LINEAR TRANSFORMATIONS ON MATRICES: THE INVARIANCE OF GENERALIZED PERMUTATION MATRICES, I

HOCK ONG AND E. P. BOTTA

1. Introduction. Let F be a field, $M_n(F)$ be the vector space of all n-square matrices with entries in F and \mathscr{U} a subset of $M_n(F)$. It is of interest to determine the structure of linear maps $T: M_n(F) \to M_n(F)$ such that $T(\mathscr{U}) \subseteq \mathscr{U}$. For example: Let \mathscr{U} be $GL(n, \mathbb{C})$, the group of all nonsingular $n \times n$ matrices over \mathbb{C} [5]; the subset of all rank 1 matrices in $M_{m \times n}(F)$ [4] $(M_{m \times n}(F)$ is the vector space of all $m \times n$ matrices over F); the unitary group [2]; or the set of all matrices X in $M_n(F)$ such that $\det(X) = 0$ [1]. Other results in this direction can be found in [3]. In this paper we consider \mathscr{U} to be a set of generalized permutation matrices relative to some permutation group(set) and with entries in some nontrivial subgroup of F^* where F^* is the multiplicative group of F. We classify those $T: M_n(F) \to M_n(F)$ such that $T(\mathscr{U}) = \mathscr{U}$. Furthermore we also determine the structure of the set of all such T. The main results will be stated in Section 4.

2. Definitions and notation. We denote by S_n the symmetric group of degree *n* acting on the set $\{1, 2, ..., n\}$. If S is a subset of F we define

 $\Gamma_n(S) = \{ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) : \alpha_i \in S \}.$

The identity element of S_n , the additive identity and the multiplicative identity of F will be denoted by e, 0, 1 respectively. The matrix with 1 in the (i, j)position and 0 elsewhere will be denoted by E_{ij} . If $\alpha \in \Gamma_n(F^*)$ and $\sigma \in S_n$ then $P(\alpha, \sigma)$ will be the matrix whose (i, j) entry is $\alpha_i \delta_{i\sigma(j)}$ (where $\delta_{i,j} = 1$ if i = j and 0 elsewhere) and we call $P(\alpha, \sigma)$ a generalized permutation matrix. If $\epsilon \in \Gamma_n(F)$ is the sequence all of whose entries are equal to 1 we write $P(\sigma)$ for $P(\epsilon, \sigma)$ and call $P(\sigma)$ a permutation matrix corresponding to σ . If G is a nonempty subset of S_n and H a subgroup of F^* we define

$$P(G, H) = \{P(\alpha, \sigma) : \alpha \in \Gamma_n(H) \text{ and } \sigma \in G\},$$

$$\mathscr{T}P(G, H) = \{T : T \text{ is a linear transformation on } M_n(F) \text{ to itself}$$

and $T(P(G, H)) = P(G, H)\}.$

If $\epsilon = \{E_i : i = 1, 2, ..., n\} \subset M_n(F)$ is a set of n matrices we say ϵ is a

Received November 14, 1973 and in revised form, February 13, 1976.

G - H unitary set if ϵ is a linearly independent set and for all $\alpha \in \Gamma_n(H)$,

$$E(\alpha) = \sum_{i=1}^{n} \alpha_{i} E_{i}$$

belongs to P(G, H).

Let

 $\mathscr{H} = \{H : H \text{ is a subgroup of } F^* \text{ and there do not exist} \}$

 $a, b \in F^*$ such that $Ha + b \subseteq H$.

The set \mathscr{H} is nonempty. For example:

(a) It is trivial that F^* is in \mathscr{H} for every field F.

(b) If H is a subgroup of the unit circle $C = \{z : |z| = 1\}$ of the complex plane and |H| > 2 where |H| denotes the order of H then H is in \mathcal{H} .

Proof. If a, b are in F^* then the circle |za + b| = 1 intersects the unit circle at most two points.

(c) Every nontrivial finite subgroup H of F^* is in \mathcal{H} .

Proof. If there exist $a, b \in F^*$ such that $Ha + b \subseteq H$ then since H is finite, Ha + b = H. It is easily seen that when h runs over H, ha + b also runs over H. Hence

$$\left(\sum_{h\in H} h\right)a + |H|b = \sum_{h\in H} h.$$

It is well known that H is cyclic and elements in H are exactly the roots of $x^{|H|} = 1$. Hence $\sum_{h \in H} h = 0$ and so |H|b = 0. Clearly this is impossible if char F = 0. If $p = \text{char } F \neq 0$ then $p||H||p^r - 1$ for some positive integer r which is again impossible.

The *n*-square matrices all of whose entries are 0, all of whose entries are 1 and the identity matrix will be denoted by 0_n , J_n , I_n respectively or 0, J, I if no ambiguity arises. If $A = (a_{ij})$ and $B = (b_{ij})$ are in $M_n(F)$ then their Hadamard product $A*B = C = (c_{ij})$ is the *n*-square matrix defined by $c_{ij} = a_{ij}b_{ij}$. If A is *n*-square matrix and B is an *m*-square matrix then $A \oplus B$ will denote their direct sum. If $X = (x_{ij}) \in M_n(F)$ and $\sigma \in S_n$, X_σ will be the matrix whose (i, j) entry is x_{ij} if $\sigma(i) = j$ and 0 elsewhere.

If H is a subgroup of F^* let $M_n(H)$ be the set of all *n*-square matrices with entries in H. Since H is a group, it is easy to see that the set $M_n(H)$ with the operation Hadamard product is a group and will be denoted by $M_n(H)$. Under the correspondence

 $A \rightarrow (a_{11}, \ldots, a_{1n}, \ldots, a_{n1}, \ldots, a_{nn})$

where $A = (a_{ij}) \in M_n(H)$, it is obvious that $M_n(H)$ is isomorphic to the direct product $H \times \ldots \times H$ (n^2 times).

We recall that a nonempty subset G of S_n is *transitive* if given $1 \leq i, j \leq n$ there exists $\sigma \in G$ such that $\sigma(i) = j$. A transitive subset G of S_n is *regular* if

given such a pair *i* and *j* there exists exactly one σ with $\sigma(i) = j$. A subset *G* of S_n is *doubly transitive* if given $1 \leq i, j, p, q \leq n$ with $i \neq p, j \neq q$ there exists $\sigma \in G$ with $\sigma(i) = j, \sigma(p) = q$. If *G* is a subgroup of S_n we denote by N(G) the normalizer of *G* in S_n . If *G* is a regular subset of S_n we shall write $G = \{g_1, \ldots, g_n\}$ and for simplicity we shall write $g_i^{-1} = h_i, i = 1, 2, \ldots, n$.

If S is a set and η a mapping of S into S then s^{η} will be the image of $s \in S$ under η . If G, K are two groups, $\xi : G \to \operatorname{Aut}(K)$ a homomorphism (respectively, anti-homomorphism) and for $k \in K$, $g_1, g_2 \in G$,

$$(k^{\xi(g_1)})^{\xi(g_2)} = k^{\xi(g_2)\xi(g_1)}, \quad (\text{respectively}, k^{\xi(g_1)\xi(g_2)}),$$

then the symbols $\langle g, k \rangle$, $g \in G$, $k \in K$ form a group under the rule

$$\langle g_1, k_1 \rangle \cdot \langle g_2, k_2 \rangle = \langle g_1 g_2, k_1 k_2^{\xi(g_1)} \rangle \langle \langle g_1, k_1 \rangle \cdot \langle g_2, k_2 \rangle = \langle g_1 g_2, k_1^{\xi(g_2)} k_2 \rangle),$$

i.e. the semi-direct product of K by G with respect to ξ and will be denoted by $\langle G, K \rangle_{\xi}$ or $\langle G, K \rangle$.

