sigma^{-1}(k)<\sigma^{-1}(l)$).

In this way we can pair off the matrices A_{r+1}, \ldots, A_{n} and multiplying the set $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ by suitable permutation matrices we can bring it to the required form. This proves Proposition 2.

6. The group $\mathscr{T} P(G, H)$.

Proposition 3. If G is a transitive subset of S_{n} and H a nontrivial subgroup of F^{*} then $\mathscr{T} P(G, H)$ is a subgroup of the group of all nonsingular $n^{2} \times n^{2}$ matrices over F.

Proof. We show that span $P(G, H)$ contains a basis for $M_{n}(F)$. Since G is transitive, given $1 \leqq i, j \leqq n$ we can find $\sigma \in G$ such that $\sigma(j)=i$. Define $\alpha, \beta \in \Gamma_{n}(H)$ via $\alpha_{k}=1$ for all $k, \beta_{k}=1$ if $k \neq i$ and $\beta_{i}=\xi \in H$. Then a simple computation shows that

$$
P(\alpha, \sigma)-P(\beta, \sigma)=(1-\xi) E_{i j} .
$$

If $|H|=2$ then char $F \neq 2$ and choose $\xi=-1$. If $|H|>2$ choose ξ so that $1-\xi \neq 0$. Then the set $\left\{(1-\xi) E_{i j}: i, j=1,2, \ldots, n\right\}$ is clearly a basis for $M_{n}(F)$. Hence if $T \in \mathscr{T} P(G, H)$, image $T \supseteq \operatorname{span}(P(G, H))=M_{n}(F)$ so T is nonsingular.

Lemma 4. Let G be a transitive subset of S_{n} and H a nontrivial subgroup of F^{*}. If $T \in \mathscr{T} P(G, H)$ and $\sigma \in G$ then $T\left(\sigma^{-1}\right)$ is a $G-H$ unitary set.

Proof. Clearly for all $\alpha \in \Gamma_{n}(H)$ we have

$$
\sum_{i=1}^{n} \alpha_{i} E_{i \sigma^{-1}(i)}=P(\alpha, \sigma) \in P(G, H)
$$

Since T preserves $P(G, H)$ we have

$$
\sum_{i=1}^{n} \alpha_{i} T\left(E_{i \sigma^{-1}(i)}\right)=T\left(\sum_{i=1}^{n} \alpha_{i} E_{i \sigma^{-1}(i)}\right) \in P(G, H) .
$$

Also T is nonsingular hence $T\left(\sigma^{-1}\right)$ is a linearly independent set and the result follows.
7. Structure of the group $\mathscr{T} P(G, H): G$ regular. In this section we assume G be a regular subset of $S_{n}(n>2)$ and H a nontrivial group in \mathscr{H}.

Lemma 5. If $T \in \mathscr{T} P(G, H)$ and $1 \leqq i, j \leqq n$ then there exist integers $1 \leqq p$, $q \leqq n$ and $\alpha_{i j} \in H$ such that $T\left(E_{i j}\right)=\alpha_{i j} E_{p q}$.

Proof. If $|H|>2$ this follows immediately from Proposition 1 and Lemma 4 if we choose $\sigma \in G$ with $\sigma(j)=i$ and consider the $G-H$ unitary set $T\left(\sigma^{-1}\right)$.

We suppose that $|H|=2$ then Proposition 2 and Lemma 4 apply. If $r=n$ (i.e. no matrices of the second type appear in $T\left(\sigma^{-1}\right)$) the result follows. Hence we assume that for some $i \neq l$ we have

We now note that (just writing the appropriate 2 -square submatrices and choosing signs properly)

$$
\begin{gathered}
p l \\
X=T\left(E_{i \sigma^{-1}(i)}\right)+T\left(E_{l \sigma^{-1}(\imath)}\right)=\left[\begin{array}{cc}
\eta_{1} & 0 \\
0 & \eta_{2}
\end{array}\right]_{s}^{r}, \\
Y=T\left(E_{i \sigma^{-1}(i)}\right)-T\left(E_{l \sigma^{-1}(\imath)}\right)=\left[\begin{array}{cc}
0 & \eta_{3} \\
\eta_{4} & 0
\end{array}\right]_{s}^{r}, \quad \eta_{i} \in H .
\end{gathered}
$$

