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LINEAR TRANSFORMATIONS ON MATRICES: THE 
INVARIANCE OF GENERALIZED PERMUTATION 

MATRICES, I 

HOCK ONG AND E. P. BOTTA 

1. I n t r o d u c t i o n . Let F be a field, Mn(F) be the vector space of all w-square 
matrices with entries in F and % a subset of Mn(F). I t is of interest to deter
mine the s t ructure of linear maps T : Mn(F) -> Mn(F) such tha t T($t) Q %. 
For example: Let °tt be GL(n, C ) , the group of all nonsingular n X n matrices 
over C [5]; the subset of all rank 1 matrices in MmXn(F) [4] (MmXn(F) is the 
vector space of all m X n matrices over F) ; the uni tary group [2] ; or the set 
of all matrices X in Mn(F) such tha t d e t ( X ) = 0 [1]. Other results in this 
direction can be found in [3]. In this paper we consider % to be a set of 
generalized permutat ion matrices relative to some permutat ion group (set) 
and with entries in some nontrivial subgroup of F* where F* is the multipli
cative group of F. We classify those T : Mn(F) -> Mn(F) such tha t T($£) = 
%. Fur thermore we also determine the s t ructure of the set of all such T. T h e 
main results will be s ta ted in Section 4. 

2. Def in i t ions a n d n o t a t i o n . We denote by Sn the symmetric group of 
degree n acting on the set {1,2, . . . , n } . I f S i s a subset of F we define 

r w (5 ) = {a = («i, a2, . . • , an) : at G S}. 

T h e identi ty element of Sn, the addit ive identi ty and the multiplicative identi ty 
of F will be denoted by e, 0, 1 respectively. The matr ix with 1 in the (i, j) 
position and 0 elsewhere will be denoted by Etj. If a £ Tn(F*) and a d Sn 

then P ( a , a) will be the matrix whose (i, j) ent ry is aibi<r^) (where bitj — 1 if 
i — j and 0 elsewhere) and we call P ( a , <r) a generalized permutation matrix. 
If e Ç T n (P) is the sequence all of whose entries are equal to 1 we write P(<r) 
for P ( e , a) and call P(a) a permutat ion matrix corresponding to a. If G is a 
nonempty subset of Sn and H a subgroup of F* we define 

P(G, H) = {P(a, o-) : a Ç Yn{H) and cr 6 G}, 

<^~P(G, H) = {T : T is a linear transformation on Mn(F) to itself 

and T(P(G,H)) = P(G,H)\. 

If e = {£* : i = 1, 2, . . . , «} C Mn(F) is a set of w matrices we say e is a 
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456 H. ONG AND E. P. BOTTA 

G — H unitary set if e is a linearly independent set and for all a G Tn(H), 

n 

E(a) = X) aiEi 

belongs to P(G,H). 
Let 

Jtif = \H : H is a subgroup of F* and there do not exist 
a,b £ F* such t h a t Fia + b QH}. 

T h e s e t J ^ is nonempty . For example: 
(a) I t is trivial t h a t F* is in Jif for every field F. 

(b) If H is a subgroup of the uni t circle C = {z : \z\ = 1} of the complex 
plane and |if| > 2 where |ff| denotes the order of H then H is in J^f. 

Proof. If a, & are in F* then the circle \za + 6| = 1 intersects the uni t circle 
a t most two points. 

(c) Every nontrivial finite subgroup H of F* is in jjf. 
Proof. If there exist a, b Ç F* such t h a t Ha -\- b Q H then since i î is finite, 

Ha + 6 = H. I t is easily seen t h a t when h runs over H, ha + b also runs 
over H. Hence 

( E &)a + |H|&= £ h. 

I t is well known tha t H is cyclic and elements in H are exactly the roots of 

X\H\ = i Hence J^neH h = 0 and so \H\b = 0. Clearly this is impossible if 
char F = 0. If p = char F ^ 0 then ^>||ii'||^7' — 1 for some positive integer r 
which is again impossible. 

T h e w-square matrices all of whose entries are 0, all of whose entries are 1 
and the identi ty matr ix will be denoted by 0W, Jn, In respectively or 0, / , I if 
no ambigui ty arises. If A = (aif) and B = (btj) are in Mn(F) then their 
Hadamard product A*B = C = (df) is the w-square matr ix defined by 
Cij = ai3bij. If A is w-square matr ix and B is an m-square matr ix then A 0 B 
will denote their direct sum. If X = (x î ; ) 6 Mn(F) and a £ Sni Xa will be 
the matr ix whose (i,j) en t ry is xtj if a(i) = j and 0 elsewhere. 

If H is a subgroup of F* let Mn(H) be the set of all n-square matrices with 
entries in H. Since i f is a group, it is easy to see t ha t the set Mn{H) with the 
operation Hadamard product is a group and will be denoted by Mn(H). 
Under the correspondence 

A —> (an , • • • , ain, . . . , ani, . . . , ann) 

where A = (aif) € Mn(H), it is obvious t h a t Mn(H) is isomorphic to the 
direct product H X . . . X H (n2 t imes) . 

