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We present an off-lattice, on-the-fly kinetic Monte Carlo (KMC) model for simulating
stress-assisted diffusion and trapping of hydrogen by crystalline defects in iron. Given
an embedded atom (EAM) potential as input, energy barriers for diffusion are
ascertained on the fly from the local environments of H atoms. To reduce
computational cost, on-the-fly calculations are supplemented with precomputed
strain-dependent energy barriers in defect-free parts of the crystal. These precomputed
barriers, obtained with high-accuracy density functional theory calculations, are used to
ascertain the veracity of the EAM barriers and correct them when necessary. Examples
of bulk diffusion in crystals containing a screw dipole and vacancies are presented.
Effective diffusivities obtained from KMC simulations are found to be in good
agreement with theory. Our model provides an avenue for simulating the interaction of
hydrogen with cracks, dislocations, grain boundaries, and other lattice defects, over
extended time scales, albeit at atomistic length scales.

I. INTRODUCTION

The interaction of hydrogen with metals is a long-
standing problem of interest across several disciplines
such as surface chemistry and catalysis, applied physics,
metallurgy, and mechanical engineering. The deleterious
effect of hydrogen on the mechanical properties of metals
and alloys remains a vexing problem for structural ap-
plications and is still incompletely understood from a
mechanistic standpoint due to the multiplicity of mecha-
nisms by which hydrogen interacts with metals. Further-
more, it is now widely accepted that several of these
phenomena are inherently coupled1–3 and the search for
a single dominant mechanism, which has fueled much
research and (inevitably) opposing viewpoints, is futile.

Among several mechanisms proposed for hydrogen

embrittlement (HE) of metals, hydrogen-enhanced deco-
hesion (HEDE)4–6 and hydrogen-enhanced local plastic-
ity (HELP)2,7,8 have gained acceptance as the two most
viable for stable phases. Material degradation via the
formation of brittle hydride phases,9 possibly stabilized
by local stresses,10 is also a viable mechanism but has not
been found to be relevant for iron,1 which is the material
of interest in this work. The HEDE mechanism postulates
embrittlement due to localized reduction in cohesive
strength induced by the segregation of hydrogen to de-
fects such as grain boundaries, microcracks, notches, and
second phase particles, among others. In this case, em-
brittlement is directly attributable to a decrease in the
strength of atomic bonding of the host metal in regions of
hydrogen accumulation. The HELP mechanism is based
on the observation that hydrogen, which tends to form a
Cottrell atmosphere11 around dislocation cores, reduces
barriers to dislocation motion and effectively unpins dis-
locations at lower stress levels. This leads to highly
localized slip in the vicinity of crack surfaces and
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eventually to localized plastic failure. In this sense,
HELP is more of a strength degradation mechanism
rather than embrittlement, which is commonly perceived
to be a toughness degradation mechanism.

In broad terms, HE models require a description of (i)
hydrogen transport within metals, inevitably in the pres-
ence of microstructural imperfections, and (ii) the effect
of hydrogen on the mechanical behavior of the host
metal, again mediated by interactions with defects. These
issues have been extensively discussed in compilations
and reviews1,12–17 and we only briefly outline the basic
mechanisms with emphasis on �–iron [body-centered cu-
bic (bcc)] where necessary. The introduction of hydrogen
from the environment can occur by proton deposition at
a free surface or by dissociative adsorption. An adsorbed
hydrogen atom can be incorporated subsequently in a
subsurface interstitial site and diffuse thereafter into the
bulk. In the case of bcc Fe (110) and Fe (100) surfaces,
density functional theory (DFT) calculations18,19 clearly
indicate that the adsorption process is exothermic (i.e., it
is energetically preferable for hydrogen to adsorb on the
Fe surface than remain in a molecular state) while incor-
poration into subsurface sites is endothermic (i.e., hydro-
gen would rather remain on/segregate to a free surface
than be in the bulk). Once incorporated in the bulk, hy-
drogen diffuses rapidly between tetrahedral sites of the
bcc lattice, the diffusivity being on the order of 10−8 m2/s
in a perfect lattice.19,20 However, microstructural imper-
fections (vacancies, solute atoms, dislocations, grain
boundaries, etc.) provide low energy trapping sites
within the lattice and retard the overall diffusion.13,21–26

The existence of these traps plays an important role in the
retention of hydrogen within the bulk, given the low
solubility of hydrogen in iron.1 Furthermore, when trap-
ping occurs at interfaces such as matrix/second-phase
particles, grain boundaries, microcracks, etc., the cohe-
sive strength of these interfaces is compromised, thereby
promoting decohesion and/or emission of dislocations.
Last, but not least, in describing bulk diffusion of hydro-
gen we must account for its interaction with stress fields
that arise from existing lattice defects or from external
loads.11,27,28 It is generally assumed that hydrogen seg-
regates preferentially in dilatational strain fields:29 later
in this article, we provide results from DFT calculations
that clearly quantify this effect. The concentration
gradient, which provides the driving force for diffusion,
is sensitive to stress gradients. Thus, hydrogen in solu-
tion will be driven preferentially towards regions of di-
latational strain (such as crack tips) thereby inducing
hydrogen-enhanced decohesion or plasticity at these lo-
cations.

The effect of hydrogen on the mechanical properties of
metals has been well documented in the reviews noted
above; in particular, details relevant to iron and steel may
be found in the review by Hirth.1 We note a few salient

features that seem most pertinent to HEDE and HELP
mechanisms, with emphasis upon the microscopic proc-
esses involved. For HEDE, the relevant microscopic
process is the reduction in cohesive strength of the ma-
terial in regions of hydrogen accumulation. Recent first-
principles calculations by van der Ven and Ceder30 for Al
(111) surfaces and by Jiang and Carter31 for Al (111) and
bcc Fe (110) surfaces clearly demonstrate a reduction
both in surface energy as well as cohesive strength of
these interfaces with increasing hydrogen coverage. This
implies that segregation of hydrogen to crack tips (within
the so-called “cohesive zone” region ahead of a crack), or
to other internal interfaces within the material, will lead
to cleavage along fracture planes or decohesion of inter-
faces at lower levels of load. Indeed, this model for re-
duced cohesive strength with increasing hydrogen cov-
erage, with proper upscaling to continuum scales via
renormalization,32,33 was used in the work of Serebrin-
sky et al.34 and shown to produce plausible results for
intermittent crack propagation in embrittled steels. Simi-
lar models, albeit with a phenomenological law for deg-
radation of cohesive strength, have also been pro-
posed.35,36 The interaction of hydrogen with defects in
crystalline materials is reviewed at length in Ref. 14.
With reference to the HELP mechanism, interaction of
hydrogen with dislocations is of prime importance. Di-
rect observations of enhanced dislocation mobility in-
duced by hydrogen,8 even under conditions of constant
stress, suggest that hydrogen shields the elastic fields of
dislocations and allows for extensive localization of slip,
which is typically observed along fracture surfaces in
hydrogen embrittled iron.2 HELP has been modeled at a
continuum level by prescribing a local flow stress that
decreases with increasing hydrogen concentration37; the
constitutive law for softening is not obtained from the
actual material response and is a phenomenological con-
struct designed to reproduce macroscopic experimental
observations. Molecular dynamics studies of the interac-
tion of a single hydrogen atom38 with an edge dislocation
in bcc iron suggest that hydrogen dissolved in tetrahedral
sites can reduce the Peierls stress for dislocation motion.
Conversely, the same studies also suggest that disloca-
tions can be pinned upon encountering hydrogen–
vacancy complexes. Recent atomistic studies39 on the
energetics of kink-pair nucleation at screw dislocations
suggest that hydrogen can decrease the kink-pair forma-
tion energy upon jumping to the strong binding site at a
dislocation core. Hydrogen that is already bound at a
dislocation core can, however, impede the motion of ex-
isting kinks. At higher temperatures, hydrogen jumps
more frequently to dislocation cores, inducing kink-pair
nucleation, and also jumps away from dislocation cores
frequently enough to not impede kink motion. These
findings would appear to be consistent with experiments
that report hydrogen-induced softening in high purity
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iron, believed to be mediated by screw dislocation mo-
tion, at temperatures higher than 200 K.40,41