Since $n>2$ there exists an integer $k(1 \leqq k \leqq n)$ such that $k \neq i, l$. The set G is regular so that the knowledge of one nonzero position in a matrix $P(\alpha, \tau)$ determines the permutation τ uniquely. We now note that the two
matrices

$$
\sum_{k \neq i, l} T\left(E_{k \sigma^{-1}(k)}\right)+X \quad \text { and } \quad \sum_{k \neq i, l} T\left(E_{k \sigma^{-1}(k)}\right)+Y
$$

belong to $P(G, H)$ and have at least one nonzero entry in common, a contradiction. Therefore the case in question cannot occur and the result follows.

Recall that we write $G=\left\{g_{1}, \ldots, g_{n}\right\}$ and $h_{i}=g_{i}{ }^{-1}$. For $k=1,2, \ldots, n$ the set $T\left(h_{k}\right)$ is a $G-H$ unitary set of matrices so it follows that

$$
T\left(h_{k}\right)=\left\{\beta_{i} E_{i p_{k}-1(i)}: i=1,2, \ldots, n\right\}
$$

for some $p_{k} \in G$ hence there exists $\mu_{k} \in S_{n}$ such that

$$
T\left(E_{i h_{k}(i)}\right)=\alpha_{i h_{k}(i)} E_{\mu_{k}(i) p_{k}-1 \mu_{k}(i)}, \quad i=1,2, \ldots, n .
$$

Since T is nonsingular, there exists $\sigma \in S_{n}$ such that $p_{k}=g_{\sigma(k)}, k=1,2, \ldots, n$. Hence

$$
T\left(E_{i h_{k}(i)}\right)=\alpha_{i h_{k}(i)} E_{\mu_{k}(i) h_{\sigma(k)} \mu_{k}(i)}, \quad i, k=1,2, \ldots, n
$$

On the other hand, a simple computation verifies that such T is in $\mathscr{T} P(G, H)$ for any choices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \Gamma_{n}(H)$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \sigma \in S_{n}$. This proves Theorem 1.

Now for an n-square matrix $X=\left(x_{i j}\right)$ and $g_{k} \in G$ we write

$$
X_{h_{k}}=\sum_{i=1}^{n} x_{i h_{k}(i)} E_{i h_{k}(i)} .
$$

Then for $T \in \mathscr{T} P(G, H)$,

$$
T\left(X_{h_{k}}\right)=\sum_{i=1}^{n} x_{i h_{k}(i)} \alpha_{i h_{k}(i)} E_{\mu_{k}(i) h_{\sigma}(k)^{\mu}(i)}
$$

for some $\alpha_{1}, \ldots, \alpha_{n} \in \Gamma_{n}(H), \mu_{1}, \mu_{2}, \ldots, \mu_{n}, \sigma \in S_{n}$. By setting $j=\mu_{k}(i)$ we have

$$
T\left(X_{h_{k}}\right)=\sum_{j=1}^{n} x_{\mu_{k}-1(j) h_{k} \mu_{k}-1(j)} \alpha_{\mu_{k}-1(j) h_{k} \mu_{k}-1(j)} E_{j h_{\sigma(k)}(j)} .
$$