For $T \in \mathscr{T} P(G, H)$ and $\sigma \in G$ we define

$$T(\sigma) = \{T(E_{i\sigma(i)} : i = 1, 2, \dots, n\},\$$

$$P(G) = \{P(\sigma) : \sigma \in G\}.$$

The linear transformations $P(\sigma)$, $\sigma \in G$ and R on $M_n(F)$ to itself are defined as follows: For $X \in M_n(F)$,

$$P(\sigma)(X) = P(\sigma)X,$$
$$R(X) = {}^{t}X$$

where ${}^{t}X$ is the transpose of X.

3. The groups $\langle \langle S_n, S_n \times \ldots \times S_n \rangle$, $M_n(H) \rangle$ and $\langle N(G), M_n(H) \rangle$. Let H be a subgroup of F^* and $S_n \times \ldots \times S_n$ denote the direct product of S_n by n times. For ν , $\sigma \in S_n$, $(\omega_{\nu(1)}, \ldots, \omega_{\nu(n)})$ in $S_n \times \ldots \times S_n$ define $\varphi_{\sigma}: S_n \times \ldots \times S_n \to S_n \times \ldots \times S_n$ by

$$\varphi_{\sigma}(\omega_{\nu(1)},\ldots,\omega_{\nu(n)}) = (\omega_{\nu\sigma(1)},\ldots,\omega_{\nu\sigma(n)}).$$

Then it is easy to see that φ_{σ} is an automorphism of $S_n \times \ldots \times S_n$, and defines φ , an anti-isomorphism of S_n into the group of all automorphisms of $S_n \times \ldots \times S_n$. We denote by $\langle S_n, S_n \times \ldots \times S_n \rangle$ the semi-direct product of $S_n \times \ldots \times S_n$ by S_n with respect to the anti-isomorphism φ .

Let $G = \{g_1, \ldots, g_n\}$ be a regular subset of S_n . For $A \in M_n(H)$ and $\langle \sigma, (\mu_1, \ldots, \mu_n) \rangle \in \langle S_n, S_n \times \ldots \times S_n \rangle$ we define

(3.1)
$$A^{\langle \sigma,(\mu_1,\ldots,\mu_n)\rangle} = \sum_{i=1}^n P(\mu_i) A_{h_i} P(h_i \mu_i^{-1} g_{\sigma(i)}).$$

Then for $A, B \in M_n(H)$, since A_{h_i} and B_{h_i} are h_i -diagonal matrices,

$$(A * B)^{\langle \sigma, (\mu_1, \dots, \mu_n) \rangle} = \sum_{i=1}^{n} P(\mu_i) (A_{h_i} * B_{h_i}) P(h_i \mu_i^{-1} g_{\sigma(i)})$$

= $\sum_{i=1}^{n} P(\mu_i) A_{h_i} P(h_i \mu_i^{-1} g_{\sigma(i)}) * \sum_{j=1}^{n} P(\mu_j) B_{h_j} P(h_j \mu_j^{-1} g_{\sigma(j)})$
= $A^{\langle \sigma, (\mu_1, \dots, \mu_n) \rangle} * B^{\langle \sigma, (\mu_1, \dots, \mu_n) \rangle}$

and $A^{\langle \sigma, (\mu_1, \dots, \mu_n) \rangle} = J$ if and only if A = J. Therefore $\langle \sigma, (\mu_1, \dots, \mu_n) \rangle$ is an automorphism of $M_n(H)$. For $\langle \sigma, (\mu_1, \dots, \mu_n) \rangle$ and $\langle \tau, (\nu_1, \dots, \nu_n) \rangle$ in $\langle S_n, S_n \times \dots \times S_n \rangle$, a computation shows that

$$(A^{\langle \sigma, (\mu_1, \ldots, \mu_n) \rangle})^{\langle \tau, (\nu_1, \ldots, \nu_n) \rangle} = A^{\langle \tau, (\nu_1, \ldots, \nu_n) \rangle} \cdot \langle \sigma, (\mu_1, \ldots, \mu_n) \rangle.$$

Hence we may define $\langle \langle S_n, S_n \times \ldots \times S_n \rangle$, $M_n(H) \rangle$, the corresponding semidirect product of $M_n(H)$ by $\langle S_n, S_n \times \ldots \times S_n \rangle$.

Suppose now that G is a doubly transitive subgroup of S_n and for $\tau \in N(G)$, $A \in M_n(H)$ we define

$$A^{\tau} = P(\tau)AP(\tau^{-1}).$$

Then it is easy to see that τ is an automorphism of $M_n(H)$ and we denote the corresponding semi-direct product of $M_n(H)$ by N(G) by $\langle N(G), M_n(H) \rangle$.

4. Main results. First we characterize all G - H unitary sets for G a nonempty subset of S_n and H a nontrivial group in \mathscr{H} (Propositions 1 and 2). If G is a transitive subset of S_n and H is a nontrivial subgroup of F^* we show that $\mathscr{TP}(G, H)$ is a subgroup of $GL(n^2, F)$ (Proposition 3). If G is a regular subset or a doubly transitive subset of $S_n(n > 2)$, H a nontrivial group in \mathscr{H} and $T \in \mathscr{TP}(G, H)$ then for $1 \leq i, j \leq n$ there exist $1 \leq p, q \leq n$ and $\alpha_{ij} \in H$ such that

$$T(E_{ij}) = \alpha_{ij} E_{pq}$$

and for distinct (i, j) we have distinct (p, q), i.e. the matrix representation of T with respect to the usual basis $\{E_{ij}: i, j = 1, 2, ..., n\}$ is a generalized permutation matrix (Lemmas 5 and 6). Furthermore we have the following results:

THEOREM 1. Let $G = \{g_1, \ldots, g_n\}$ be a regular subset of S_n (n > 2) and Ha nontrivial group in \mathcal{H} . Then $T \in \mathcal{TP}(G, H)$ if and only if there exist $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{in}) \in \Gamma_n(H), i = 1, 2, \ldots, n$ and $\mu_1, \ldots, \mu_n, \sigma \in S_n$ such that

$$T(E_{ih_{k}(i)}) = \alpha_{ih_{k}(i)} E_{\mu_{k}(i)h_{\sigma(k)}\mu_{k}(i)}, \quad i, k = 1, \dots, n$$

or in another form

$$T(X) = A * \sum_{i=1}^{n} P(\mu_{i}) X_{h_{i}} P(h_{i} \mu_{i}^{-1} g_{\sigma(i)}), \quad X \in M_{n}(F)$$

where $A = [\alpha_{ij}]^{\langle \sigma, (\mu_1, \dots, \mu_n) \rangle} \in M_n(H)$ and $h_i = g_i^{-1}$.

THEOREM 2. Let $G = \{g_1, \ldots, g_n\}$ be a regular subset of S_n (n > 2) and H a nontrivial group in \mathcal{H} . If for

$$\langle \langle \epsilon, (\mu_1, \ldots, \mu_n) \rangle, A \rangle \in \langle \langle S_n, S_n \times \ldots \times S_n \rangle, M_n(H) \rangle$$

and $X \in M_n(F)$ we define

$$X^{\langle \langle \sigma, (\mu_1, \ldots, \mu_n) \rangle, A \rangle} = A * X^{\langle \sigma, (\mu_1, \ldots, \mu_n) \rangle},$$

then $\mathscr{T}P(G, H)$ is equal to the group $\langle \langle S_n, S_n \times \ldots \times S_n \rangle, M_n(H) \rangle$.