From the above discussion, which is certainly a re-
stricted view of embrittlement mechanisms, it is already
evident that hydrogen–metal interactions are remarkably
complex to model. There has been extensive research on
modeling these interactions from quantum mechanical to
continuum levels. Some of these studies have already
been alluded to before and we note next a few more
works that have sought to model the overall embrittle-
ment process rather than individual mechanisms. At the
continuum level, Sofronis and coworkers37,42–44 have
used finite element studies extensively to model the in-
teraction of hydrogen with cracks and notches. A brief
survey with further references may be found in Ref. 44.
The primary features of these models are stress-assisted
diffusion and an elasto-plastic constitutive law (J2
plasticity) for material response; additional constitutive
assumptions need to be made to capture hydrogen-
induced dilatation, trap generation with plastic strain, and
changes in local elastic moduli with hydrogen con-
centration. The main outcomes of such studies are pre-
dictions related to initiation of fracture from or near
notches, necking instabilities and shear localization, and
macroscopic stress–strain behavior, among others. As
with all continuum models, the validity of the constitu-
tive assumptions can be established only to the extent
that the observed behavior is not contrary to direct ex-
perimental evidence. Other models that have a more mi-
cromechanical basis have also been proposed to analyze
the interaction of discrete dislocation pile-ups with
cracks in the presence of hydrogen (e.g., Refs. 3, 45, and
references therein). Such models allow for a more direct
description of embrittlement in the presence of crack tip
plasticity and hydrogen. It should be noted that the
discrete dislocation modeling is at the level of linear
elasticity, which precludes a description of the disloca-
tion core and possible interactions of consequence
with hydrogen, and stress-assisted diffusion is still
treated phenomenologically. More recently, there have
been fully three-dimensional (3D) atomistic studies46

on crack propagation in hydrogen embrittled �-iron us-
ing molecular dynamics (MD) with embedded atom
(EAM) potentials.47–49 Qualitatively, these studies pre-
dict blunting by dislocation emission of crack tips in
the absence of hydrogen whereas hydrogen charged
specimens show cleavage with some plasticity. The
drawbacks with such MD calculations are the application
of unphysically high strain rates (e.g., ∼1010/s in
Ref. 46), which entirely preclude experimental corrobo-
ration of predictions, as well as the lack of long-
range diffusion of hydrogen in the bulk due to small
simulation times (∼0.4 ns). Nevertheless the ability to
model material response from an interatomic potential is
still attractive from the perspective of eliminating phe-

nomenological assumptions inherent in higher length
scale models.

With the preceding remarks in mind, we outline the
major goals of this work. It is fairly self-evident that
hydrogen–metal interactions are complex and a compre-
hensive understanding of embrittlement will entail a
more detailed reckoning than can be provided by phe-
nomenology. Some progress can be made by incorporat-
ing information from more accurate calculations (quan-
tum mechanical/atomistic) at smaller length scales in
continuum models. As noted previously, recent work by
Carter, Ortiz, and coworkers31,33,34 along these lines has
provided a basis for addressing crack propagation by
hydrogen-enhanced decohesion. Although that work
used a cohesive law from quantum mechanical calcula-
tions, crack tip plasticity and stress-assisted diffusion
were still treated at a phenomenological level. It is not
immediately obvious how this situation may be remedied
within a continuum approach. On the other hand, a fully
discrete approach, while computationally more expen-
sive, provides an immediate avenue for progress. In this
work, we focus on this particular issue of developing
discrete approaches to model hydrogen–metal interac-
tions in metals, �-iron being the candidate metal. The
mechanics of hydrogen interaction with the host metal
and microstructural defects, which are now fully atom-
istically resolved, is relatively easy to describe with an
appropriate interatomic potential. We use an EAM po-
tential for iron and hydrogen developed by Wen et al.46

in this work. The main difficulty lies in modeling the
temporal aspect of the problem, since processes such as
hydrogen absorption and bulk diffusion (with trapping)
are thermally activated processes and, hence, are rare
events that cannot be simulated over reasonable compu-
tational time scales with standard molecular dynamics.
As an alternative, we present a kinetic Monte Carlo (KMC)
approach, which can achieve extended time scales for
long-range hydrogen diffusion. Since our interest is in
describing both normal lattice diffusion as well as diffu-
sion in strained and defective crystals, a lattice-based
model will not suffice. We have developed an off-lattice
model within which barriers to diffusion are ascertained
on the fly with the sole knowledge of the local environ-
ment of the diffusing atom. Thus, unlike standard event-
list-based KMC models, our model is applicable even
when hitherto unforeseen configurations are encoun-
tered. Furthermore, diffusion barriers are now stress-
dependent, since these are computed directly from the
local atomic configuration. To speed up the on-the-fly
calculations, which are all but unnecessary, except when
local strains are large or the lattice defective, we carry
out supplementary DFT50,51 calculations to precompute
strain-dependent barriers for small to moderate lattice
strains. These DFT calculations, which are of much
higher accuracy and reliability than empirical potentials,
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are also used to verify the reliability of the EAM poten-
tial, which is fit only to bulk equilibrium properties.46

The organization of this article is as follows. Section II
describes the numerical methods used. Section III pro-
vides results of DFT calculations and of KMC simula-
tions of bulk diffusion in the presence of traps arising
from microstructural defects (dislocations and vacan-
cies). Section IV provides a summary with directions for
future work.

II. MODELING APPROACH

A. DFT calculations

We perform spin-polarized DFT calculations, within
the generalized gradient approximation (GGA) of the
Perdew-Burke-Ernzerhof (PBE) form52 for electron ex-
change and correlation, using the Vienna Ab Initio Simu-
lation Package (VASP).53–55 We use the Blöchl projector-
augmented wave (PAW) method,56 an all-electron frozen
core DFT technique, as provided in VASP.57 The PAW
potentials represent the nuclei plus core electrons up
through the 3p shell. Detailed calibrations for Fe and H
using PAW-DFT-GGA have been reported previously in
Ref. 19. All our calculations are carried out using a su-
percell containing 54 Fe atoms and 1 H atom, denoted
henceforth as Fe54H. This choice corresponds to a H
concentration of 1.8 at.%. We determined from conver-
gence studies a kinetic energy cutoff of 500 eV and a 6 ×
6 × 6 k-point sampling for this supercell, which converges
the total energy of the Fe54 cell to within 1 meV/atom.
The dissolution energy of H in a tetrahedral site is con-
verged to within 2 meV (without atomic relaxation). Bril-
louin zone integration is performed using the first-order
Methfessel–Paxton method,58 with a Fermi surface
smearing of 0.1 eV. All structural relaxations are per-
formed until forces on atoms are below 0.01 eV/ Å.