Since $X_{h_{k}}=\operatorname{diag}\left(x_{1 h_{k}(1)}, \ldots, x_{n h_{k}(n)}\right) P\left(g_{k}\right)$ we have

$$
\begin{aligned}
& T\left(X_{h_{k}}\right)=\operatorname{diag}\left(x_{\mu_{k}-1(1) h_{k} \mu_{k}-1(1)} \alpha_{\mu_{k}}-1(1) h_{k} \mu_{k}-1(1), \ldots,\right. \\
& \left.x_{\mu_{k}-1(n) h_{k} \mu_{k}^{-1}(n)} \alpha_{\mu_{k}-1(n) h_{k} \mu_{k}-1(n)}\right) P\left(g_{\sigma(k)}\right) \\
& =P\left(\mu_{k}\right) \operatorname{diag}\left(x_{1 h_{k}(1)} \alpha_{1 h_{k}(1)}, \ldots, x_{n h_{k}(n)} \alpha_{n h_{k}(n)}\right) P\left(\mu_{k}{ }^{-1} g_{\sigma(k)}\right) \\
& =P\left(\mu_{k}\right)\left(X_{h_{k}} * A_{h_{k}}{ }^{\prime}\right) P\left(h_{k} \mu_{k}-1 g_{\sigma(k)}\right) \quad \text { where } A^{\prime}=\left(\alpha_{i j}\right) \in M_{n}(H) \\
& =P\left(\mu_{k}\right) A_{h_{k}}^{\prime} P\left(h_{k} \mu_{k}{ }^{-1} g_{\sigma(k)}\right) * P\left(\mu_{k}\right) X_{h_{k}} P\left(h_{k} \mu_{k}^{-1} g_{\sigma(k)}\right) .
\end{aligned}
$$

Since $X=\sum_{k-1}^{n} X_{h_{k}}$,

$$
T(X)=A * \sum_{i=1}^{n} P\left(\mu_{i}\right) X_{h_{i}} P\left(h_{i} \mu_{i}^{-1} g_{\sigma(i)}\right)
$$

where $A=\sum_{j-1}^{n} \mathrm{P}\left(\mu_{j}\right) A_{h_{j}}{ }^{\prime} P\left(h_{j} \mu_{j}{ }^{-1} g_{\sigma(\jmath)}\right)$. Hence T associates with a matrix A in $M_{n}(H)$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \sigma \in S_{n}$. Let S be another element in $\mathscr{T} P(G, H)$ which associates with B in $M_{n}(H)$ and $\nu_{1}, \nu_{2}, \ldots, \nu_{n}, \tau \in S_{n}$, i.e.

$$
S(X)=B * \sum_{i=1}^{n} P\left(\nu_{i}\right) X_{h_{i}} P\left(h_{i} \nu_{i}^{-1} g_{\sigma(i)}\right) .
$$

Then

$$
\begin{aligned}
& S T(X)=B * \sum_{i=1}^{n} P\left(\nu_{\sigma(i)}\right)\left(A_{h_{\sigma(i)}} * P\left(\mu_{i}\right) X_{h_{i}} P\left(h_{i} \mu_{i}^{-1} g_{\sigma(i)}\right)\right) \\
& =B * \sum_{i=1}^{n} P\left(\nu_{i}\right) A_{h_{i}} P\left(h_{i \nu_{i}}{ }^{-1} g_{\tau(i)}\right) * \\
& \times P\left(h_{\sigma(i)} \nu_{\sigma(i)}{ }^{-1} g_{\tau \sigma(i)}\right) \\
& \sum_{j=1}^{n} P\left(\nu_{\sigma(j)} \mu_{j}\right) X_{h j} P\left(h_{j \mu_{j}}{ }^{-1} \nu_{\sigma(j)} g_{\tau \sigma(j)}\right),
\end{aligned}
$$

i.e. $S T$ associates with a matrix $B * A^{\left\langle\tau,\left(\nu_{1}, \ldots, \nu_{n}\right)\right\rangle}$ and $\nu_{\sigma(1)} \mu_{1}, \ldots, \nu_{\sigma(n)} \mu_{n}, \tau \sigma \in S_{n}$ if we define $A^{\left\langle\tau,\left(\nu_{1}, \ldots, \nu_{n}\right)\right\rangle}$ as in (3.1). Also it is easy to see that if T associates with $A=J, \mu_{1}=\ldots=\mu_{n}=e$ then $T(X)=\mathrm{X}$ for all $X \in M_{n}(F)$. This proves Theorem 2.
8. Structure of the group $\mathscr{T} P(G, H): G$ doubly transitive. In this section let H be a nontrivial group in \mathscr{H} and $n>2$.