We recall t h a t a nonempty subset G of Sn is transitive if given 1 ^ i} j ^ n 
there exists a £ G such t h a t o-(i) = j . A transi t ive subset G of 5re is regular if 
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given such a pair i and j there exists exactly one a with a(i) = j . A subset 
G of Sn is doubly transitive if given 1 ^ i, j , p, q ^ n with i 9^ p, j 7e q there 
exists 0- G G with o-(i) = 7, a(p) = g. If G is a subgroup of 5W we denote by 
N(G) the normalizer of G in 5W. If G is a regular subset of Sn we shall write 
G = {gi, • • • > gw} and for simplicity we shall write gf-1 = ht, i = 1, 2, . . . , n. 

If 5 is a set and rj a mapping of S into S then s7* will be the image of 5 G 5 
under 77. If G, i£ are two groups, J : G —> Aut(K) a homomorphism (respec
tively, anti-homomorphism) and for k G i£, gi, g2 G G, 

(fe^i))^2) = kW^Mti, (respectively, jfe«'i>w»>), 

then the symbols (g, &), g £ G, k £ K form a group under the rule 

(gl,k1)'(g2,k2) = <glg2, *l*2«^l)> 

«*1, * l H * 2 , *2> = < g l g 2 , £ l ^ 2 » , 

i.e. the semi-direct product of i£ by G with respect to £ and will be denoted 
by (G, K)t or <G, if). 

For r G TP{G, H) and o- G G we define 

r(o-) = {T(Eiff(i) : i = 1, 2, . . . , n}, 

P{G) = {P(cr):<rG G\. 

The linear transformations P(o-), a G G and P on Mn(F) to itself are defined 
as follows: For X G Mn(F), 

22 (JT) = lX 

where lX is the transpose of X. 

3. The groups «5 n , Sn X . . . X 5n>, Mn{H)) and (7V(G), Mn(fl)>- Let H 
be a subgroup of F* and 5W X . . . X Sn denote the direct product of Sn by 
n times. For v, a G £„, (co„(i)> . . . , co,(w)) in 5n X . . . X Sn define 
<P. : SnX . . . X SH-*SnX . . . X SHby 

^ ( w K D i • • • » «Kn)) = (Ww(D> • • • » ^ ( r c ) ) -

Then it is easy to see that <pff is an automorphism of Sn X . . . X Sn, and 
defines <p, an anti-isomorphism of Sn into the group of all automorphisms of 
Sn X . . . X Sn. We denote by (Sn, Sn X . . . X 5n) the semi-direct product 
of Sn X . . . X Sn by 5W with respect to the anti-isomorphism <p. 

Let G = {gi, . . . , gn} be a regular subset of Sn. For 4̂ G Mn(H) and 
(0-, (MI, • • • , M»)> G <S„, 5W X . . . X Sn) we define 

(3.1) 4 ^ 1 . - ^ » = JT P^A^Pih^r^). 
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458 H. ONG AND E. P. BOTTA 

Then for A, B Ç Mn(H), since Ahi and Bhi are &rdiagonal matrices, 

(A *5)(cr '(M1 "n)) 

= Z P^i)AhiPQiiixl'
lga(<i)) * X) PfaîlBhjPQijpr^u)) 

1 = 1 j = l 

_ yj < < r , ( / i i , . . . , M n ) ) . n ( f f , ( j i l , . . . , / i n ) ) 

and ,4<ff^i "«)> = / if and only if A = J. Therefore (a, (JLH, . . . , /xw)) is 
an automorphism of Mn(H). For (o-, (/*i, . . . , /iw)) and (r, (*>i, . . . , *>w))

 m 

(Sn, Sn X . . . X Sw), a computation shows that 

/ y ^ ( o - , ( / x i , . - - . M n ) > V r - C ^ l vn)) = ^ 4 < r , ( v i vn)> •< < r , ( / * l , . . . ,Mn)> # 

Hence we may define ((Sn, 5n X . . . X Sw), Mn(H)), the corresponding semi-
direct product of Mn{H) by (5W, 5n X . . . X 5W). 

Suppose now that G is a doubly transitive subgroup of Sn and for r £ N(G), 
A € Mn ( # ) we define 

A* = P ^ M P O " " 1 ) . 

Then it is easy to see that r is an automorphism of Mn(H) and we denote the 
corresponding semi-direct product of Mn{H) by N(G) by (N(G), Mn(H)). 

4. Main results. First we characterize all G — H unitary sets for G a non
empty subset of Sn and H a nontrivial group in ffl (Propositions 1 and 2). If 
G is a transitive subset of Sn and H is a nontrivial subgroup of F* we show 
that ^~P(G, H) is a subgroup of GL(n2, F) (Proposition 3). If G is a regular 
subset or a doubly transitive subset of Sn(n > 2), H a nontrivial group in J ^ 
and P G 3?~P{G, H) then for I ^ i, j ^ n there exist I ^ p, q S n and 
a f i G H" such that 

and for distinct (i, j) we have distinct (/>, q), i.e. the matrix representation 
of T with respect to the usual basis {Etj : i, j = 1, 2, . . . , n\ is a generalized 
permutation matrix (Lemmas 5 and 6). Furthermore we have the following 
results: 

THEOREM 1. Let G = {gi, . . . , gn] be a regular subset of Sn (n > 2) and H 
a nontrivial group inJif. Then T £ ^y~P(G, H) if and only if there exist at = 
(an, ... , ain) Ç Tn(H), i = 1, 2, . . . , n and /xi, . . . , /zn, o- 6 5n such that 

r(£tt f cco) = ^vo^MfcCOM^ifcCi)» ^ ^ = 1 » • • • > w 
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or in another form 

T(X) = A * E Pbi)XhiPQiiH-lg,w), X G Mn(F) 

where A = [a^Y9^1 "n)> £ Mn(H) and ht = g r 1 . 