Although large supercells are preferable to minimize
elastic interactions between interstitial H atoms in ad-
joining (periodic neighbor) cells, computational consid-
erations impose a limit on practically feasible cell sizes.
One way to circumvent this difficulty and still use small
cell sizes is to fully relax both supercell vectors as well
as ionic positions as was done by Jiang and Carter.19

Since we wish to parameterize dissolution energies and
diffusion barriers as function of lattice strain, the super-
cell must be held fixed at different levels of strain, which
implies that the cell vectors can no longer be relaxed. If
we choose our (unstrained) supercell such that relaxation
of cell vectors and ionic positions produces well-
converged H dissolution energies accompanied by a neg-
ligible change in the overall volume, we are assured that
interactions between periodic images of H atoms are neg-
ligible even when the cell vectors are held fixed (since
relaxation will not alter their lengths). It is also reason-
able to expect then that the application of small strains to

the cell vectors should not lead to significant interactions
between periodic images of H atoms. For our Fe54H su-
percell, the relative change in cell volume is 0.73% and
0.72% when H is dissolved in the tetrahedral (T) and
octahedral (O) sites respectively. Furthermore, when
only ionic relaxation is allowed, the dissolution energy
(referenced to the gaseous hydrogen molecule and pure
bcc Fe), defined here as

Ed = E�Fe54H� − E�Fe54� −
1

2
E�H2� , (1)

is found to be 0.22 and 0.36 eV for dissolution in the
T-sites and O-sites, respectively; Jiang and Carter19 re-
port values of 0.19 eV (T-site) and 0.32 eV (O-site) when
both ionic and cell-vector relaxation is allowed. Our pres-
ent result for the dissolution energy of H in T-sites is thus
0.03 eV higher than Jiang and Carter’s result; numerical
errors being ∼0.02 eV, we deem this to be an acceptable
result. Within this level of expected error, our basic con-
clusion (discussed subsequently in Sec. III) remains un-
changed, namely, the O-site is always higher in energy
than the T-site. The O-site energies, therefore, do not
play any further role in parameterizing our KMC calcu-
lations and, hence, the slight discrepancy in the predicted
dissolution energies is inconsequential. Thus, the Fe54H
supercell is adequately large to minimize interactions be-
tween periodic image H atoms and simultaneously pro-
duce well-converged dissolution energies.

To locate minimum energy pathways between T-sites,
we use the climbing image nudged elastic band (CI-NEB)59

method. In this scheme, which is a modification of the
NEB method,60 the highest-energy image climbs uphill
to the saddle point. Hence, fewer images can be used in
the elastic band without loss of resolution at the saddle
point. For the CI-NEB calculations, we use a spring
force-constant of 5 eV/Å2 between images and relax all
ionic positions until forces on atoms are lesser than 0.01
eV/Å. The rank of the saddle point is determined by
diagonalizing a Hessian matrix with displacements of
0.02 Å; only the H atom is allowed to move in the Hes-
sian construction. The much more massive Fe atoms
couple only weakly to the H atom and hence their con-
tribution to the Hessian describing H atom motion can be
safely neglected. Zero-point corrections to T-site and
saddle point energies are computed by summing up the
zero-point energies of the real-valued normal vibrational
modes of the H atom as EZPE � �vi

h�i/2, �i being the
real-valued frequency.

B. KMC model for diffusion

The case of a defect-free, but not necessarily strain-
free, lattice serves as a good starting point to illustrate the
details of the KMC model and is discussed first; the
extension to defective lattices is outlined subsequently.
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The precise mechanism of H diffusion is complicated
due to the fact that H is a sufficiently light impurity for
quantum effects to be observable and yet heavy enough
(as compared to electrons) to be localized in the metal
lattice; Grabert and Schober61 provide a theoretical re-
view of these issues. At very low temperatures, coherent
tunneling is expected to be the dominant mechanism,
giving way to phonon-assisted tunneling as the tempera-
ture increases, and eventually to classical over-barrier
jumps at still higher temperatures.17 Hirth1 suggests that
at temperatures above 300 K diffusion could be de-
scribed by small polaron theory,62 whereas at tempera-
tures above 800 K, H diffuses in a partly delocalized
manner. In this work, which represents our first attempt
at integrating diffusion kinetics with mechanics, we ig-
nore these myriad complications and simply describe dif-
fusion by over-barrier hops in the temperature range
300–600 K.

In �-iron, both indirect evidence from experiments,1 as
well as direct corroboration from DFT calculations,19

favor dissolution of H in T-sites over O-sites. This result
is valid even when the lattice is subjected to small to
moderate strains (Sec. III). Thus, we need only consider
hops between T-sites for bulk diffusion. To locate the
T-sites, we first apply a Delaunay triangulation to the
N-atom bcc lattice, which can generally be implemented
as an O(N log N) algorithm.63 The Fe atoms are the
nodes of the triangulated region, while the tetrahedra are
the volume elements that contain the T-sites of interest.
The exact position of the dissolved H-atom within the
tetrahedron may be determined by relaxing the atoms and
minimizing the energy of the system. From this T-site,
the H-atom can execute a hop to one of four adjacent
tetrahedra by passing through a common face. From
symmetry arguments, or by a more careful NEB calcu-
lation,19 it may be shown that the saddle point for a hop
lies on the common face between adjoining tetrahedra.
The location of the saddle point is determined by con-
straining the H-atom to this face (i.e., by placing the
H-atom on the face and disallowing motion normal to the
face during relaxation) and again carrying out an energy
minimization. The barrier for the hop is then the energy
difference between the saddle point and the initial mini-
mum. Once the energy barrier Eb is known, the jump rate
J at temperature T may be evaluated as J � J0 exp[Eb/
kT], k being Boltzmann’s constant. The jump frequency
J0 can be obtained within harmonic transition-state
theory64 from the vibrational normal modes at the saddle
point and T-site as

J0 =
�
i=1

3N

�i
T

�
j=1

3N−1

�j
S

, (2)

and is, to a very good approximation, independent of
local strain as demonstrated in Sec. III. In the above
expression, �i

T are the 3N real-valued normal mode fre-
quencies at the T-site and �j

S are the 3N − 1 real-valued
normal mode frequencies at the saddle point. It is worth
noting that the energy barrier is sensitive to strains aris-
ing from other lattice defects or constraints (boundary
conditions) and that this strain-sensitivity is implicitly
accounted for in the energy minimization procedure.
With all the events and rates at hand, we apply the n-fold
way KMC algorithm65 to simulate H-diffusion.

The extension of the above procedure to a defective
lattice requires some care. In particular, unlike the case of
a perfect lattice, there is no guarantee that there is actu-
ally an energy minimum in the interior of a tetrahedron
within a defective region. In fact, using the H–Fe EAM
potential,46 we have found instances of this problem even
for a perfect lattice that is significantly distorted, al-
though this could be an artifact of the potential itself. We
illustrate the solution to such problems with a specific
example. Consider an instance where the energy mini-
mum lies (for whatever reason) not at a T-site but at an
O-site, assuming for now that the lattice is otherwise
perfect. The O-site is not in the interior of any tetrahe-
dron; it lies instead on a common edge of four tetrahedra
[Fig. 1(b)]. It is immediately apparent that proceeding
naively as before to find minimum energy positions
within the tetrahedral will lead to degeneracies (within
numerical error), as inserting an H-atom in the interior of
any of these tetrahedra and carrying out an ionic relaxa-
tion will lead to it migrating to the O-site. Moreover,
relaxing the H-atom on faces containing the common
edge will also lead to its migration to the same O-site; the
barrier to hops (within numerical error) is then zero.
Thus, in addition to misidentifying the relevant hops, the
actual numerical procedure will be corrupted by rapid
back and forth jumps of low activation energy. To avoid
such problems in general, and also to correctly identify
unexpected minimum energy sites when relevant (e.g., H
bound to vacancies at displaced O-sites14,17,66), a pair of
connected T-sites with (near) zero energy barrier be-
tween them are assimilated into a single site. The two
tetrahedra now form a single polyhedron with a single
energy minimum in its interior, the saddle points being
on the faces of this polyhedron. Multiple tetrahedra can
be sequentially agglomerated in this manner. For the ex-
ample of a low energy O-site, the four tetrahedra are
combined into a single octahedron with a saddle point on
each of its faces. Our KMC model can thus determine
strain-dependent energy barriers for the diffusing species
on-the-fly with the local environment of the species as
the sole input.