Lemma 6. Suppose G is a doubly transitive subset of S_{n}. If $T \in \mathscr{T} P(G, H)$ and $1 \leqq i, j \leqq n$ then there exist integers $1 \leqq p, q \leqq n$ and $\alpha_{i j} \in H$ such that $T\left(E_{i j}\right)=\alpha_{i j} E_{p q}$.

Proof. If $|H|>2$ then the result follows from Proposition 1 and Lemma 4. We suppose that $|H|=2$ and proceed as in Lemma 5 to obtain (only writing the appropriate 2 -square submatrices)

$$
T\left(E_{i \sigma^{-1}(i)}\right)=\left[\begin{array}{cc}
p & q \\
\epsilon_{1} & \epsilon_{2} \\
\epsilon_{3} & \epsilon_{4}
\end{array}\right]_{S}^{r}, T\left(E_{l \sigma^{-1}(l)}\right)=\left[\begin{array}{cc}
p & q \\
\pm \epsilon_{1} & \mp \epsilon_{2} \\
\mp \epsilon_{3} & \pm \epsilon_{4}
\end{array}\right]_{S}^{r} .
$$

Now $n>2$ so there exists $k \neq i, l$. Since G is doubly transitive, choose $\tau \in G$ such that $\tau^{-1}(l) \neq \sigma^{-1}(l)$ and $\tau^{-1}(i)=\sigma^{-1}(i)$. Repeating the argument for $T\left({ }_{\tau}^{-1}\right)$ we find

$$
T\left(E_{i \tau^{-1}(i)}\right)=\left[\begin{array}{ll}
\epsilon_{1} & \epsilon_{2} \\
\epsilon_{3} & \epsilon_{4}
\end{array}\right]
$$

so by Proposition 2 we find there must exist k such that

$$
T\left(E_{k \tau^{-1}(k)}\right)=\left[\begin{array}{cc}
\pm \epsilon_{1} & \mp \epsilon_{2} \\
\mp \epsilon_{3} & \pm \epsilon_{4}
\end{array}\right]= \pm T\left(E_{l \tau^{-1}(l)}\right) .
$$

Now if $l \neq k$ this implies T is singular, and if $l \neq k, \tau^{-1}(l) \neq \sigma^{-1}(l)$ so again T is singular, a contradiction.

In the following we assume that G is a doubly transitive subgroup of S_{n}.
Now we have

$$
T\left(E_{i j}\right)=\alpha_{i j} E_{p q} \quad \text { for some } \alpha_{i j} \in H \text { and } 1 \leqq p, q \leqq n
$$

If there exist $1 \leqq k \leqq n$ and $\alpha_{i k} \in H$ such that $k \neq j$ and

$$
T\left(E_{i k}\right)=\alpha_{i k} E_{r s} \quad \text { with } p \neq r \text { and } q \neq s
$$

then choose $\sigma \in G$ such that $\sigma^{-1}(r)=s$ and $\sigma^{-1}(p)=q$. Let $P(\sigma)=$ $\sum_{i=1}^{n} E_{i \sigma^{-1}(i)} \in P(G, H)$. Now $T^{-1} \in \mathscr{T} P(G, H)$ by Proposition 3, however since $T^{-1}\left(E_{r s}\right)=\alpha_{i k}{ }^{-1} E_{i k}$ and $T^{-1}\left(E_{p q}\right)=\alpha_{i j}{ }^{-1} E_{i j}$ the matrix $T^{-1}(P(\sigma))$ must have two nonzero entries in row i and since it has n nonzero entries it must have a row equal to zero and is singular, a contradiction. Hence we may conclude that either