THEOREM 2. Le/ G = [gi, . . . , gn) be a regular subset of Sn (n > 2) and H 
a nontrivial group in $?. If for 

«e, On, . . . , MJ>, A) G «5 n , 5n X . . . X 5n)f Mn(ff)> 

and X G Mn(F) we define 

then3TP{G, H) is equal to the group «5 n , S„ X . . . X 5„), Mn(H)). 

THEOREM 3. Le/ G be a doubly transitive subgroup of Sn (n > 2) and LT a 
nontrivial group in 34?. Then T G &~P (G, H) if and only if there exist A G Mn (H), 
/i G -AT (G) awd o- G G swcfe //za/ 

P(X) = ^*P((7M)XP(M-1), X G Mn(F) or 

T(X) = ^ * P M ^ P ( M - 1 ) , X G M„(P). 

THEOREM 4. Le/ G be a doubly transitive subgroup of Sn (n > 2) and 7J a 
nontrivial group inJtf. If for (n, A) G (N(G), Mn(H)) we define 

X<-A> = A*P(a)XP{<j-i), X G Mn(F) 

then$~P{G, H) is equal to the group 

P(G)o(N(G),Mn(H))o{I,R} 

where o is the usual composition of linear transformations. As an abstract group, 
there exists a subgroup J~iP{G} H) of index 2|G| in$~P(G, H) and3TxP{G, H) 
is isomorphic to the group 

(N(G),HX ...XH). 
n2 times 

To complete our list we have the following 

THEOREM 5. If \H\ > 2 and H G 3f then Theorems 1 and 2 are true when 
n = 2. If H = {1, — 1} then ^P (Si, H) consists of the group of linear trans
formations generated by the set 

T : T(X) = A * E P(»i)XçiP(gi»ig«d)), <r>Mi,M2 G & , i G M2(H)\ 
i= i / 

together with the linear transformation S defined as follows: 

5(£n) = i [} }], 5(£„) = i [_J _}], 

* 
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5. Structure of G — H unitary sets. Let G be a nonempty subset of Sn 

and H a group in J^f. 

PROPOSITION 1. Suppose \H\ > 2 and [Au • • • , An) C Mn(F) is a G — H 
unitary set. Then there exist ai, . . . , an G H, r G Sn, a G G such that 

Af = ai£r(ï)<T-iT(ï), i = 1, 2, . . . , n. 

Proof. It is obvious forn = 1, hence assume n > 1. Since ( 1 , . . . , 1) G r n ( i ï ) , 
£ " - i A t is in P(G, H) hence there exist a a G G and 0 = (ft, . . . , /3n) G rn(ff) 
such that 

à ^ , = P(/3,CT). 

Since |JÏ| > 2 there exist distinct £, rj £ H and both are distinct from 1. Then 
there exist r, v G G and 7 = (71, . . . , yn), 8 = (ôi, . . . , ôn) G Tn(H) such 
that 

^ ! + E ^ i = P ( 7 , r ) , 
1 = 2 

Hence 

Ai = (1 - ?)-1(JP(/3,^) - ^ ( T . r ) ) . 

Assume a y^ T. Then there exists 1 ^ » ^ « such that o-_1(i) 7̂  r _ 1 ( i ) . But 

^ = (1 - 7,)-HPQ3, ') - i>(«, ")) = tt - ^ - ' ( ^ ( T , r) - P(8, „)), 
or 

(1 - 7,)-ip(/3, a) - (? - 1 0 - ^ ( 7 , T) = 
((1 - , ) " 1 - tt - ^"O-PC*. 0 

i.e. the matrix on the left hand side has two nonzero entries in the ith row and 
the right has at most one, a contradiction. Hence a = r and 

Ax = P( (1 - €)-108 - 7), <0 = -P(*i,<r) 

say. Similarly we have yl* = P(0*, tr) where 0* G ^ ( P ) , ^ = 1, 2, . . . , n. 
Now if we write Ak = (a*/), & = 1, 2, . . . , n then a*/ = 0 if j ^ o"_1(t) 

and X)*-i a*a*<„-i(i) G H for all (<xu . . . , <xn) G r n ( i ï ) , i = 1, 2, . . . , n. Sup
pose the number of nonzero terms in {a1c

i<T-\^i) : k = 1, 2, . . . , n\ is not less 
than two, say al

i<T-i{i) =̂  0 and a2
îff-i(i) ^ 0. Then we may choose 

a2, • • • , otn G H so that I X ^ c ^ a V - i u ) ^ 0. Let 

a = a^ - i co , b = Y!k-ioika
k
u-i{i). 