In describing our KMC model thus far, we have pre-
sented the most general approach to computing energy
barriers. To construct a computationally efficient model,
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though, it is useful to incorporate some a priori knowl-
edge about the actual system and keep on-the-fly calcu-
lations to a minimum. First, it is reasonable to expect that
the H-atom diffuses for the most part in a perfect but
strained bcc lattice, except when it encounters defects.
Therefore, a lot of computational effort can be saved if
strain-dependent diffusion barriers can be precomputed
and used in these defect-free regions. We demonstrate in
Sec. III, using both DFT and EAM calculations, that
simple parameterization of dissolution energies at T-sites
and saddle points is indeed possible, at least for small to
moderate strains. It is therefore possible to switch auto-
matically from precomputed rates to on-the-fly calcula-
tions as the diffusing H-atom moves toward a defect, the
transition being determined by a threshold that can be
adjusted by numerical testing. As an example, a cutoff of
2% strain—more precisely, a cutoff of √�ij�ij � 0.02—
implies a switch from precomputed to on-the-fly rates at
a distance of about 4 Burgers vectors from the core of a
straight screw dislocation. This is adequate to determine
barriers with greater precision near the core of the dis-
location while reducing computational effort away from
the core. Second, note that H is the smallest possible
interstitial atom and that its interaction with Fe atoms is
fairly localized. Specifically, our DFT calculations for
the Fe54H supercell with H dissolved in a T-site indicate
that the first coordination shell of four Fe atoms moves
outward by 0.076 Å, while the second coordination shell
moves outward by 0.012 Å. Therefore, it is only neces-
sary to relax a ball of atoms around the H-atom, rather
than the entire computational cell, to locate energy
minima and compute dissolution energies. In our calcu-
lations, we use a ball of radius RMD + 2RC centered on
the H-atom, atoms within RMD � 6.0 Å being free to
relax while atoms in the outer shell, which is twice the
cutoff radius RC � 3.5 Å of the EAM potential, being
held fixed. This choice roughly corresponds to relaxing
84 atoms surrounded by 1000 fixed atoms, and we have
ascertained that this produces the expected dissolution
energies and diffusion barriers. Third, we note that to
compute barriers it is necessary only to triangulate the
domain locally around each H-atom. Hence, rather than
triangulate the entire domain at the start, we apply an
incremental Delaunay triangulation, which adds tetrahe-
dra sequentially as the H-atom diffuses through the lat-
tice. Of course, if the H-atoms move freely through the
lattice, this eventually amounts to having to triangulate
the entire domain. On the other hand, if diffusing atoms
are strongly trapped in the vicinity of defects, this incre-
mental approach can lead to further computational sav-
ings. Finally, for simplicity, the H–H interaction is taken
into account only by site-blocking, i.e., disallowing two
or more hydrogen atoms to occupy the same energy mini-
mum. This approximation may be justified by noting that
the interaction between interstitially dissolved H atoms is

weakly repulsive, which precludes cluster formation.
Moreover, we will not consider any situations, at present,
where H2 gas formation may occur (e.g., at internal
cracks or voids). Ignoring H–H interactions is not essen-
tial in any way and can be easily dispensed with for
diffusion in the bulk; accounting for desorption and for-
mation of H2 molecules would simply require the inclu-
sion of additional events in the KMC list.

III. RESULTS AND DISCUSSION:
PARAMETERIZATION OF ENERGY BARRIERS
AND APPLICATIONS OF KMC TO
BULK DIFFUSION

The parameterization of energy barriers as a function
of the local strain using PAW–DFT–GGA is presented
first and compared to results from the EAM. (To main-
tain consistency with DFT calculations, all EAM calcu-
lations reported in this section are also performed on a
periodic Fe54H cell; the simulation package LAMMPS67

is employed for this purpose.) Thereafter, the KMC
model is applied to H diffusion in an �–Fe lattice con-
taining vacancies, followed by another example of dif-
fusion in the presence of a screw dislocation dipole. Ef-
fective diffusion coefficients as a function of temperature
are extracted from the computations and validated using
the standard theory of trapping at lattice defects.13,21,22,26

A. Diffusion barriers from DFT calculations

To compute diffusion barriers, we must first ascertain
the minimum energy sites and possible pathways be-
tween them. The two candidate minima are the T1 site
(see Fig. 1) and the O-site; we analyze their relative
stability as a function of lattice strain. In particular, we
analyze three distinct deformation modes: volumetric ex-
pansion (hydrostatic loading), uniaxial tension, and
simple shear. With reference to the axes in Fig. 1, the
applied deformation gradient for each of these cases may
be expressed as Fh � (1 + �)I, Fu � I + �e2 � e2, and
Fs � I + � e1 � e2, respectively, where I is the identity
tensor of rank three, � and � are the applied stretch and
shear, ei is the unit vector along Cartesian coordinate Xi,
and � denotes the tensor product. Among the various
possible choices of uniaxial and shear deformation, the
two indicated here were chosen because these induce the
most change in distance between the O-site and the near-
est (axial) Fe atoms (see Fig. 1). Because H–Fe interac-
tions in the bulk are repulsive, these deformations will
have the greatest influence on the dissolution energy of H
in the O-site. Table I displays the dissolution energy of H
in T-sites and O-sites as a function of the three deforma-
tion modes. It is immediately apparent across the entire
range of calculations that the O-site is 0.1–0.2 eV higher
in energy than the T-site. Remarkably, the dissolution
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energy is unaffected by the application of shear strain,
even up to 10%. For hydrostatic and uniaxial strains, the
dissolution energy increases with compressive strains
and decreases with tensile strains. Given that H–Fe in-
teractions in the bulk are repulsive, this trend is entirely
as anticipated. Tensile strains increase the distance be-
tween interstitial sites and the Fe atoms (or, alternatively,
enlarge the “volume” of the interstitial site), thereby low-
ering the dissolution energy. Conversely, compressive
strains lead to greater H–Fe repulsion, which raises the
dissolution energy. We may therefore conclude from
these results that the T-site is the energetically preferred
dissolution site for hydrogen in a perfect �–Fe lattice
over a small to moderate range of strains.

Having established site preference for H dissolution in
Fe, we compute energy barriers Eb and prefactors D0 for
bulk diffusion, which are displayed in Table II as a func-
tion of lattice strain. The diffusion constant at tempera-
ture T is given by the classical Arrhenius expression D �
D0 exp[Eb/kT]. To compute the diffusion barrier for a

hop between neighboring T-sites, three intermediate con-
figurations between the initial (T1) and final (T2) state
are created by linear interpolation of atomic positions.
The supercells are then relaxed using the CI-NEB
method, as noted in Sec. II. A, and the energy barrier
computed as the difference in energy between the highest
energy intermediate configuration and the initial configu-
ration. Since H is a low mass atom, it is important to
account for quantum corrections arising from zero point
energy in these calculations of energy barriers; Fe, being
much heavier than H, is held fixed in this calculation
(infinite mass assumption). As seen from Table II, al-
though the overall energy barriers are small, as expected
for a small atom like H, inclusion of zero-point correc-
tions leads to a significant decrease in barriers. The pre-
factor D0, computed using harmonic transition state
theory64 and a random walk model for interstitial diffu-
sion in a BCC lattice,68 is given by the expression

FIG. 1. Schematic illustration of a bcc lattice (a) showing 4 T-sites and 1 O-site on the front face and (b) an exploded view of the tetrahedra that
contain these 4 T-sites. The O-site does not belong to the interior of any tetrahedron and lies instead on the common edge between the 4 tetrahedra.

TABLE I. Dissolution energy Ed � E(Fe54H) − E(Fe54) − E(H2)/2 (in
eV) of hydrogen in the T-site and O-site as a function of lattice strain
computed with PAW-DFT-GGA.

Fh � (1 + �)I Fu � I + �e2 � e2 Fs � I + �e1 � e2

� (%) T-site O-site � (%) T-site O-site � (%) T-site O-site

−2 0.54 0.68 −2 0.32 0.54 0 0.21 0.35
−1 0.38 0.52 −1 0.27 0.45 1 0.21 0.35

0 0.22 0.36 0 0.22 0.36 2 0.21 0.35
1 0.08 0.22 1 0.17 0.29 3 0.21 0.35
2 −0.05 0.09 2 0.12 0.22 10 0.22 0.36

TABLE II. Energy barrier Eb (meV) and diffusion prefactor D0 (10−7

m2/s) for bulk diffusion of H in �–Fe computed as a function of lat-
tice strain. Energies in parentheses represent barriers without
zero-point corrections.