$$
\begin{array}{ll}
T\left(E_{i j}\right)=\alpha_{i j} E_{p \mu(j)}, & j=1,2, \ldots, n \quad \text { or } \\
T\left(E_{i j}\right)=\alpha_{i j} E_{\mu(j) q}, & j=1,2, \ldots, n
\end{array}
$$

for some $\mu \in S_{n}$. Suppose that for some $1 \leqq i, k \leqq n(i \neq k)$ and $\sigma, \mu \in S_{n}$ that

$$
\begin{array}{ll}
T\left(E_{i j}\right)=\alpha_{i j} E_{p \sigma(j)}, & j=1,2, \ldots, n \\
T\left(E_{k r}\right)=\alpha_{k r} E_{\mu(r) q}, & r=1,2, \ldots, n .
\end{array}
$$

Now $\sigma(j)=q$ for some j, and $\mu(r)=p$ for some r, hence

$$
\alpha_{i j}^{-1} T\left(E_{i j}\right)=E_{p \sigma(j)}=E_{\mu(r) q}=\alpha_{k r}^{-1} T\left(E_{k r}\right)
$$

so the matrices $T\left(E_{i j}\right)$ and $T\left(E_{k T}\right)$ are linearly dependent and T is singular; a contradiction. Hence either

$$
\begin{array}{ll}
T\left(E_{i j}\right)=\alpha_{i j} E_{\sigma(i) \mu(j)}, & i, j=1,2, \ldots, n \quad \text { or } \\
T\left(E_{i j}\right)=\alpha_{i j} E_{\mu(j) \sigma(i)}, & i, j=1,2, \ldots, n
\end{array}
$$

for some $\sigma, \mu \in S_{n}$, or with a short computation either

$$
\begin{aligned}
& T(X)=A * P(\sigma) X P\left(\mu^{-1}\right), \quad X \in M_{n}(F) \quad \text { or } \\
& T(X)=A * P(\mu)^{t} X P\left(\sigma^{-1}\right), \quad X \in M_{n}(F) .
\end{aligned}
$$

Now if the first form occurs let $\tau \in G$. Since $T(P(\tau)) \in P(G, H)$ we have $\sigma \tau \mu^{-1} \in G$. Hence $\sigma G \mu^{-1} \subseteq G$ and it follows that $\sigma G \mu^{-1}=G$. Let

$$
L=\left\{(\sigma, \mu) \in S_{n} X S_{n}: \sigma G \mu^{-1}=G\right\} .
$$

Clearly L is a subgroup of $S_{n} \times S_{n}$. If $\sigma \notin N(G)$ then since S_{n} is a group, there exists $\nu \in S_{n}$ such that $\mu^{-1}=\sigma^{-1} \nu$ and we have $G=\sigma G \mu^{-1}=\sigma G \sigma^{-1} \nu=$ $G^{\prime} \nu$ where $G^{\prime}=\sigma G \sigma^{-1}$ is a subgroup of S_{n}. Hence $\nu \in G^{\prime}$ and $G=G^{\prime}$ a contradiction. Similarly $\mu \in N(G)$ hence L is a subgroup of $N(G) X N(G)$. Now
clearly if $(\sigma, \mu) \in L$ and one of σ, μ is in G then the other element must be in G. If $\mu \in N(G)-G$ then again we write $\sigma=\nu \mu$ for some $\nu \in S_{n}$ and $G=$ $\nu \mu G \mu^{-1}=\nu G$ implies $\nu \in G$, i.e. $\sigma \in G \mu$. Consequently if we let $N^{\prime}(G)=$ $\{(\sigma, \sigma): \sigma \in N(G)\}$ then $L=(G X\{e\}) . N^{\prime}(G)$. If the second form occurs let $\tau \in G$ then again $\mu \tau^{-1} \sigma^{-1} \in G$, i.e. $\mu G^{-1} \sigma^{-1} \subseteq G$. Since G is a group we have $\mu G \sigma^{-1} \subseteq G$ or $\mu G \sigma^{-1}=G$ i.e. $(\mu, \sigma) \in L$. Therefore we have either
(8.1) $T(X)=A * P(\sigma \mu) X P\left(\mu^{-1}\right), \quad X \in M_{n}(F) \quad$ or
(8.2) $T(X)=A * P(\sigma \mu)^{t} X P\left(\mu^{-1}\right), \quad X \in M_{n}(F)$
where $\sigma \in G$ and $\mu \in N(G)$. On the other hand it is easily seen that for any $\mu \in N(G)$ and $\sigma \in G$, the T defined by (8.1) and (8.2) are in $\mathscr{T} P(G, H)$. This proves Theorem 3.