Then a\a + b G -H" for all «i G # , i.e. Ha -\- b Ç^ H which is a contradiction. 
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Hence for each i = 1, 2, . . . , n there exists exactly one k such that 
aki<T-m) 7e 0 and al

i(T-i{i) = 0 for all / ^ k. If for some k, ak
i<T-i^) ^ 0 and 

aV_10') 5e 0, i 7* j then there exists / such that At = 0 which is impossible 
since A\, . . . , An are linearly independent. Hence there exist r 6 Sn and 
a,\, . . . , an 6 H such that 

AT-i{i) = aT-i(i)Ei<T-i(i), i = 1,2, . . . , n or 

^4* = aiET{i)<T-\T{i), i = 1,2, ... ,n. 

PROPOSITION 2. If |iJ| = 2 and {^4b . . . , i4n} Ç Mn(F) is a G — H unitary 
set then there exist permutation matrices P and Q, an integer r (0 ^ r ^ n) 
and €f, Çjk G H such that n — r is even and if P{Ai, . . . , An)Q = {Eu • • • , En] 
then 

E1 = [€J 0 On_i, 

£2 = Ox 0 [e2] 0 <V2, 

E r = Or_i 0 [er] 0 Ow_„ 

£,+ l = Or © J M " [U 0 Ow_r_2, 

L s i 3 S14J 

Er+2 = 0T®h \tin i H © °—2-

En_i = On_2 0 è 

£* = On_2 0 J 

L S / 3 SH-I 

LTf,3 i f i J ' 

Proof. It is obvious for w = 1 hence assume n > 1. 
Since (1, . . . , 1) G Tn(H) there exist a £ G and a = («i, . . . , an) G Tn(H) 

such that 

For & = 1, 2, . . . , n, let 0** = 1 if i = k and 0** = —1 if i 9e k. Then 
6h = (0*!, . . . , 0*») G rn(ff) and hence there exist fa = (fau . . . , fan) in 
Tn(H), Ti'mG,i = 1,2, ... ,n such that 

^4* - E ^* = P(P*,Tt), k=l,2,...,n. 
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Hence 

2Ak = P(a, a) + P(ft f r*), k = 1, 2, . . . , n. 

Since \H\ = 2 we must have 1 ^ — 1 . Hence char 5̂  2 and 

Ak = 2-1P(a> <r) + 2 " ^ ( f t , r*), É = 1, 2, . . . , ». 

To complete the proof we need the following lemmas, using the above 
notations. 

LEMMA 1. If <r~l(q) 9* rs~
l{q) for some 1 ^ s, q ^ n then there exists a 

t 7e s such that rt~
l{g) = Ts~

l{q) and r{~l(q) 9e rs~
1(q) for all i 9* s,t. 

Proof. We may assume s = q = 1. 
If T * - 1 ( 1 ) 9e

 T I - 1 ( 1 ) for all i 7e 1 then clearly it is impossible. If n = 2 
the statement is then clear. Hence assume n > 2 and there are r integers, say 
1, 2, . . . , r, such that r > 2, r f ^ l ) = . . . = rrl{l) and r r ^ l ) ^ ^ ( l ) 
for i = r + 1, . . . , n. Now since Aj — J2i^j^t = -^(0;, T^), j = 1, 2, . . . , r 
we have 

[Aj- E i j i ^ d ) = 0, j= 1,2, . . . , r . 

Since for & = 1, 2, . . . , r, (Ak)ia-m) = 2 -1ai 9* 0; hence for j 9^ k, 1 ^ j , 
fe ^ r 

\Aj- Ak- ]T ^U/ic^a) ^ 0. 

Since ^4;• +^4fc — J2i^j,kAi is a generalized permutation matrix and 
ex-Hi) * n - K l ) , 

( ^ , + 4̂̂  - S ^ i l l r r ^ l ) = 0. 

Comparing this with Y^t-i At = P(a, a) we conclude that 

2(Aj + AOm-ici) = 0. 

Since char F 9e 2, 

( 4 , + ;4*)iTl-i(i) = 0. 

But this is true for all k9l6j,l^j,k^r and r > 2 ; hence 

(^40^-1(1) = 0 , i = 1,2, . . . ,r 

a contradiction. 

LEMMA 2. 7/ r r
_ 1 (0 = T"S_1(0 ^ o--1(0 for some I ^ r, s, t ^ n then for 

i 9* r, s, (At)tj = 0 for each j = 1, 2, . . . , n. 

Proof. We may assume r = 1,5 = 2 and t = 1. 
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If n = 2, the statement is clear. Hence assume n > 2. We have seen that 
Ti_1(l) ^ r i _ 1 ( l ) for i 7* 1,2 in Lemma 1 hence (^4f)iTi-i<i) = 0 for all 
*?* 1,2. 