Fh � (1 + �)I Fu � I + �e2 � e2 Fs � I + �e1 � e2

� (%) Eb D0 � (%) Eb D0 � (%) Eb D0

−2 44 (95) 1.87 −2 91 (132) 1.66 0 45 (92) 1.78
−1 46 (94) 1.81 −1 67 (111) 1.72 1 46 (93) 1.80

0 45 (92) 1.78 0 45 (92) 1.78 2 46 (93) 1.79
1 48 (92) 1.73 1 29 (77) 1.81 3 47 (94) 1.79
2 49 (91) 1.68 2 12 (63) 1.84
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D0 =
na2

6

�
i=1

3N

�i
T

�
j=1

3N−1

�j
S

=
na2

6
J0 . (3)

In this expression, n is the number of equivalent jumps
(four for hops between T-sites in a bcc lattice); a � a0/√8
the jump distance, a0 being the lattice constant of �–Fe;
�i

T the 3N real-valued normal mode frequencies at the
T-site; and �j

S the 3N − 1 real-valued normal mode fre-
quencies at the saddle point. (In principle, D0 should also
contain a vibrational entropy contribution exp[Svib/k].
We find from our DFT calculations that exp[Svib/k] ≈ 1
and hence omit this term.)

We observe in Table II that the prefactors are rela-
tively insensitive to strain and all of these lead to jump
frequencies on the order of 1013/s. In contrast, the strain
dependence of the energy barriers is clearly discernible
and is of greater importance due to the exponential
dependence of the diffusion constant on the barrier. Just
as the strain dependence of the dissolution energy in the
T-site was explained previously in terms of the change in
volume of the T-site and the accompanying effect on
H–Fe interactions, the strain dependence of energy bar-
riers can be understood by considering both the change in
volume of the T-site and the change in area of the face
containing the saddle point (referred to henceforth as the
“saddle face”). First, note that the application of shear
has no effect on the energy barrier; in essence, shearing
the cell does not significantly alter either the volume of
the T-site or the area of the saddle face. The dissolution
energy of H in these sites is therefore unaffected, and
hence the barrier remains unaltered. Second, in case of
hydrostatic loading, both the area of the saddle face and
the volume of the T-site are equally altered. Volumetric
expansion lowers the dissolution energy both at the T-
site and saddle point while compression increases both
these dissolution energies. The synchronous change in
dissolution energies is such that the net barrier remains
the same. Finally, in case of uniaxial loading, the change
in area of the saddle face is more pronounced than the
change in T-site volume. This translates into a stronger
effect on saddle point energy than on T-site energy. The
barrier then shows a clear dependence on the applied
strain.

The qualitative interpretation of strain dependence of
energy barriers given above can be made more precise by
measuring the actual changes in saddle face area and
T-site volume as functions of applied strain and relating
these to the dissolution energy at the saddle point and
T-site, respectively. Table III displays results from these
calculations; note that we report the relative change in
circumradius of the saddle face/tetrahedron, which is a

direct measure of distortion, as a function of applied
strain. To compute the relative change in circumradius,
note that the position vector x of an atom in the deformed
configuration is expressed in terms of the deformation
gradient F and the position vector X in the undeformed
configuration as x � FX. Applying the relevant defor-
mation gradient Fh, Fu, or Fs to the position vectors of the
vertices of a tetrahedron/face, the circumradius in the
deformed configuration, and hence the relative change
with respect to the circumradius in the undeformed con-
figuration, are easily computed.

As seen from the values in Table III, the relative change
in saddle face area as compared to tetrahedron volume is
most pronounced for uniaxial strains, which explains the
stronger strain dependence of the energy barrier. The
lack of shear strain dependence (up to 10%) of the energy
barrier is also easy to understand now, given the negli-
gible change in saddle face area and T-site volume during
shear. For comparison, we also include in Table III en-
ergies computed using the Fe–H EAM potential for a
periodic Fe54H cell. Since the empirical EAM potential
that we use for all on-the-fly KMC calculations is fit only
to bulk properties, a comparison with DFT calculations
over a range of strains, albeit for defect-free lattices,
gives us some estimate of the reliability, or lack thereof,
of the empirical potential.

The DFT and EAM dissolution data from Table III are
displayed in Fig. 2, as a function of relative change in

TABLE III. Dissolution energy of H in Fe at the T-site (Ed) and the
saddle point (ES) and the energy barrier (Eb) as a function of lattice
strain. The relative change in circumradius of the tetrahedron (�rT)
and the saddle face (�rS), which is a measure of the change in volume
of the T-site and area of saddle point with applied strain, respectively,
is also tabulated. For purposes of comparison, the corresponding val-
ues from the EAM potential are listed in parentheses. All DFT energies
have been corrected for zero-point vibrations.

Fh � (1 + �)I

�, � (%) �rT (%) Ed (eV) �rS (%) ES (eV) Eb (meV)

−2 −2.00 0.67 (0.54) −2.00 0.71 (0.55) 44 (7)
−1 −1.00 0.49 (0.42) −1.00 0.54 (0.44) 46 (22)

0 0.00 0.33 (0.31) 0.00 0.37 (0.34) 45 (33)
1 1.00 0.18 (0.22) 1.00 0.22 (0.26) 48 (41)
2 2.00 0.04 (0.14) 2.00 0.09 (0.18) 49 (46)

Fu � I + �e2 � e2

−2 −0.78 0.43 (0.36) −1.32 0.53 (0.48) 91 (115)
−1 −0.39 0.38 (0.34) −0.66 0.45 (0.41) 67 (68)

1 0.40 0.27 (0.26) 0.67 0.30 (0.28) 29 (18)
2 0.82 0.22 (0.22) 1.35 0.23 (0.23) 12 (9)

Fs � I + �e1 � e2

1 0.29 × 10−3 0.31 (0.31) 0.36 × 10−2 0.36 (0.34) 46 (33)
2 1.19 × 10−3 0.31 (0.31) 1.44 × 10−2 0.36 (0.34) 46 (33)
3 2.69 × 10−3 0.31 (0.31) 3.25 × 10−2 0.36 (0.34) 47 (33)
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circumradius. On the whole, it is clear from the data
that the EAM dissolution energies show lesser strain-
sensitivity than their DFT counterparts. Looking more
closely at the data, we also note that the EAM energy
barriers are typically within 10–20 meV of the DFT bar-
riers (although the case of −2% hydrostatic strain
presents an inexplicably large deviation). Given that (i)
DFT energy differences themselves are no more accurate
than ±20 meV and (ii) an error of ±20 meV causes jump
rates to differ by a factor of 1.5–2 over a range of 300–
600 K, we conclude that the EAM description will likely
suffice for bulk diffusion calculations. Of course, there is
no a priori guarantee that the potential is reliable at de-
fects; careful case-by-case studies of H-defect energetics
are needed for this purpose and should be compared
against more accurate methods (such as DFT). We con-
sider a subset of such H–defect interactions further be-
low.