Now let $\mathscr{T}{ }_{1} P(G, H)$ be the set of all elements in $\mathscr{T} P(G, H)$ of the form (8.1) with $\sigma=e$. If T, S are in $\mathscr{T}_{1} P(G, H)$ and associate with $\mu \in N(G)$, $A \in M_{n}(H)$ and $\tau \in N(G), B \in M_{n}(H)$ respectively, i.e.

$$
\begin{aligned}
& T(X)=A * P(\mu) X P\left(\mu^{-1}\right), \quad X \in M_{n}(F), \\
& S(X)=B * P(\tau) X P\left(\tau^{-1}\right), \quad X \in M_{n}(F)
\end{aligned}
$$

then

$$
S T(X)=B * A^{\tau} * P(\tau \mu) X P\left((\tau \mu)^{-1}\right), \quad X \in M_{n}(F)
$$

where $A^{\tau}=P(\tau) A P\left(\tau^{-1}\right)$, i.e. $S T$ associates with the element $\tau \mu \in N(G)$ and $B * A^{\tau}$ in $M_{n}(H)$. Also if T associate with $e \in N(G), A=J$ then clearly T is the identity linear transformation on $M_{n}(F)$. Hence $\mathscr{T}_{1} P(G, H)$ is isomorphic to the group $\left\langle N(G), M_{n}(H)\right\rangle$.

Recall that $P(G)=\{P(\sigma): \sigma \in G\}$ and for $\sigma \in G$ we define $P(\sigma)(X)=$ $P(\sigma) X, X \in M_{n}(F)$. Clearly S of the form (8.1) associates with $\sigma \in G$, $\mu \in N(G), A \in M_{n}(H)$ if and only if $S=P(\sigma) \circ T$ where T in $\mathscr{T}_{1} P(G, H)$ associates with $\mu \in N(G)$ and $P\left(\sigma^{-1}\right) A \in M_{n}(H)$. Hence if we denote by $\mathscr{T}_{2} P(G, H)$ the set of all elements in $\mathscr{T} P(G, H)$ of the form (8.1) then

$$
\mathscr{T}_{2} P(G, H)=P(G) \circ \mathscr{T}_{1} P(G, H) .
$$

By a simple computation we see that $\mathscr{T}_{2} P(G, H)$ is a group hence $\mathscr{T}_{1} P(G, H)$ is of index $|G|$ in $\mathscr{T}_{2} P(G, H)$.

Finally if $R(X)={ }^{t} X, X \in M_{n}(F)$ then clearly S is in $\mathscr{T} P(G, H)$ of the form (8.2) if and only if $S=T R$ where T is in $\mathscr{T}_{2} P(G, H)$. This completes the proof of Theorem 4.

References

1. J. Dieudonné, Sur une généralisation du groupe orthogonal a quatre variables, Arch. Math. 1 (1949), 282-287.
2. M. Marcus, All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155-163.
3. Linear transformations on matrices, J. Res. NBS 75B (Math. Sci.) No. 3 and 4 (1971), 107-113.
4. M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221.
5. M. Marcus and R. Purves, Linear transformations on algebras of matrices $I I$: The invariance of the elementary symmetric functions, Can. J. Math. 11 (1959), 383-396.

University of Toronto, Toronto, Ontario

[^0]: Received November 14, 1973 and in revised form, February 13, 1976.