Suppose there are some i ^ 1, 2 such that C4*)u ^ 0, & ?̂  r i - 1 ( l ) . We may 
assume {Ai)\k 9*0 for z = 3, 4, . . . , r, 3 ^ r ^ n and (^4i)lk = 0 for 
i = r + 1, r + 2, . . . , n. We choose 0* £ iJ, i = 3, 4, . . . , n, according to r 
is even or r is odd and k 9e (7_1(1), & = o--1(l) 9e Ti -1(l) or & = o"_1(l) = 
r i~

1( l) as follows: 

r even r odd 

& ^ ^ ( l ) or 
& = ^-1(1) ^ T . - i ( i ) 

k = 0--H1) k 9* cr-Hl) or 
£ = cr-Hl) ^ r i - ^ l ) 

k = <T~l(l) 

= rrHD 

i even and 

3 ^ * ^ r - 2 
0* = -2(Ai)ik Bi = - G 4 t - ) i * 

0; = - 2 ( ^ i ) i * ^ = - ( i 4 < ) l * 

i even and 
r — 1 ^ i ^ r di = 2{Ai)lk 0; = (i4<)i* 

0; = - 2 ( ^ i ) i * ^ = - ( i 4 < ) l * 

i odd and 

3 ^ * ^ r 
Bi = 2(Ai)ik 0; = (Ai)ik 0; = 2(^i)ijfc 0; = (Ai)ik 

r < * ^ « 1 

i—
i 1 1 

Since if j 9* o-_1(l)> TI - 1 (1)> G4*)ij = 0 for each i = 1,2 and (41)1,-1(1) = 
(-4 2)i<r-i(i) = 2_1ai we have 

(A, - A2)lj = 0 for j * r r U l ) . 

Hence whether r is even or odd, 

\Ai - A2 - é M i l l * 5*0. 

Since ,4i - TJi^Ai = P(pu n ) and (i4,)in-i<i) = 0 for i 9* 1, 2 it follows 
that 

(^1 - ^2 - Z M i l i r r ^ i ) ^ 0 

Since k 9e
 T I _ 1 ( 1 ) the matrix Ax — A2 — YTi-z^iAi has two nonzero entries 

in the first row, a contradiction. 
This proves {A Oij = 0 for i 9e- 1, 2 and 7 = 1, 2, . . . , n. 

LEMMA 3. / / (As)tff-iu) 9* 0, (As)tj = 0 for all j 9* o-_1(0» ^ » W*)^ = 0 
/or all i 9e s, j = 1, 2, . . . , n. 
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Proof. We may assume that s = I and t = 1. 
Suppose there exist some i ^ 1 and j ^ o"-1(l) such that C4*)iy ¥" 0. Then 

4< = 2~lP(a, a) + 2"1P(/3, rt) and TC1^.) = j ^ c r ^ l ) hence r , ^ a. By 
Lemma 2 this is impossible. Hence C4*)u = 0 ^or a ^ ^ ^ 1 a n d j ^ cr-1(l)-

Now suppose (A *)i<r-i(i) 5* 0 for some i ^ 1, say i = 2, 3, . . . , r, 2 ^ r ^ n 
and (^4^)^-1(1) = 0 for r + 1 ^ i ^ w. If r is even, choose di = (^4<)i<r-i(i) if 
i is odd, 1 ^ i ^ r; 6t = — (^U)i<r-i(i) if i is even, 1 ^ i ^ r and 0̂  = 1 if 
r < i ^ n. Then 0< 6 ff for i = 1, 2, . . . , n and (£n<-i M*)i<r-i(i) = 0. If r 
is odd, choose 0* as in the case r is even for i = 1, 2, . . . , r — 2 and 0* = 
(Ai)u-i{i) for i = r — 1, r\ Qt = 1 for i = r + 1, r + 2, . . . , n. Then 
Œ!=i î̂ 4 0i«r-i(i) = 3. Since we have shown that {At)ij = 0 for 2 ^ i rg w, 

j F^ r _ 1 ( l ) we conclude that YUi=i ^iA% S P{G, H) which is a contradiction. 
This proves Lemma 3. 

Now for A £ Mn(F) let TV(̂ 4) be the number of nonzero entries in A. 
Recall that 

At = 2~iP(a, a) + 2-1P(/3„ r , ) , * = 1, 2, . . . , n. 

If Tj = (7 then TV(̂ 4i) ^ 1 since ^4* ^ 0. If n 7^ <r then there exist j ^ & such 
that Tf-^j) ^ a-1 (J), rr^k) 9* v~l(k) hence iVC4<) ^ 4. Now with a rear
rangement of the subscripts of A\y . . . , An there exists an integer r, 0 ^ r S n 
such that n = r2 = . . . = rr = a and for r < i ^ w, r< 9^ a, i.e. for 1 ^ i ^ r, 
TV(v4 0 ^ 1 and TV (.4*) ^ 4 for i = r + 1, r + 2, . . . , n. Then the number 
of nonzero entries in A\, . . . , An is 

On the other hand, by Lemmas 2 and 3, for each t, 1 ^ t S n, iî Ti~l{t) = 
<j~l{t) for all i = 1, 2, . . . , n, there is at most one k such that C4*)icr-i(o ^ 0 
and there is at least one such k for otherwise X^=i 4̂ * has a zero £th row, a 
contradiction. If r~l{t) ^ o-_1(/) for some 7 then there exist exactly one 
ly£j such that rrl{t) j± a-l(t), (At)t(T-Ht) 9^ 0, ( ^ 0 ^ - 1 ( 0 ^ 0 , i = 7, / 
and (Ai)ts = 0 for i ^ j,l, s = 1, 2, . . . , w. Hence in all ^41? ^42, . • • , ^4n 

each row either has one nonzero entry or four nonzero entries. Hence there 
exists an integer s, 0 ^ s ^ n such that there are 5 rows with one nonzero 
entry and n — s rows with four nonzero entries and the number of nonzero 
entries in A\, A2, . . . , An is s + 4(w — s). Hence 

5 + 4(w — 5) ^ r + 4(w — r) or 5 — r ^ 4 (5 — r) 

which is possible if and only if f ^ 5. But r is the number of matrices among 
Ai, A2, . . . , An in which there is at least one row with exactly one nonzero 
entry. Hence r > s is impossible and r = s or 

É N(Ai) + Ê N(At) = r + 4(« - r). 
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This forces N(A{) = 1 for i = 1, 2, . . . , r and N(At) = 4 for i = r + 1, 
r + 2, . . . , n. Now by multiplying the set [Ai, . . . , An) by suitable permuta
tion matrices allows us to assume that for i = 1, 2, . . . , r, (Ai)a ^ 0 and 
(Ai)jk = 0 for either j 7e i or k 9^ i. 