As noted previously, parameterizing the energy barrier
(or equivalently the dissolution energies) as a function of
strain can lead to significant computational savings.
From the above results, it is clear that the dissolution
energy, at least for small strains, is only a function of the
diagonal components of the strain tensor. Note that the
tetragonal symmetry of the T-site implies that there are
two distinct responses for the diagonal components. For
example, for the T1 site (see Fig. 3) the x2 and x3 direc-
tions are equivalent, whereas the x1 direction is distinct.
Hence, the dissolution energy has the same functional
dependence on �22 and �33, and is different from that for
�11. We have the choice of using dissolution energies
from either DFT or EAM in the fitting procedure. How-

ever, since the on-the-fly calculations rely on the EAM
potential for energy minimization, there will be a discon-
tinuity when the transition is made from precomputed
energy barriers to on-the-fly barriers if the former are
obtained from DFT. Again, referring to Table III and the
discussion in the preceding paragraph, this is not ex-
pected to result in egregious errors. Nevertheless, for the
sake of consistency, we use EAM data to carry out the
parameterization of dissolution energies, thereby mini-
mizing the possibility of discontinuities when making the
transition from precomputed to on-the-y barriers. When
fitting the dissolution energy to the diagonal strain com-
ponents, we have found that a linear fit is too simplistic,
and we need to retain at least second-order terms to ob-
tain energies within 20 meV. For dissolution in the T1

site, the dissolution energy is approximated by Ed �
0.3116 − 2.088�11 − 4.340(�22 + �33) − 60.0(�22

2 + �33
2),

with the strain components referring to the axes indicated
in Fig. 3; dissolution energies in the other T-sites follow
from symmetry. Similarly, the saddle point energy on the
triangular face V1V2V3 shown in Fig. 3 is approximated
by ES � 0.3486 − 5.937�22 − 2.562 �AA, where �AA is a
tensile strain along the symmetry axis A of the face; the
other saddle point energies follow from symmetry. These
approximations are used when √�ij�ij � 0.02, in which
case errors engendered are within 20 meV. For √�ij�ij >
0.02, we switch to on-the-fly calculations with the EAM
potential.

B. Bulk diffusion of H with traps

Having discussed the details of the computational pro-
cedure and ascertained the quality of the EAM potential

FIG. 2. Dissolution energy of H in Fe at the T-site (Ed) and the saddle
point (ES) as a function of the relative change in circumradius of the
tetrahedron (�rT) and the saddle face (�rS), respectively. The linear
fits, which serve as a guide to the eye, indicate that dissolution ener-
gies computed from EAM are less sensitive to strain than those from
DFT calculations.

FIG. 3. Schematic illustration of tetrahedral site (T1). The vertices, in
terms of the lattice constant a0, are V1 � a0 (1⁄2, −1⁄2, 1⁄2), V2 � a0 (1⁄2,
1⁄2, 1⁄2), V3 � a0 (0, 0, 1), and V4 � (0, 0, 0). Due to tetragonal
symmetry, the dependence of the T-site dissolution energy on strain
components �22 and �33 is identical and different from that for �11. The
symmetry axis of the face V1V2V3 is denoted by A. The dissolution
energy at the saddle point on face V1V2V3 is parameterized as a
function of �22 and the strain �AA along axis A (see text).
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for modeling bulk diffusion, we now present applications
of our model to diffusion in defective lattices. Specifi-
cally, we first consider diffusion of hydrogen in a lattice
with a screw dislocation dipole followed by diffusion
in a lattice with vacancies. These defects function as
trapping sites for hydrogen, and there exists a well-
established analytical framework21,22 to model the effect
of traps on bulk diffusion. Prior computational studies by
Kirchheim,13,24 who used Monte Carlo simulations to
study interstitial diffusion and trapping in lattices, have
already established the validity of these analytical mod-
els in regimes of low trap occupancy and low H concen-
tration. It is not our purpose here to critically analyze
these trapping models, but merely to establish that our
KMC procedure faithfully reproduces the expected be-
havior within regimes of applicability of these analytical
models. Our KMC model is of much wider applicability
and does not require assumptions such as low trap occu-
pancy and low H concentration, among others. Addition-
ally, the model automatically accounts for correlations,
induced by the elastic fields of defects, between saddle
point and T-site energies.13,24

In the presence of saturable traps, under conditions of
low hydrogen concentration, low trap occupancy, con-
stant trap density and temperature, and constant saddle
point energy, the effective diffusivity of hydrogen may
be estimated as22

Deff = DL�1 + KT

NT

NL
�−1

, (4)

where DL � D0 exp[−Eb/kT] is the usual bulk diffusivity
in a perfect lattice, NT is the number of traps per unit
volume, NL is the number of interstitial sites per unit
volume, and KT � exp[−�E/kT] is the equilibrium con-
stant for the reversible reaction [H]T-site I [H]trap. The
quantity �E is the trap binding energy, which is defined
as the difference between the dissolution energy at the
trap site and that at a bulk interstitial site. In a bcc lattice,
there are six T-sites per atom: thus, for �–Fe, which has
a lattice constant at room temperature of 2.8665 Å,69

NL � 0.85 mol/cm3.
The diffusion constant D can be measured from a

KMC calculation by employing the Einstein expression

D = lim
t→�

1

6t
��r�t� − r�0��2� , (5)

where r is the position vector without wrap-around70 of
a diffusing particle and 〈	〉 denotes the average over all
particles. Note that the diffusion constant as defined here
is the tracer diffusion constant, but in the dilute limit, it
also may be identified with the chemical (Fick’s law)
diffusion constant.17,71 Following Kirchheim,13,24 we
measure the diffusion constant Di � 〈[r(ti)–r(0)]2〉/(6ti)
over successive short intervals (or KMC steps) of time ti

and average this over the entire simulation of duration
t � �i ti to obtain the diffusion constant D � �i Diti /t.
Also, the initial positions r(0) for trajectory i + 1 are set
to the final positions r(ti) from trajectory i, which effec-
tively allows for sampling over different initial condi-
tions.

1. Trapping by dislocations

The first example we consider is trapping of diffusing
H atoms by screw dislocations. We choose to study
screw dislocations since their dominant strain fields are
antiplane shear. From the discussion in Sec. III. A, it is
clear that such fields will have little or no influence on
diffusion barriers, except possibly in the immediate vi-
cinity of the dislocation core where deformations are
large. Thus the dislocation core itself is the main source
of trapping and not its associated elastic fields.

Our simulation cell consists of 106 Fe atoms. The cell
vectors are along the [1̄11], [11̄1], and [111̄], directions,
the cell being 100 Burgers vectors in length along each of
these directions. Periodic boundary conditions are im-
posed along the cell vectors; this eliminates the possibil-
ity of segregation of hydrogen to free surfaces and allows
us to focus on bulk diffusion in the presence of traps. To
maintain periodic boundary conditions, we cannot intro-
duce a single screw dislocation in the cell and must, at
minimum, introduce a dipole. An infinitely long screw
dislocation dipole with Burgers vector 1⁄2[1̄11] is intro-
duced on a (110) slip plane by displacing the atoms ac-
cording to the linear elastic solution.72 Using the EAM
potential, the simulation cell is then relaxed in
LAMMPS67 via the conjugate gradient method until the
relative change in cell energy is less than 10−4. In its fully
relaxed state, the screw dislocation core becomes non-
planar and develops threefold symmetry about the [1̄11]
direction as shown in Fig. 4.

Recent DFT calculations73,74 indicate that the screw
dislocation core in bcc Fe is sixfold, compact, and non-
degenerate in contrast with the threefold, dissociated, and
degenerate structure obtained with the EAM potential
used in this work. While the distribution of binding sites
and binding energies at the core is intimately connected
to the core structure, and thereby the interatomic poten-
tial, the on-the-fly method developed here is only con-
cerned with locating these binding sites and accurately
capturing the binding/unbinding of H atoms. Hence, the
discrepancy between the EAM and DFT core structures
bears no particular significance in this work.

Wen et al.39 have extensively investigated the loca-
tion and energies of traps around the threefold, dissoci-
ated dislocation core; the deepest traps of binding energy
0.45 eV are indicated schematically in Fig. 4. We find
these sites to be the main sources of trapping in our KMC
simulation, with other traps being of less significance.
Hence, there are three traps per length of dislocation line
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and NT � 8.5 × 10−5 mol/cm3 ≈ 1025/m3. Kumnick and
Johnson23 estimate trap densities in iron to range be-
tween 1021/m3 (annealed) to 1023/m3 (60% cold work);
Oriani22 estimates trap densities in steel to be of the order
of 1025/m3, although it has been suggested26 that this
includes the effect of voids induced by hydrogen dam-
age.