THEOREM 3. Let G be a doubly transitive subgroup of S_n (n > 2) and H a nontrivial group in \mathcal{H} . Then $T \in \mathcal{TP}(G, H)$ if and only if there exist $A \in M_n(H)$, $\mu \in N(G)$ and $\sigma \in G$ such that

$$T(X) = A * P(\sigma \mu) X P(\mu^{-1}), \quad X \in M_n(F)$$
 or
 $T(X) = A * P(\sigma \mu) {}^t X P(\mu^{-1}), \quad X \in M_n(F).$

THEOREM 4. Let G be a doubly transitive subgroup of S_n (n > 2) and H a nontrivial group in \mathcal{H} . If for $\langle \mu, A \rangle \in \langle N(G), M_n(H) \rangle$ we define

$$X^{\langle \sigma, A \rangle} = A * P(\sigma) X P(\sigma^{-1}), \quad X \in M_n(F)$$

then $\mathcal{T}P(G, H)$ is equal to the group

$$P(G) \circ \langle N(G), M_n(H) \rangle \circ \{I, R\}$$

where \circ is the usual composition of linear transformations. As an abstract group, there exists a subgroup $\mathcal{F}_1 P(G, H)$ of index 2|G| in $\mathcal{F} P(G, H)$ and $\mathcal{F}_1 P(G, H)$ is isomorphic to the group

$$\langle N(G), H \times \ldots \times H \rangle.$$

 n^2 times

To complete our list we have the following

THEOREM 5. If |H| > 2 and $H \in \mathcal{H}$ then Theorems 1 and 2 are true when n = 2. If $H = \{1, -1\}$ then $\mathcal{T}P(S_2, H)$ consists of the group of linear transformations generated by the set

$$\left\{T:T(X)=A*\sum_{i=1}^{2}P(\mu_{i})X_{g_{i}}P(g_{i}\mu_{i}g_{\sigma(i)}), \sigma, \mu_{1}, \mu_{2} \in S_{2}, A \in M_{2}(H)\right\}$$

together with the linear transformation S defined as follows:

$$S(E_{11}) = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad S(E_{12}) = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix},$$
$$S(E_{21}) = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}, \quad S(E_{22}) = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$

5. Structure of G - H unitary sets. Let G be a nonempty subset of S_n and H a group in \mathcal{H} .

PROPOSITION 1. Suppose |H| > 2 and $\{A_1, \ldots, A_n\} \subseteq M_n(F)$ is a G - H unitary set. Then there exist $a_1, \ldots, a_n \in H, \tau \in S_n, \sigma \in G$ such that

$$A_{i} = a_{i} E_{\tau(i)\sigma} - \mathbf{1}_{\tau(i)}, \quad i = 1, 2, \ldots, n.$$

Proof. It is obvious for n = 1, hence assume n > 1. Since $(1, ..., 1) \in \Gamma_n(H)$, $\sum_{i=1}^n A_i$ is in P(G, H) hence there exist a $\sigma \in G$ and $\beta = (\beta_1, ..., \beta_n) \in \Gamma_n(H)$ such that

$$\sum_{i=1}^n A_i = P(\beta, \sigma).$$

Since |H| > 2 there exist distinct $\xi, \eta \in H$ and both are distinct from 1. Then there exist $\tau, \nu \in G$ and $\gamma = (\gamma_1, \ldots, \gamma_n), \delta = (\delta_1, \ldots, \delta_n) \in \Gamma_n(H)$ such that

$$\xi A_1 + \sum_{i=2}^n A_i = P(\gamma, \tau),$$

$$\eta A_1 + \sum_{i=2}^n A_i = P(\delta, \nu).$$

Hence

$$A_{1} = (1 - \xi)^{-1} (P(\beta, \sigma) - P(\gamma, \tau)).$$

Assume $\sigma \neq \tau$. Then there exists $1 \leq i \leq n$ such that $\sigma^{-1}(i) \neq \tau^{-1}(i)$. But

$$A_{1} = (1 - \eta)^{-1} (P(\beta, \sigma) - P(\delta, \nu)) = (\xi - \eta)^{-1} (P(\gamma, \tau) - P(\delta, \nu)),$$

or

$$(1 - \eta)^{-1}P(\beta, \sigma) - (\xi - \eta)^{-1}P(\gamma, \tau) = ((1 - \eta)^{-1} - (\xi - \eta)^{-1})P(\delta, \nu)$$

i.e. the matrix on the left hand side has two nonzero entries in the *i*th row and the right has at most one, a contradiction. Hence $\sigma = \tau$ and

$$A_1 = P((1 - \xi)^{-1}(\beta - \gamma), \sigma) = P(\theta_1, \sigma)$$

say. Similarly we have $A_i = P(\theta_i, \sigma)$ where $\theta_i \in \Gamma_n(F), i = 1, 2, ..., n$.

Now if we write $A_k = (a_{ij}^k)$, k = 1, 2, ..., n then $a_{ij}^k = 0$ if $j \neq \sigma^{-1}(i)$ and $\sum_{k=1}^n \alpha_k a^k_{i\sigma^{-1}(i)} \in H$ for all $(\alpha_1, ..., \alpha_n) \in \Gamma_n(H)$, i = 1, 2, ..., n. Suppose the number of nonzero terms in $\{a^k_{i\sigma^{-1}(i)} : k = 1, 2, ..., n\}$ is not less than two, say $a^1_{i\sigma^{-1}(i)} \neq 0$ and $a^2_{i\sigma^{-1}(i)} \neq 0$. Then we may choose $\alpha_2, ..., \alpha_n \in H$ so that $\sum_{k=2}^n \alpha_k a^k_{i\sigma^{-1}(i)} \neq 0$. Let

$$a = a^{1}{}_{i\sigma^{-1}(i)}, \quad b = \sum_{k=2}^{n} \alpha_{k} a^{k}{}_{i\sigma^{-1}(i)}.$$

Then $\alpha_1 a + b \in H$ for all $\alpha_1 \in H$, i.e. $Ha + b \subseteq H$ which is a contradiction.