Now if r = n the result is established. If r < n let r < i ^ n. Since rt ^ cr 
there exist distinct k, I, r < k, I ^ n such that (7_1(&) ^ r r 1 ^ ) * <7-1(/) ^ 
r f 1 ^ ) . Since N(At) = 4 we have v~l(q) = r r + i_ 1(ç) for all q ^ k, I. Hence 
r^o-"1 = (&/). By Lemma 1 there exists a j , r < j ^ n and j ^ i such that 
r.-i(&) = rcl(k) r+ <j~l(k). Also r.-cr-1 - (kV) for some /' ^ &. But o - 1 ^ ) = 
r.-i(&) = r r H * ) = o--1^)-Hence/ = / ' a n d r , = i> Since E*-i ^ < = i*(a, <r) 
it follows that £# = — fiik,fiji = — /3^ and the matrices have the following 
form (if k < I and cr"1^) < a-1 (l)). 

A — i 
^ i — 2 

w 

0 
0 a , 0 

0 
0 ft, 0 

-l(D 

0 
0,3**0 

0 
0 a , 0 

a-'(fc) 
0 0 

0 0 

0 a * 0 • •0 - /3 f , 0 

0 0 

0 0 

0 - (3U0- • 0 at 0 

0 0 
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In this way we can pair off the matrices AT+i, . . . , An and multiplying the set 
{Au A2, . . . , An) by suitable permutation matrices we can bring it to the 
required form. This proves Proposition 2. 

6. The group ^~P(G,iL). 

PROPOSITION 3. If G is a transitive subset of Sn and H a nontrivial subgroup 
of F* then 3TP(G,FI) is a subgroup of the group of all nonsingular n2 X n2 

matrices over F. 

Proof. We show that span P(G, H) contains a basis for Mn(F). Since G is 
transitive, given 1 ^ i, j ^ n we can find a £ G such that a(j) = i. Define 
a} p Ç Tn(H) via ak = 1 for all k, fa = 1 if k ^ i and 0, = £ G H. Then a 
simple computation shows that 

P(a,a) - P ( 0 , * ) = (1 - £ ) £ „ . 

If |LT| = 2 then char L ^ 2 and choose £ = - 1 . If |iJ| > 2 choose J so that 
1 - ^ 0 . Then the set {(1 — i)Etj : i,j = 1, 2, . . . , w} is clearly a basis 
for Mn(F). Hence if T£#~P(G,H), image L 2 span (P(G,H)) = Mn(F) 
so L is nonsingular. 

LEMMA 4. Le J G be a transitive subset of Sn and H a nontrivial subgroup of F*. 
If T 6 STP{G, H) and a £ G then T(a~l) is a G — H unitary set. 

Proof. Clearly for all a Ç Tn(H) we have 

n 

Yl oLiEwhi) = P(«, cr) 6 P(G,H). 

Since T preserves P(G, H) we have 

Ê a,r(E„-\0) = M È «ifi^col e P(G,H). 

Also L is nonsingular hence T(cr~l) is a linearly independent set and the result 
follows. 

7. Structure of the group ^P(G, H): G regular. In this section we 
assume G be a regular subset of Sn {n > 2) and H a nontrivial group in J^f. 

LEMMA 5. If T £ ^~P(G, H) and 1 ^ i,j ^ n then there exist integers 1 ^ p, 
q ^ n and atj £ H such that T(Etj) = aijEVQ. 

Proof. If \H\ > 2 this follows immediately from Proposition 1 and Lemma 4 
if we choose a Ç G with a (J) = i and consider the G — H unitary set L(<7-1). 

We suppose that \H\ = 2 then Proposition 2 and Lemma 4 apply. If r = n 
(i.e. no matrices of the second type appear in L(o-_1)) the result follows. 
Hence we assume that for some i 9^ I we have 

https://doi.org/10.4153/CJM-1976-047-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-047-9


LINEAR TRANSFORMATIONS ON MATRICES 467 

T(Eia-l(i)) 

T(El0-Ht)) 

0 

0 ei 0 

0 

0 

0 e 3 0 

o, 

0 

O i e i O 

0 

0 T €3 0 
0 

0 

0 e2 0 

0 

0 

0 u 0 

0 

0 • • • £ 

0 • • • 0 

0 

• 0 T €2 0 • • • 

0 

0 ± e4 0 
0 

We now note that (just writing the appropriate 2-square submatrices and 
choosing signs properly) 

r 
Î?2J S 

Y = T(E^(i)) - T(Ew-iit>) = [^ J8] *7< e f l . 