We introduce 50 H atoms (NH � 50) randomly in

T-sites into the simulation cell, which corresponds to a
concentration of 7.1 × 10−6 mol/cm3. The maximum pos-
sible fractional occupancies of normal interstitial sites
and trapping sites is NH/(NL − NT) ≈ NH/NL � 8.3 × 10−6

and NH/NT � 8.3 × 10−2, respectively. Thus, the con-
centrations and occupancies are dilute enough to use
trapping theory to compute effective diffusivities analyti-
cally. Deviations from trapping theory, if any, must then
be attributable to the existence of multiple traps of dif-
fering energies and possible correlations with saddle
point energies. The diffusion prefactor D0, or equiva-
lently the jump rate J0, is relatively insensitive to strain,
as demonstrated in Sec. III. A. From the data in Table II,
we may therefore infer an average jump rate J0 � 2.6 ×
1013/s. An experimental measurement of D0 � 5.12 ×
10−8 m2/s for H diffusion in very pure Fe in the tempera-
ture range 283–348 K,20 yields a jump rate J0 � 7.6 ×
1012/s. Hence, in this and all subsequent KMC simula-
tions, we set the jump rate to be 1013/s.

Figure 4 displays effective diffusion constants as a
function of temperature both as obtained analytically
from trapping theory [using �E � −0.45 eV and NT �
8.5 × 10−5 mol/cm3 in Eq. (4)] and from KMC simula-
tions. It is immediately apparent that the analytical and
simulated results are in excellent agreement, and this
provides a first validation of the KMC model. The agree-
ment also suggests that in this instance, the weaker traps
are of less importance, alluded to in the preceding para-
graph, as are correlations between saddle point and in-
terstitial site energies. The simulations were typically run
for 108–109 KMC steps, which correspond to times of
5 × 10−4 to 2 × 10−6 s for temperatures ranging from 300
to 600 K. The diffusivities are usually converged at a
tenth of these times. It is worth noting that such time
scales are well beyond the reach of conventional molecu-
lar dynamics. Figure 4 also displays the results of a naïve
simulation, which eliminates on-the-fly calculations al-
together and uses strain-parameterized diffusion barriers
throughout the lattice. As seen, this approach severely
underestimates the diffusion constants (indicating exces-
sively strong binding to the dislocation cores), thereby
underscoring the utility of the on-the-fly method for ac-
curate calculations of energy barriers at defects.

2. Trapping by vacancies

The next example we consider is of trapping of H
atoms by vacancies. A vacancy in �–Fe is associated
with six binding sites located along 〈100〉 directions be-
tween the O-site and the vacancy. Previous experimental
and theoretical (effective medium theory) studies have
shown that the binding site is displaced by 0.4 Å from the
O-site toward the vacancy, with an H-binding energy,
relative to a bulk T-site, of 0.63 eV.75,76 These studies
also indicate that the binding energy is maximum when a
single H atom is trapped at a vacancy and decreases with

FIG. 4. (a) Differential displacement map of a [1̄11]/(110) screw dis-
location core. The dotted lines are a guide to viewing the threefold
symmetry. The solid squares indicate, schematically, the three deepest
traps with binding energy of −0.45 eV (after 39). (b) Effective diffu-
sion constant as a function of temperature in the presence of a screw
dipole. The squares represent the measured values from KMC simu-
lations. The solid line represents the calculated values from trapping
theory with �E � −0.45 eV and 3 trapping sites per Burgers vector.
The triangles represent the values obtained from a naïve calculation
using strain-parameterized diffusion barriers throughout the cell.
Clearly, the latter approach produces grossly incorrect diffusion con-
stants thereby illustrating the need for on-the-fly calculations at de-
fects.
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trapping of additional H atoms. The trapping process
remains exothermic, though, which suggests that up to
VH6 (six H atoms bound to the vacancy) should be en-
ergetically preferable. However, recent DFT-GGA cal-
culations of Tateyama and Ohno66 indicate that trapping
is endothermic for VHn complexes when n 
 4 and only
weakly exothermic for n � 3. Therefore, VH2 should be
the preferred complex at low hydrogen partial pressures.
Tateyama and Ohno found that the H atoms trapped at
the vacancy saturate Fe broken bonds through the for-
mation of Fe 3d–H 1s bonds. The formation of these
states leads to charge transfer from Fe to H, which then
leads to Coulomb repulsion between the negatively
charged H atoms. Thus the optimal H–vacancy complex
is determined by a competition between metal–H bond-
ing and Coulomb repulsion. Such electronic interactions
cannot be captured by the EAM potential used in this
work; in fact, the H–H two-body interaction term leads to
weak attraction between H atoms trapped at the same
vacancy. Therefore, to simulate this situation in our
KMC calculations, we artificially restrict the maximum
number of H atoms that can be trapped at a vacancy by
blocking adjacent trapping sites once an H atom is bound
to the vacancy. This ensures that only VH and dumbbell-
shaped VH2 clusters are possible. Of course, removing
this restriction trivially allows for complexes up to VH6.

As before, we start with a simulation cell of 106 Fe
atoms into which 100 vacancies are randomly intro-
duced. The cell is relaxed in LAMMPS, and thereafter
50 H atoms are randomly introduced in normal T-sites.
Two situations for trapping are considered. In the first
scenario, we do not restrict the number of H atoms that
can be bound by a vacancy; this leads to 600 trap sites
with the same trap density NT � 8.5 × 10−5 mol/cm as
the screw dipole case. In the second scenario, we block
trap sites adjacent to a trapped H atom; the total number
of traps is therefore no longer fixed and varies between
600 (no trapped H) and 350 (all VH complexes). The
assumption of constant trap density that is inherent in the
analytical derivation of effective diffusivities is therefore
violated. Figure 5(a) displays the results for the effective
diffusion constant as a function of temperature for the
two trapping situations along with the result from trap-
ping theory, which is expected, at the least, to agree with
the first scenario (no trap blocking). It is immediately
apparent that there is a marked discrepancy between the
analytical and numerical results when energy barriers are
computed on the fly. The discrepancy exists for both
trap-blocking and non-trap-blocking cases, thereby indi-
cating that this is not a consequence of variations in trap
density over the course of the simulation. Furthermore,
the assumptions of low hydrogen concentration, low trap
occupancy, and constant temperature that are made when
analytically deriving effective diffusivities are all met in
these simulations; the only remaining assumption in the

trapping theory model that needs to be verified is that of
constant saddle point energies. The simplest way to
check if variations in saddle point energies are respon-
sible for the observed discrepancies is to artificially re-
strict the saddle point energy to remain at the (unstrained)
bulk value of 0.34 eV. It is immediately apparent
[Fig. 5(a)], that this procedure produces better agree-
ment between analytical and numerical results. Next, to
check whether the saddle point (and T-site) energies are

FIG. 5. Effective diffusion constant as a function of temperature in the
presence of vacancy traps (a) for an initially relaxed cell and (b) for an
initially unrelaxed cell, in which case there are no stress fields asso-
ciated with the vacancies. The solid line represents the calculated
values from trapping theory with �E � −0.59 eV46 and 6 traps per
vacancy. The label “otf” refers to the situation where the saddle point
energy is computed on the fly. The label “bv” refers to the situation
where the saddle point energy is artificially constrained everywhere to
the bulk value, in which case the analytical results from trapping
theory are expected to hold. Results are displayed for “otf” and “bv”
cases with and without blocking of adjacent vacancy trap sites by
bound H atoms.
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correlated with the stress fields of the vacancies, we also
carried out simulations with unrelaxed cells [Fig. 5(b)],
in which case the vacancies merely function as traps
without elastic fields. As evident from Fig. 5, the results
for the relaxed and unrelaxed cells, both with on-the-fly
as well as fixed saddle point energies, are essentially
indistinguishable. The logical conclusion, therefore, is
that the source of the discrepancy is related to energy
barriers in the immediate vicinity of the vacancy. This is
examined in more detail next.