Hence for each i = 1, 2, ..., n there exists exactly one k such that $a^{k}{}_{i\sigma^{-1}(i)} \neq 0$ and $a^{l}{}_{i\sigma^{-1}(i)} = 0$ for all $l \neq k$. If for some k, $a^{k}{}_{i\sigma^{-1}(i)} \neq 0$ and $a^{k}{}_{i\sigma^{-1}(j)} \neq 0$, $i \neq j$ then there exists l such that $A_{l} = 0$ which is impossible since $A_{1}, ..., A_{n}$ are linearly independent. Hence there exist $\tau \in S_{n}$ and $a_{1}, ..., a_{n} \in H$ such that

$$A_{\tau^{-1}(i)} = a_{\tau^{-1}(i)} E_{i\sigma^{-1}(i)}, \quad i = 1, 2, \dots, n \quad \text{or}$$

$$A_{i} = a_{i} E_{\tau(i)\sigma^{-1}\tau(i)}, \quad i = 1, 2, \dots, n.$$

PROPOSITION 2. If |H| = 2 and $\{A_1, \ldots, A_n\} \subseteq M_n(F)$ is a G - H unitary set then there exist permutation matrices P and Q, an integer r $(0 \le r \le n)$ and $\epsilon_i, \zeta_{jk} \in H$ such that n - r is even and if $P\{A_1, \ldots, A_n\}Q = \{E_1, \ldots, E_n\}$ then

$$E_{1} = [\epsilon_{1}] \oplus O_{n-1},$$

$$E_{2} = O_{1} \oplus [\epsilon_{2}] \oplus O_{n-2},$$

$$\vdots$$

$$E_{r} = O_{r-1} \oplus [\epsilon_{r}] \oplus O_{n-r},$$

$$E_{r+1} = O_{r} \oplus \frac{1}{2} \begin{bmatrix} \zeta_{11} & \zeta_{12} \\ \zeta_{13} & \zeta_{14} \end{bmatrix} \oplus O_{n-r-2},$$

$$E_{r+2} = O_{r} \oplus \frac{1}{2} \begin{bmatrix} \pm \zeta_{11} & \mp \zeta_{12} \\ \mp \zeta_{13} & \pm \zeta_{14} \end{bmatrix} \oplus O_{n-r-2},$$

$$\vdots$$

$$E_{n-1} = O_{n-2} \oplus \frac{1}{2} \begin{bmatrix} \zeta_{t1} & \zeta_{t2} \\ \zeta_{t3} & \zeta_{t4} \end{bmatrix}, t = \frac{1}{2}(n-r),$$

$$E_{n} = O_{n-2} \oplus \frac{1}{2} \begin{bmatrix} \pm \zeta_{t1} & \mp \zeta_{t2} \\ \mp \zeta_{t3} & \pm \zeta_{t4} \end{bmatrix}.$$

Proof. It is obvious for n = 1 hence assume n > 1.

Since $(1, \ldots, 1) \in \Gamma_n(H)$ there exist $\sigma \in G$ and $\alpha = (\alpha_1, \ldots, \alpha_n) \in \Gamma_n(H)$ such that

$$\sum_{i=1}^n A_i = P(\alpha, \delta).$$

For k = 1, 2, ..., n, let $\theta_{ki} = 1$ if i = k and $\theta_{ki} = -1$ if $i \neq k$. Then $\theta_k = (\theta_{k1}, ..., \theta_{kn}) \in \Gamma_n(H)$ and hence there exist $\beta_k = (\beta_{k1}, ..., \beta_{kn})$ in $\Gamma_n(H), \tau_i$ in G, i = 1, 2, ..., n such that

$$A_k - \sum_{i \neq k} A_i = P(\beta_k, \tau_k), \quad k = 1, 2, \ldots, n.$$

Hence

$$2A_k = P(\alpha, \sigma) + P(\beta_k, \tau_k), \quad k = 1, 2, \ldots, n.$$

Since |H| = 2 we must have $1 \neq -1$. Hence char $\neq 2$ and

$$A_k = 2^{-1}P(\alpha, \sigma) + 2^{-1}P(\beta_k, \tau_k), \quad k = 1, 2, \ldots, n.$$

To complete the proof we need the following lemmas, using the above notations.

LEMMA 1. If $\sigma^{-1}(q) \neq \tau_s^{-1}(q)$ for some $1 \leq s, q \leq n$ then there exists a $t \neq s$ such that $\tau_t^{-1}(q) = \tau_s^{-1}(q)$ and $\tau_t^{-1}(q) \neq \tau_s^{-1}(q)$ for all $i \neq s, t$.

Proof. We may assume s = q = 1.

If $\tau_i^{-1}(1) \neq \tau_1^{-1}(1)$ for all $i \neq 1$ then clearly it is impossible. If n = 2 the statement is then clear. Hence assume n > 2 and there are r integers, say $1, 2, \ldots, r$, such that r > 2, $\tau_1^{-1}(1) = \ldots = \tau_r^{-1}(1)$ and $\tau_i^{-1}(1) \neq \tau_1^{-1}(1)$ for $i = r + 1, \ldots, n$. Now since $A_j - \sum_{i \neq j} A_i = P(\beta_j, \tau_j), j = 1, 2, \ldots, r$ we have

$$\left(A_{j}-\sum_{i\neq j}A_{i}\right)_{1\sigma^{-1}(1)}=0, \quad j=1,2,\ldots,r.$$

Since for k = 1, 2, ..., r, $(A_k)_{1\sigma^{-1}(1)} = 2^{-1}\alpha_1 \neq 0$; hence for $j \neq k, 1 \leq j$, $k \leq r$

$$\left(A_{j}-A_{k}-\sum_{i\neq j,k}A_{i}\right)_{1\sigma^{-1}(1)}\neq 0.$$

Since $A_j + A_k - \sum_{i \neq j,k} A_i$ is a generalized permutation matrix and $\sigma^{-1}(1) \neq \tau_1^{-1}(1)$,

$$\left(A_{j} + A_{k} - \sum_{i \neq j, k} A_{i}\right)_{1\tau_{1}^{-1}(1)} = 0$$

Comparing this with $\sum_{i=1}^{n} A_i = P(\alpha, \sigma)$ we conclude that

$$2(A_j + A_k)_{1\tau_1^{-1}(1)} = 0.$$

Since char $F \neq 2$,

 $(A_j + A_k)_{1\tau_1^{-1}(1)} = 0.$

But this is true for all $k \neq j, 1 \leq j, k \leq r$ and r > 2; hence

 $(A_i)_{1\tau_1} - 1_{(1)} = 0, \quad i = 1, 2, \dots, r$

a contradiction.

LEMMA 2. If $\tau_r^{-1}(t) = \tau_s^{-1}(t) \neq \sigma^{-1}(t)$ for some $1 \leq r$, $s, t \leq n$ then for $i \neq r, s, (A_i)_{ij} = 0$ for each j = 1, 2, ..., n.

Proof. We may assume r = 1, s = 2 and t = 1.

If n = 2, the statement is clear. Hence assume n > 2. We have seen that $\tau_i^{-1}(1) \neq \tau_1^{-1}(1)$ for $i \neq 1, 2$ in Lemma 1 hence $(A_i)_{1\tau_1^{-1}(1)} = 0$ for all $i \neq 1, 2$.

Suppose there are some $i \neq 1$, 2 such that $(A_i)_{1k} \neq 0$, $k \neq \tau_1^{-1}(1)$. We may assume $(A_i)_{1k} \neq 0$ for $i = 3, 4, \ldots, r$, $3 \leq r \leq n$ and $(A_i)_{1k} = 0$ for $i = r + 1, r + 2, \ldots, n$. We choose $\theta_i \in H$, $i = 3, 4, \ldots, n$, according to r is even or r is odd and $k \neq \sigma^{-1}(1)$, $k = \sigma^{-1}(1) \neq \tau_i^{-1}(1)$ or $k = \sigma^{-1}(1) = \tau_i^{-1}(1)$ as follows:

	r even		r odd	
	$k \neq \sigma^{-1}(1) \text{ or}$ $k = \sigma^{-1}(1) \neq \tau_i^{-1}(1)$	$k = \sigma^{-1}(1) \\ = \tau_i^{-1}(1)$	$k \neq \sigma^{-1}(1) \text{ or}$ $k = \sigma^{-1}(1) \neq \tau_i^{-1}(1)$	$k = \sigma^{-1}(1)$ = $\tau_i^{-1}(1)$
<i>i</i> even and				
$3 \leq i \leq r - 2$	$\theta_i = -2(A_i)_{1k}$	$\theta_i = -(A_i)_{1k}$		
$i \text{ even and} \\ r-1 \leq i \leq r$	$\theta_i = 2(A_i)_{1k}$	$\theta_i = (A_i)_{1k}$	$\theta_i = -2(A_i)_{1k}$	$\theta_i = -(A_i)_{1k}$
i odd and				
$3 \leq i \leq r$	$\theta_i = 2(A_i)_{1k}$	$\theta_i = (A_i)_{1k}$	$\theta_i = 2(A_i)_{1k}$	$\theta_i = (A_i)_{1k}$
$r < i \leq n$	1	1	1	1

Since if $j \neq \sigma^{-1}(1)$, $\tau_1^{-1}(1)$, $(A_i)_{1j} = 0$ for each i = 1, 2 and $(A_1)_{1\sigma^{-1}(1)} = (A_2)_{1\sigma^{-1}(1)} = 2^{-1}\alpha_1$ we have

 $(A_1 - A_2)_{1j} = 0$ for $j \neq \tau_1^{-1}(1)$.