Since w > 2 there exists an integer k (1 ^ H n) such that & 7̂  i, Z. The 
set G is regular so that the knowledge of one nonzero position in a matrix 
P(a, T) determines the permutation r uniquely. We now note that the two 
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matrices 

) + X and £ T(E^W) + Y 

belong to P(G, H) and have a t least one nonzero en t ry in common, a contra
diction. Therefore the case in question cannot occur and the result follows. 

Recall t h a t we write G = {gi, . . . , gn) and ht = g{~1. For k = 1, 2, . . . , n 
the set T(hk) is a G — H un i ta ry set of matrices so it follows t h a t 

T(hk) = {PiEiPk-Ht) : i = 1,2 n) 

for some pk (z G hence there exists nk G Sn such t h a t 

T{Eihk{i)) = ctihku)Epk(i)pk-ivLka), i = 1, 2, . . . , w. 

Since P is nonsingular, there exists a- G 5 n s u c h t h a t ^ = £,(*), & = 1, 2, . . , n. 

Hence 

T{Eihk{i)) = <Xihk(i)Enk{i)ho{k)iik{i), i, k = 1, 2, . . . , n. 

On the other hand, a simple computa t ion verifies t h a t such T is in J?nP(G, ff) 
for any choices au a2, . . . , a„ G r w (2 ï ) and jui, /x2, . . . , Mn? o" G 5 n . This proves 
Theorem 1. 

Now for an w-square matr ix X = (x^) and gk G G we write 

n 
^ " ^ = ^ Xihk(ï)Eihk{ï)-

Then for T ^TP{G,K), 

n 
T(X*k) = S ^^(««^(«^(«^(fcjMjfcCO 

for some au . . . , are G r n ( i î ) , /ii, M2, . . . , Mn, <r G S„. By set t ing j = ^ ( i ) we 
have 

n 

Since X ^ = diag(xUA;(i), . . . , tf»ftfc(»))P(gjfc) we have 

T(Xnk) = d i a g ( x M A ; - i ( i ) / l f c M & - i ( i ) « M ; b - L ( i ) ^ M A ; - i ( 1 ) , . . . , 

XHk-Hn)hknk-Hn)ank-Hn)hk»k-Hn))P(g<r(k)) 

= P(nk) diag(xUfc(i)o:i^(i), . . . , xnhk(n)anhk(n))P(ixk~lg«(k)) 

= P(»k)(Xhk*Ahk')P(hk^gaik)) where A' = ( a „ ) G M n ( H ) 

= p (»k)Ah;p (hk^k-'gff(k) ) *p (nk)xhkp (hur'gHk) ) • 
Since X = E U *»fcï 

i = i 
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where A = J21-i P(lJ>j)Ah/P(hjV>r1g<rU))' Hence T associates with a matrix A 
in Mn(H) and jui, JU2, . . . , \xn, a Ç 5n. Let 5 be another element in.^~P(G, H) 
which associates with B in Mn(H) and i>i, V<L, . . . ,vn, T Ci Sn, i.e. 

Then 

s rpo = ^ * è p(Mi))(^Mf) *P(pi)xhip(hini-
1g9ii))) 

1 = 1 

X PQt*{i)V9{i)~ gra(i)) 

1 ] PlyeijWiïXhjPQljH} Va{j) gra(j)), 

i.e. ST associates with a matrix B*A{T'ivl "n)> and IVCDMI» • • • > *Vw)Mw> T<J 6 Sn 

if we define J4<r'("1 "n)> as in (3.1). Also it is easy to see that if T associates 
with A=J, m = ... = nn = e then T(X) = X for all X Ç Mn(F). This 
proves Theorem 2. 

8. Structure of the group $~P(G, H) : G doubly transitive. In this 
section let H be a nontrivial group in ffl and n > 2. 

LEMMA 6. Suppose G is a doubly transitive subset of Sn. If T 6 3^P{G, H) 
and 1 ^ i, j ^ n then there exist integers 1 S P, q ^ n and atj £ H such that 

Proof. If |if| > 2 then the result follows from Proposition 1 and Lemma 4. 
We suppose that \H\ = 2 and proceed as in Lemma 5 to obtain (only writing 
the appropriate 2-square submatrices) 

p q p q 

Lez 64J S LH-63 dz€iJ S 

Now ft > 2 so there exists & 9e i, I. Since G is doubly transitive, choose T £ G 
such that T~1{1) 9^ <r~l(l) and r~l(i) = a~l{i). Repeating the argument for 
r(T

_ 1) we find 

Le3 e4J É3 e 4 -

so by Proposition 2 we find there must exist k such that 

Tzbei Te2 ] 
L=F€3 dbej T(Ekr-iw) = Z ! = ± nElr-\iy). 
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Now if I ^ k this implies T is singular, and if I ^ k, r _ 1 ( 0 ^ a~l(l) so again 
T is singular, a contradict ion. 

In the following we assume t h a t G is a doubly transi t ive subgroup of Sn. 
Now we have 

T(Eij) = oiijEpg for some atj G i ? and 1 S P, <Z è n. 