Hence whether r is even or odd,

$$\left(A_1 - A_2 - \sum_{i=3}^n \theta_i A_i\right)_{1k} \neq 0$$

Since $A_1 - \sum_{i=2}^n A_i = P(\beta_1, \tau_1)$ and $(A_i)_{1\tau_1 - 1(1)} = 0$ for $i \neq 1, 2$ it follows that

$$\left(A_{1} - A_{2} - \sum_{i=3}^{n} \theta_{i}A_{i}\right)_{1\tau_{1}^{-1}(1)} \neq 0$$

Since $k \neq \tau_1^{-1}(1)$ the matrix $A_1 - A_2 - \sum_{i=3}^n \theta_i A_i$ has two nonzero entries in the first row, a contradiction.

This proves $(A_i)_{1j} = 0$ for $i \neq 1, 2$ and j = 1, 2, ..., n.

LEMMA 3. If $(A_s)_{t\sigma^{-1}(t)} \neq 0$, $(A_s)_{tj} = 0$ for all $j \neq \sigma^{-1}(t)$, then $(A_i)_{tj} = 0$ for all $i \neq s, j = 1, 2, ..., n$.

Proof. We may assume that s = 1 and t = 1.

Suppose there exist some $i \neq 1$ and $j \neq \sigma^{-1}(1)$ such that $(A_i)_{1j} \neq 0$. Then $A_i = 2^{-1}P(\alpha, \sigma) + 2^{-1}P(\beta, \tau_i)$ and $\tau_i^{-1}(1) = j \neq \sigma^{-1}(1)$ hence $\tau_i \neq \sigma$. By Lemma 2 this is impossible. Hence $(A_i)_{1j} = 0$ for all $i \neq 1$ and $j \neq \sigma^{-1}(1)$.

Now suppose $(A_i)_{1\sigma^{-1}(1)} \neq 0$ for some $i \neq 1$, say $i = 2, 3, \ldots, r, 2 \leq r \leq n$ and $(A_i)_{1\sigma^{-1}(1)} = 0$ for $r + 1 \leq i \leq n$. If r is even, choose $\theta_i = (A_i)_{1\sigma^{-1}(1)}$ if i is odd, $1 \leq i \leq r$; $\theta_i = -(A_i)_{1\sigma^{-1}(1)}$ if i is even, $1 \leq i \leq r$ and $\theta_i = 1$ if $r < i \leq n$. Then $\theta_i \in H$ for $i = 1, 2, \ldots, n$ and $(\sum_{i=1}^n \theta_i A_i)_{1\sigma^{-1}(1)} = 0$. If ris odd, choose θ_i as in the case r is even for $i = 1, 2, \ldots, r - 2$ and $\theta_i =$ $(A_i)_{1\sigma^{-1}(1)}$ for i = r - 1, r; $\theta_i = 1$ for $i = r + 1, r + 2, \ldots, n$. Then $(\sum_{i=1}^n \theta_i A_i)_{1\sigma^{-1}(1)} = 3$. Since we have shown that $(A_i)_{1j} = 0$ for $2 \leq i \leq n$, $j \neq \tau^{-1}(1)$ we conclude that $\sum_{i=1}^n \theta_i A_i \notin P(G, H)$ which is a contradiction. This proves Lemma 3.

Now for $A \in M_n(F)$ let N(A) be the number of nonzero entries in A. Recall that

$$A_i = 2^{-1}P(\alpha, \sigma) + 2^{-1}P(\beta_i, \tau_i), \quad i = 1, 2, ..., n.$$

If $\tau_i = \sigma$ then $N(A_i) \ge 1$ since $A_i \ne 0$. If $\tau_i \ne \sigma$ then there exist $j \ne k$ such that $\tau_i^{-1}(j) \ne \sigma^{-1}(j), \tau_i^{-1}(k) \ne \sigma^{-1}(k)$ hence $N(A_i) \ge 4$. Now with a rearrangement of the subscripts of A_1, \ldots, A_n there exists an integer $r, 0 \le r \le n$ such that $\tau_1 = \tau_2 = \ldots = \tau_r = \sigma$ and for $r < i \le n, \tau_i \ne \sigma$, i.e. for $1 \le i \le r$, $N(A_i) \ge 1$ and $N(A_i) \ge 4$ for $i = r + 1, r + 2, \ldots, n$. Then the number of nonzero entries in A_1, \ldots, A_n is

$$\sum_{i=1}^{r} N(A_i) + \sum_{i=r+1}^{n} N(A_i) \ge r + 4(n-r).$$

On the other hand, by Lemmas 2 and 3, for each $t, 1 \leq t \leq n$, if $\tau_i^{-1}(t) = \sigma^{-1}(t)$ for all i = 1, 2, ..., n, there is at most one k such that $(A_k)_{t\sigma^{-1}(t)} \neq 0$ and there is at least one such k for otherwise $\sum_{i=1}^{n} A_i$ has a zero tth row, a contradiction. If $\tau_j^{-1}(t) \neq \sigma^{-1}(t)$ for some j then there exist exactly one $l \neq j$ such that $\tau_i^{-1}(t) \neq \sigma^{-1}(t)$, $(A_i)_{t\sigma^{-1}(t)} \neq 0$, $(A_i)_{t\tau_i^{-1}(t)} \neq 0$, i = j, land $(A_i)_{ts} = 0$ for $i \neq j, l, s = 1, 2, ..., n$. Hence in all $A_1, A_2, ..., A_n$ each row either has one nonzero entry or four nonzero entries. Hence there exists an integer $s, 0 \leq s \leq n$ such that there are s rows with one nonzero entry and n - s rows with four nonzero entries and the number of nonzero entries in $A_1, A_2, ..., A_n$ is s + 4(n - s). Hence

$$s + 4(n - s) \ge r + 4(n - r)$$
 or $s - r \ge 4(s - r)$

which is possible if and only if $r \ge s$. But r is the number of matrices among A_1, A_2, \ldots, A_n in which there is at least one row with exactly one nonzero entry. Hence r > s is impossible and r = s or

$$\sum_{i=1}^{r} N(A_i) + \sum_{i=r+1}^{n} N(A_i) = r + 4(n-r).$$

This forces $N(A_i) = 1$ for i = 1, 2, ..., r and $N(A_i) = 4$ for i = r + 1, r + 2, ..., n. Now by multiplying the set $\{A_1, ..., A_n\}$ by suitable permutation matrices allows us to assume that for i = 1, 2, ..., r, $(A_i)_{ii} \neq 0$ and $(A_i)_{ik} = 0$ for either $j \neq i$ or $k \neq i$.