If there exist 1 ^ k ^ n and aik ^ H such t h a t k 9e j and 

P ( £ ^ ) = a <*£,-, with p 5* r and q je s 

then choose <r G G such t h a t cr_1(r) = s and <r~~l(p) = 5- Let P(o-) = 
Y,ni=iEi(T-Hi) G P(G,H). Now T - 1 G ^ ~ P ( G , # ) by Proposition 3, however 
since T-l(Ers) = aik~

lEik and T~l{EVQ) = a^^Eij the matr ix P _ 1 (P(o-) ) 
mus t have two nonzero entries in row i and since it has n nonzero entries it 
mus t have a row equal to zero and is singular, a contradict ion. Hence we may 
conclude t h a t either 

T(Etj) = atjEpliU)l j = 1, 2, . . . , n or 

T{Eij) = aijE^j)^ j = 1, 2, . . . , » 

for some \x G .Sn. Suppose t h a t for some 1 ^ i, k ^ » (i 9^ k) and <r, ju f 5„ 
t h a t 

T(Eij) = (XijEpaij), j = 1, 2, . . . , », 

r ( £ f c r ) = ajcrE^r)^ r = 1, 2, . . . , ». 

Now 0-(j) = g for some j , and /i(r) = £ for some r, hence 

<*irlT(Eij) — Ep<r(j) — E^T)Q — akr~
1T(EkT) 

so the matrices T(EtJ) and T(EkT) are linearly dependent and P is singular; 
a contradict ion. Hence either 

T(Etj) = ctijEaWM), i, j = 1, 2, . . . , » or 

T{Eij) = atjEnuwi), i,j= 1, 2, . . . , » 

for some o-, /x G 5 n , or with a short computa t ion either 

T(X) = A*P(ff)XP(ir1), X G M n ( F ) or 

T{X) = ^ * P ( M ) ^ P ( c 7 - 1 ) , X G M n ( / 0 . 

Now if the first form occurs let r G G. Since T(P(j)) G P(G,H) we have 
OTM^1 G G. Hence aGn~l C G and it follows t h a t <JGH~1 = G. Let 

L = {(a-, ju) G SnXSn : C G M - 1 = G} . 

Clearly L is a subgroup of Sn X 5 n . If or G ^V(G) then since Sn is a group, 
there exists v G Sn such t h a t /x -1 = v~lv and we have G = aGyr1 = <JG<J~1V = 
GV where G' = crGo--1 is a subgroup of 5 n . Hence v G G' and G = G' a con
tradict ion. Similarly /x G N(G) hence L is a subgroup of N(G)XN(G). Now 
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clearly if (a, /x) G L and one of o-, \x is in G then the other element must be in 
G. If JJL G N(G) — G then again we write a = vp for some v (z Sn and G = 
I'juGV"1 = ^G implies *> 6 G, i.e. <r G Gju. Consequently if we let N'(G) = 
{(a, a) : cr G JV(G)} then L = (GX{e}) . iV'(G). If the second form occurs 
let r G G then again iiT~1a~1 G G, i.e. nG~1a~1 C G. Since G is a group we have 
lxGa~l C G or JJLGŒ'1 — G i.e. (/*, o-) G P. Therefore we have either 

(8.1) P(X) = ^*P(o- ju)XP(M-1)) * G M» (F) or 

(8.2) P(X) = ^ * P ( C T M ) ^ P ( M - 1 ) , X G MB(F) 

where a G G and /x G N(G). On the other hand it is easily seen that for any 
M G N(G) and <r G G, the P defined by (8.1) and (8.2) are in ^P(G, H). 
This proves Theorem 3. 

Now l e t ^ i P ( G , H) be the set of all elements in ^~P{G,H) of the form 
(8.1) with a = e. If P, S are in jT"iP(G, H) and associate with ^ G N(G), 
A G MnCfiT) and r G iV(G), 5 G Mn(H) respectively, i.e. 

T(X) = ^ H c P ^ ^ P ^ " 1 ) , X G Mn(F), 

S{X) = B*P(T)XP(T-1), X G Mn{F) 

then 

SP(X) = ^*^-*P(rM)XP((rM)-1), X G M„(P) 

where ^4r = P(T)AP(T~1), i.e. SP associates with the element r\x G N(G) 
and 5 * i T in Mn(H). Also if P associate with e £ N(G), A = J then clearly 
P is the identity linear transformation on Mn{F). Hence J^~iP(G, H) is iso
morphic to the group (N(G), Mn(H)). 

Recall that P(G) = jP(o-) : a G G} and for a G G we define P(cr)(X) = 
P(a)X,X G Mn(F). Clearly 5 of the form (8.1) associates with a G G, 
M G iV(G), ,4 G AfnCfiT) if and only if S = P(cr) o P where P i n ^ V ( G , i?) 
associates with JLI G N(G) and P(o-_1)^4 G Mn(H). Hence if we denote by 
<T2P(G, H) the set of all elements in TP{G, H) of the form (8.1) then 

3T2P(G, H) = P(G) o3rYP{G, H). 

By a simple computation we see XhdX^f 2P{G, H) is a group hence J^~iP(G, iP) 
is of index \G\ in 3r

2P(G,H). 
Finally if P ( Z ) = lX, X G MW(P) then clearly 5 is in ^ P ( G , H) of the 

form (8.2) if and only if S = TR where P is in ^r
2P(G, H). This completes 

the proof of Theorem 4. 
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