Now if r = n the result is established. If r < n let $r < i \leq n$. Since $\tau_i \neq \sigma$ there exist distinct $k, l, r < k, l \leq n$ such that $\sigma^{-1}(k) \neq \tau_i^{-1}(k), \sigma^{-1}(l) \neq \tau_i^{-1}(l)$. Since $N(A_i) = 4$ we have $\sigma^{-1}(q) = \tau_{r+1}^{-1}(q)$ for all $q \neq k, l$. Hence $\tau_i \sigma^{-1} = (kl)$. By Lemma 1 there exists a $j, r < j \leq n$ and $j \neq i$ such that $\tau_j^{-1}(k) = \tau_i^{-1}(k) \neq \sigma^{-1}(k)$. Also $\tau_j \sigma^{-1} = (kl')$ for some $l' \neq k$. But $\sigma^{-1}(l') = \tau_j^{-1}(k) = \tau_i^{-1}(k) = \sigma^{-1}(l)$. Hence l = l' and $\tau_i = \tau_j$. Since $\sum_{i=1}^n A_i = P(\alpha, \sigma)$ it follows that $\beta_{jk} = -\beta_{ik}, \beta_{jl} = -\beta_{il}$ and the matrices have the following form (if k < l and $\sigma^{-1}(k) < \sigma^{-1}(l)$).

In this way we can pair off the matrices A_{r+1}, \ldots, A_n and multiplying the set $\{A_1, A_2, \ldots, A_n\}$ by suitable permutation matrices we can bring it to the required form. This proves Proposition 2.

6. The group $\mathcal{T}P(G, H)$.

PROPOSITION 3. If G is a transitive subset of S_n and H a nontrivial subgroup of F^* then $\mathcal{T}P(G, H)$ is a subgroup of the group of all nonsingular $n^2 \times n^2$ matrices over F.

Proof. We show that span P(G, H) contains a basis for $M_n(F)$. Since G is transitive, given $1 \leq i, j \leq n$ we can find $\sigma \in G$ such that $\sigma(j) = i$. Define $\alpha, \beta \in \Gamma_n(H)$ via $\alpha_k = 1$ for all $k, \beta_k = 1$ if $k \neq i$ and $\beta_i = \xi \in H$. Then a simple computation shows that

$$P(\alpha, \sigma) - P(\beta, \sigma) = (1 - \xi)E_{ij}$$

If |H| = 2 then char $F \neq 2$ and choose $\xi = -1$. If |H| > 2 choose ξ so that $1 - \xi \neq 0$. Then the set $\{(1 - \xi)E_{ij} : i, j = 1, 2, ..., n\}$ is clearly a basis for $M_n(F)$. Hence if $T \in \mathscr{TP}(G, H)$, image $T \supseteq$ span $(P(G, H)) = M_n(F)$ so T is nonsingular.

LEMMA 4. Let G be a transitive subset of S_n and H a nontrivial subgroup of F^* . If $T \in \mathscr{TP}(G, H)$ and $\sigma \in G$ then $T(\sigma^{-1})$ is a G - H unitary set.

Proof. Clearly for all $\alpha \in \Gamma_n(H)$ we have

$$\sum_{i=1}^n \alpha_i E_{i\sigma^{-1}(i)} = P(\alpha, \sigma) \in P(G, H).$$

Since T preserves P(G, H) we have

$$\sum_{i=1}^{n} \alpha_{i} T(E_{i\sigma^{-1}(i)}) = T\left(\sum_{i=1}^{n} \alpha_{i} E_{i\sigma^{-1}(i)}\right) \in P(G, H).$$

Also T is nonsingular hence $T(\sigma^{-1})$ is a linearly independent set and the result follows.

7. Structure of the group $\mathcal{F}P(G, H)$: G regular. In this section we assume G be a regular subset of S_n (n > 2) and H a nontrivial group in \mathcal{H} .

LEMMA 5. If $T \in \mathscr{TP}(G, H)$ and $1 \leq i, j \leq n$ then there exist integers $1 \leq p$, $q \leq n$ and $\alpha_{ij} \in H$ such that $T(E_{ij}) = \alpha_{ij}E_{pq}$.

Proof. If |H| > 2 this follows immediately from Proposition 1 and Lemma 4 if we choose $\sigma \in G$ with $\sigma(j) = i$ and consider the G - H unitary set $T(\sigma^{-1})$.

We suppose that |H| = 2 then Proposition 2 and Lemma 4 apply. If r = n (i.e. no matrices of the second type appear in $T(\sigma^{-1})$) the result follows. Hence we assume that for some $i \neq l$ we have

We now note that (just writing the appropriate 2-square submatrices and choosing signs properly)

$$\begin{split} p & q \\ X = T(E_{i\sigma^{-1}(i)}) + T(E_{i\sigma^{-1}(l)}) = \begin{bmatrix} \eta_1 & 0 \\ 0 & \eta_2 \end{bmatrix} r, \\ Y = T(E_{i\sigma^{-1}(i)}) - T(E_{i\sigma^{-1}(l)}) = \begin{bmatrix} 0 & \eta_3 \\ \eta_4 & 0 \end{bmatrix} r, \quad \eta_i \in H. \end{split}$$

Since n > 2 there exists an integer k $(1 \le k \le n)$ such that $k \ne i, l$. The set G is regular so that the knowledge of one nonzero position in a matrix $P(\alpha, \tau)$ determines the permutation τ uniquely. We now note that the two

matrices

$$\sum_{\substack{\substack{i \neq i, l}}} T(E_{k\sigma^{-1}(k)}) + X \text{ and } \sum_{\substack{\substack{k \neq i, l}}} T(E_{k\sigma^{-1}(k)}) + Y$$

belong to P(G, H) and have at least one nonzero entry in common, a contradiction. Therefore the case in question cannot occur and the result follows.

Recall that we write $G = \{g_1, \ldots, g_n\}$ and $h_i = g_i^{-1}$. For $k = 1, 2, \ldots, n$ the set $T(h_k)$ is a G - H unitary set of matrices so it follows that

$$T(h_k) = \{\beta_i E_{ip_k^{-1}(i)} : i = 1, 2, \dots, n\}$$

for some $p_k \in G$ hence there exists $\mu_k \in S_n$ such that

$$T(E_{ih_k(i)}) = \alpha_{ih_k(i)} E_{\mu_k(i)p_k^{-1}\mu_k(i)}, \quad i = 1, 2, \ldots, n.$$

Since T is nonsingular, there exists $\sigma \in S_n$ such that $p_k = g_{\sigma(k)}, k = 1, 2, ..., n$. Hence

$$T(E_{ih_{k}(i)}) = \alpha_{ih_{k}(i)} E_{\mu_{k}(i)h_{\sigma(k)}\mu_{k}(i)}, \quad i, k = 1, 2, \ldots, n.$$

On the other hand, a simple computation verifies that such T is in $\mathscr{T}P(G, H)$ for any choices $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Gamma_n(H)$ and $\mu_1, \mu_2, \ldots, \mu_n, \sigma \in S_n$. This proves Theorem 1.

Now for an *n*-square matrix $X = (x_{ij})$ and $g_k \in G$ we write

$$X_{h_k} = \sum_{i=1}^{n} x_{ih_k(i)} E_{ih_k(i)}.$$

Then for $T \in \mathscr{T}P(G, H)$,

$$T(X_{h_k}) = \sum_{i=1}^{n} x_{ih_k(i)} \alpha_{ih_k(i)} E_{\mu_k(i)h_{\sigma(k)}\mu_k(i)}$$

for some $\alpha_1, \ldots, \alpha_n \in \Gamma_n(H)$, $\mu_1, \mu_2, \ldots, \mu_n$, $\sigma \in S_n$. By setting $j = \mu_k(i)$ we have

$$T(X_{h_k}) = \sum_{j=1}^n x_{\mu_k^{-1}(j)h_k^{\mu_k^{-1}(j)}\alpha_{\mu_k^{-1}(j)h_k^{\mu_k^{-1}(j)}E_{jh_{\sigma(k)}(j)}}.$$

Since $X_{h_k} = \text{diag}(x_{1h_k(1)}, \ldots, x_{nh_k(n)})P(g_k)$ we have

$$T(X_{h_k}) = \operatorname{diag}(x_{\mu_k^{-1}(1)h_k\mu_k^{-1}(1)\alpha_{\mu_k^{-1}(1)h_k\mu_k^{-1}(1)}, \dots, x_{\mu_k^{-1}(n)h_k\mu_k^{-1}(n)})P(g_{\sigma(k)})$$

= $P(\mu_k) \operatorname{diag}(x_{1h_k(1)\alpha_{1h_k}(1), \dots, x_{nh_k(n)}\alpha_{nh_k(n)})P(\mu_k^{-1}g_{\sigma(k)})$
= $P(\mu_k)(X_{h_k}*A_{h_k'})P(h_k\mu_k^{-1}g_{\sigma(k)})$ where $A' = (\alpha_{ij}) \in M_n(H)$
= $P(\mu_k)A_{h_k'}P(h_k\mu_k^{-1}g_{\sigma(k)})*P(\mu_k)X_{h_k}P(h_k\mu_k^{-1}g_{\sigma(k)}).$

Since $X = \sum_{k=1}^{n} X_{h_k}$,

$$T(X) = A * \sum_{i=1}^{n} P(\mu_{i}) X_{h_{i}} P(h_{i} \mu_{i}^{-1} g_{\sigma(i)})$$

where $A = \sum_{j=1}^{n} P(\mu_j) A_{h_j}' P(h_j \mu_j^{-1} g_{\sigma(j)})$. Hence *T* associates with a matrix *A* in $M_n(H)$ and $\mu_1, \mu_2, \ldots, \mu_n, \sigma \in S_n$. Let *S* be another element in $\mathscr{T}P(G, H)$ which associates with *B* in $M_n(H)$ and $\nu_1, \nu_2, \ldots, \nu_n, \tau \in S_n$, i.e.

$$S(X) = B * \sum_{i=1}^{n} P(v_i) X_{h_i} P(h_i v_i^{-1} g_{\sigma(i)})$$

Then

$$ST(X) = B * \sum_{i=1}^{n} P(\nu_{\sigma(i)}) (A_{h_{\sigma(i)}} * P(\mu_{i}) X_{h_{i}} P(h_{i} \mu_{i}^{-1} g_{\sigma(i)})) \times P(h_{\sigma(i)} \nu_{\sigma(i)}^{-1} g_{\tau\sigma(i)}) = B * \sum_{i=1}^{n} P(\nu_{i}) A_{h_{i}} P(h_{i} \nu_{i}^{-1} g_{\tau(i)}) * \sum_{i=1}^{n} P(\nu_{\sigma(j)} \mu_{j}) X_{h_{j}} P(h_{j} \mu_{j}^{-1} \nu_{\sigma(j)}^{-1} g_{\tau\sigma(j)}),$$

i.e. ST associates with a matrix $B * A^{\langle \tau, (\nu_1, \dots, \nu_n) \rangle}$ and $\nu_{\sigma(1)} \mu_1, \dots, \nu_{\sigma(n)} \mu_n, \tau \sigma \in S_n$ if we define $A^{\langle \tau, (\nu_1, \dots, \nu_n) \rangle}$ as in (3.1). Also it is easy to see that if T associates with A = J, $\mu_1 = \ldots = \mu_n = e$ then T(X) = X for all $X \in M_n(F)$. This proves Theorem 2.

8. Structure of the group $\mathcal{T}P(G, H)$: G doubly transitive. In this section let H be a nontrivial group in \mathcal{H} and n > 2.

LEMMA 6. Suppose G is a doubly transitive subset of S_n . If $T \in \mathcal{TP}(G, H)$ and $1 \leq i, j \leq n$ then there exist integers $1 \leq p, q \leq n$ and $\alpha_{ij} \in H$ such that $T(E_{ij}) = \alpha_{ij}E_{pq}$.

Proof. If |H| > 2 then the result follows from Proposition 1 and Lemma 4. We suppose that |H| = 2 and proceed as in Lemma 5 to obtain (only writing the appropriate 2-square submatrices)

$$T(E_{i\sigma^{-1}(i)}) = \begin{bmatrix} \oint & q \\ \epsilon_1 & \epsilon_2 \\ \epsilon_3 & \epsilon_4 \end{bmatrix} \stackrel{r}{s}, T(E_{i\sigma^{-1}(i)}) = \begin{bmatrix} \oint & q \\ \pm \epsilon_1 & \mp \epsilon_2 \\ \mp \epsilon_3 & \pm \epsilon_4 \end{bmatrix} \stackrel{r}{s}.$$

Now n > 2 so there exists $k \neq i, l$. Since G is doubly transitive, choose $\tau \in G$ such that $\tau^{-1}(l) \neq \sigma^{-1}(l)$ and $\tau^{-1}(i) = \sigma^{-1}(i)$. Repeating the argument for $T(\tau^{-1})$ we find

$$T(E_{i\tau^{-1}(i)}) = \begin{bmatrix} \epsilon_1 & \epsilon_2 \\ \epsilon_3 & \epsilon_4 \end{bmatrix}$$

so by Proposition 2 we find there must exist k such that

$$T(E_{k\tau^{-1}(k)}) = \begin{bmatrix} \pm \epsilon_1 & \mp \epsilon_2 \\ \mp \epsilon_3 & \pm \epsilon_4 \end{bmatrix} = \pm T(E_{l\tau^{-1}(l)}).$$

Now if $l \neq k$ this implies T is singular, and if $l \neq k$, $\tau^{-1}(l) \neq \sigma^{-1}(l)$ so again T is singular, a contradiction.

In the following we assume that G is a doubly transitive subgroup of S_n . Now we have

$$T(E_{ij}) = \alpha_{ij}E_{pq}$$
 for some $\alpha_{ij} \in H$ and $1 \leq p, q \leq n$.

If there exist $1 \leq k \leq n$ and $\alpha_{ik} \in H$ such that $k \neq j$ and

$$\Gamma(E_{ik}) = \alpha_{ik}E_{rs}$$
 with $p \neq r$ and $q \neq s$

then choose $\sigma \in G$ such that $\sigma^{-1}(r) = s$ and $\sigma^{-1}(p) = q$. Let $P(\sigma) = \sum_{i=1}^{n} E_{i\sigma^{-1}(i)} \in P(G, H)$. Now $T^{-1} \in \mathscr{T}P(G, H)$ by Proposition 3, however since $T^{-1}(E_{rs}) = \alpha_{ik}^{-1}E_{ik}$ and $T^{-1}(E_{pq}) = \alpha_{ij}^{-1}E_{ij}$ the matrix $T^{-1}(P(\sigma))$ must have two nonzero entries in row *i* and since it has *n* nonzero entries it must have a row equal to zero and is singular, a contradiction. Hence we may conclude that either

$$T(E_{ij}) = \alpha_{ij} E_{p\mu(j)}, \quad j = 1, 2, \dots, n \quad \text{or}$$

$$T(E_{ij}) = \alpha_{ij} E_{\mu(j)q}, \quad j = 1, 2, \dots, n$$

for some $\mu \in S_n$. Suppose that for some $1 \leq i, k \leq n$ $(i \neq k)$ and $\sigma, \mu \in S_n$ that

$$T(E_{ij}) = \alpha_{ij} E_{p\sigma(j)}, \quad j = 1, 2, \dots, n,$$

$$T(E_{k\tau}) = \alpha_{k\tau} E_{\mu(\tau)q}, \quad r = 1, 2, \dots, n.$$

Now $\sigma(j) = q$ for some *j*, and $\mu(r) = p$ for some *r*, hence

$$\alpha_{ij}^{-1}T(E_{ij}) = E_{p\sigma(j)} = E_{\mu(r)q} = \alpha_{kr}^{-1}T(E_{kr})$$

so the matrices $T(E_{ij})$ and $T(E_{kr})$ are linearly dependent and T is singular; a contradiction. Hence either

$$T(E_{ij}) = \alpha_{ij} E_{\sigma(i)\mu(j)}, \quad i, j = 1, 2, ..., n \text{ or}$$

$$T(E_{ij}) = \alpha_{ij} E_{\mu(j)\sigma(i)}, \quad i, j = 1, 2, ..., n$$

for some σ , $\mu \in S_n$, or with a short computation either

$$T(X) = A * P(\sigma) X P(\mu^{-1}), \quad X \in M_n(F) \text{ or}$$

$$T(X) = A * P(\mu) {}^t X P(\sigma^{-1}), \quad X \in M_n(F).$$

Now if the first form occurs let $\tau \in G$. Since $T(P(\tau)) \in P(G, H)$ we have $\sigma \tau \mu^{-1} \in G$. Hence $\sigma G \mu^{-1} \subseteq G$ and it follows that $\sigma G \mu^{-1} = G$. Let

$$L = \{ (\sigma, \mu) \in S_n X S_n : \sigma G \mu^{-1} = G \}.$$

Clearly *L* is a subgroup of $S_n \times S_n$. If $\sigma \notin N(G)$ then since S_n is a group, there exists $\nu \in S_n$ such that $\mu^{-1} = \sigma^{-1}\nu$ and we have $G = \sigma G \mu^{-1} = \sigma G \sigma^{-1} \nu = G'\nu$ where $G' = \sigma G \sigma^{-1}$ is a subgroup of S_n . Hence $\nu \in G'$ and G = G' a contradiction. Similarly $\mu \in N(G)$ hence *L* is a subgroup of N(G)XN(G). Now

clearly if $(\sigma, \mu) \in L$ and one of σ , μ is in G then the other element must be in G. If $\mu \in N(G) - G$ then again we write $\sigma = \nu\mu$ for some $\nu \in S_n$ and $G = \nu\mu G\mu^{-1} = \nu G$ implies $\nu \in G$, i.e. $\sigma \in G\mu$. Consequently if we let $N'(G) = \{(\sigma, \sigma) : \sigma \in N(G)\}$ then $L = (GX\{e\}) \cdot N'(G)$. If the second form occurs let $\tau \in G$ then again $\mu\tau^{-1}\sigma^{-1} \in G$, i.e. $\mu G^{-1}\sigma^{-1} \subseteq G$. Since G is a group we have $\mu G\sigma^{-1} \subseteq G$ or $\mu G\sigma^{-1} = G$ i.e. $(\mu, \sigma) \in L$. Therefore we have either

(8.1)
$$T(X) = A * P(\sigma \mu) X P(\mu^{-1}), X \in M_n(F)$$
 or

$$(8.2) \quad T(X) = A * P(\sigma \mu)^{t} X P(\mu^{-1}), \quad X \in M_n(F)$$

where $\sigma \in G$ and $\mu \in N(G)$. On the other hand it is easily seen that for any $\mu \in N(G)$ and $\sigma \in G$, the *T* defined by (8.1) and (8.2) are in $\mathcal{T}P(G, H)$. This proves Theorem 3.

Now let $\mathcal{T}_1 P(G, H)$ be the set of all elements in $\mathcal{T} P(G, H)$ of the form (8.1) with $\sigma = e$. If T, S are in $\mathcal{T}_1 P(G, H)$ and associate with $\mu \in N(G)$, $A \in M_n(H)$ and $\tau \in N(G)$, $B \in M_n(H)$ respectively, i.e.

$$T(X) = A * P(\mu) X P(\mu^{-1}), \quad X \in M_n(F),$$

 $S(X) = B * P(\tau) X P(\tau^{-1}), \quad X \in M_n(F)$

then

$$ST(X) = B * A^{\tau} * P(\tau \mu) X P((\tau \mu)^{-1}), \quad X \in M_n(F)$$

where $A^{\tau} = P(\tau)AP(\tau^{-1})$, i.e. ST associates with the element $\tau \mu \in N(G)$ and $B*A^{\tau}$ in $M_n(H)$. Also if T associate with $e \in N(G)$, A = J then clearly T is the identity linear transformation on $M_n(F)$. Hence $\mathcal{T}_1P(G, H)$ is isomorphic to the group $\langle N(G), M_n(H) \rangle$.

Recall that $P(G) = \{P(\sigma) : \sigma \in G\}$ and for $\sigma \in G$ we define $P(\sigma)(X) = P(\sigma)X, X \in M_n(F)$. Clearly S of the form (8.1) associates with $\sigma \in G$, $\mu \in N(G), A \in M_n(H)$ if and only if $S = P(\sigma) \circ T$ where T in $\mathcal{T}_1P(G, H)$ associates with $\mu \in N(G)$ and $P(\sigma^{-1})A \in M_n(H)$. Hence if we denote by $\mathcal{T}_2P(G, H)$ the set of all elements in $\mathcal{T}P(G, H)$ of the form (8.1) then

$$\mathscr{T}_2 P(G, H) = P(G) \circ \mathscr{T}_1 P(G, H).$$

By a simple computation we see that $\mathscr{T}_2P(G, H)$ is a group hence $\mathscr{T}_1P(G, H)$ is of index |G| in $\mathscr{T}_2P(G, H)$.

Finally if $R(X) = {}^{t}X, X \in M_n(F)$ then clearly S is in $\mathcal{T}P(G, H)$ of the form (8.2) if and only if S = TR where T is in $\mathcal{T}_2P(G, H)$. This completes the proof of Theorem 4.

References

- J. Dieudonné, Sur une généralisation du groupe orthogonal a quatre variables, Arch. Math. 1 (1949), 282-287.
- 2. M. Marcus, All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155-163.

H. ONG AND E. P. BOTTA

- 3. ——— Linear transformations on matrices, J. Res. NBS 75B (Math. Sci.) No. 3 and 4 (1971), 107–113.
- 4. M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221.
- 5. M. Marcus and R. Purves, Linear transformations on algebras of matrices II: The invariance of the elementary symmetric functions, Can. J. Math. 11 (1959), 383-396.

University of Toronto, Toronto, Ontario