We examined the energetics and kinetics of H-
trapping at a vacancy using both DFT and EAM ap-
proaches. In these calculations, we used Fe53 and Fe53H
supercells (i.e., our previous Fe54 and Fe54H supercells
with a vacancy) and relaxed only ionic positions, keeping
cell vectors fixed. While the defect density is undoubt-
edly high, Tateyama and Ohno66 find that the difference
in vacancy formation energy is less than 0.1 eV when the
cell size is increased from 54 to 128 atoms. At any rate,
since we use the same supercell for both DFT and EAM
calculations, effects related to cell-size and high defect
densities are expected to be identical. As shown in Fig. 6,
there are four T-sites from which an H-atom can hop to
a vacancy binding site. The dissolution energy at these
T-sites, defined as

Ed = E�Fe53H� − E�Fe53� −
1

2
E�H2� , (6)

is found to be 0.29 eV with EAM and 0.21 eV from DFT.
(From this point on, all DFT results include zero-point
corrections unless explicitly stated otherwise.) Recall
that the dissolution energies in bulk sites are 0.31 eV
with EAM and 0.33 eV from DFT. The dissolution en-

ergy near the vacancy decreases, as expected, since the
vacancy acts as a source of negative pressure, which then
leads to larger T-site volumes in its vicinity. The DFT
result is also seen to be much more sensitive to the va-
cancy than that from EAM. The H–vacancy binding en-
ergy, referenced to a bulk T-site, is 0.58 eV with EAM
and 0.71 eV from DFT. The dissolution energy, as de-
fined above, at the binding site is therefore −0.27 eV
from EAM and −0.38 eV from DFT (both exothermic).

Finally, we examined the transition state for the hop
between the vacancy binding site and its adjacent T-site.
A CI-NEB calculation was performed in VASP, as be-
fore, to locate the saddle point. The energy barrier for the
hop from the T-site to the binding site was found to be
33 meV, whereas the energy barrier for the reverse hop
was found to be 0.65 eV. To determine the saddle point
energy with EAM, we constrained the H atom to the
common face between the tetrahedron containing the T-
site and the octahedron containing the vacancy binding
site (Fig. 6). The energy barriers were found to be
0.11 eV for the hop from the T-site to the binding site and
0.69 eV for the reverse hop. Clearly, the EAM and DFT
results for the hop to the trap differ by more than a factor
of three, whereas the reverse hops are nearly equivalent
in energy. Therefore, within the KMC simulation, which
employs the EAM potential to compute barriers in the
vicinity of the vacancy, a diffusing H atom sees a much
higher barrier as it approaches the trap and is reflected
with a high probability. In contrast, the DFT result sug-
gests that the hop to the trap, which requires 33 meV, is
slightly lower in energy than hops in the bulk, which
require 45 meV. Hence, we believe that it is this spurious
energy landscape produced by EAM near the vacancy
that causes effective diffusivities to differ significantly

FIG. 6. (a) Schematic illustration of 4 neighboring bulk T-sites from which hops to a vacancy binding site can occur. The binding site is displaced
by � � 0.4 Å from the O-site toward the vacancy.14 (b) The saddle point for the hop from a neighboring T-site to the binding site is located on
the (shaded) common face between the tetrahedron containing the T-site of interest and the octahedron that contains the binding site.
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from analytical results at low temperatures. At higher
temperatures (
500 K), there is sufficient thermal en-
ergy available to the diffusing H atoms to overcome the
high barriers, which leads to better agreement, as seen
from Fig. 5.

It should be noted that the EAM saddle point configu-
ration was not produced using a transition state search
(such as NEB/CI-NEB); this might lead to the conclusion
that the saddle point was perhaps wrongly identified to
begin with. In the case of hops between bulk T-sites,
symmetry arguments can be readily invoked to conclude
that the saddle point must lie on the common face of the
two tetrahedra. In the present instance where the hop is
between a T-site and a (displaced) O-site, it may be ar-
gued that the saddle point should still lie on the common
face, as the dissolution energy of H should be maximum
when the distance to the nearest neighbor shell of Fe
atoms is minimum, given that the H–Fe interaction in the
bulk is repulsive. To bolster this intuitive argument, we
have carefully examined the transition state from VASP
CI-NEB calculations and ascertained that the H atom is
indeed coplanar (within numerical error) with the three
nearest-neighbor Fe atoms. Therefore, we believe that
the high EAM barrier for the hop from the T-site to the
vacancy binding site is not the result of an error in iden-
tifying the saddle point, but an artifact of the potential
itself.

3. Trapping by vacancies: EAM-based on-the-fly
KMC with DFT barriers at vacancies

To resolve the discrepancy between the simulated and
analytical results for diffusion in the presence of vacan-
cies, we must, at the least, eliminate the spurious EAM
energy barriers at the vacancy. As a first attempt at ad-
dressing this issue, we correct for only a few simple
mechanisms: (i) hops to and from a vacancy, (ii) hops to
and from VH complexes with adjacent binding site oc-
cupancy disallowed (site blocking), and (iii) hops be-
tween vacancy binding sites. The energy barriers for
these mechanisms,77 computed using CI-NEB in VASP,
are displayed in Table IV. These DFT barriers are now

incorporated via a rate table within the KMC model
for hops to, from, and between vacancy binding sites,
and the on-the-fly EAM approach is used elsewhere.
The trap binding energy �E � −0.69 eV is now the
DFT dissolution energy at the vacancy binding site
(−0.38 eV) referenced to the EAM bulk dissolution en-
ergy (0.31 eV).

Figure 7 displays the results for the effective diffusion
constant as a function of temperature as obtained from
the DFT-corrected KMC simulations along with the re-
sults from trapping theory. Note that trapping theory, in
its simplest form, is strictly inadmissible since site block-
ing causes the number of traps to vary as a function of
trapped H atoms. However, a naive estimate using 600
and 350 traps, which are the maximum (no trapped H)
and minimum (all VH complexes) number of available
traps, respectively, indicates (Fig. 7) that the difference is
too insignificant to merit a more detailed theoretical
analysis here. It is immediately apparent that the DFT
corrections at the vacancy significantly resolve the pre-
vious discrepancy between the analytical and numerical
results for effective diffusivities, the agreement from
400–600 K being excellent. At lower temperatures, there
is a discrepancy by a factor of 10–100, which is still a
significant improvement over previous discrepancies
(factors of 103–104). Since we have yet to map out the
energy landscape in more detail beyond the first neighbor

TABLE IV. Energy barriers from DFT (EAM values in parentheses)
for H binding to and unbinding from a vacancy and VH complex, and
for H hopping between adjacent vacancy binding sites. For the VH →
VH2 case, the second H atom is assumed to hop to the binding site
directly opposite the site occupied by the first H atom, i.e., occupancy
of adjacent vacancy binding sites is disallowed.

Process Energy barrier

V + HT-site → VH 33 meV (0.11 eV)
VH → V + HT-site 0.65 eV (0.69 eV)
VH + HT-site → VH2 13 meV (0.11 eV)
VH2 → VH + HT-site 0.65 eV (0.65 eV)
VH ↔ VH 0.23 eV (50 meV)

FIG. 7. Effective diffusion constant as a function of temperature in the
presence of vacancy traps. The simulation cell is fully relaxed prior to
the KMC calculation. The simulation uses DFT-based energy barriers
for hops to and from vacancies and VH complexes and between va-
cancy binding sites; EAM is used elsewhere. The trap binding energy
is �E � −0.69 eV. The solid and dashed lines indicate the analytical
results from trapping theory for 600 sites and 350 sites, which are the
maximum and minimum number of available traps, respectively (see
text). Numerical results are shown for two initial conditions: (1) a
random distribution of H atoms (squares) and (2) all VH or VH2

complexes (triangles).
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shell of T-sites around the vacancy, we are not in a po-
sition to speculate whether this residual discrepancy has
a sound physical basis or is just another artifact of the
EAM potential. At any rate, this example demonstrates
that incorporating a small set of accurate data at defects,
where empirical potentials can be expected to be less
reliable, can go a long way in improving the accuracy of
empirical potential based on-the-fly KMC methods.

IV. CONCLUDING REMARKS

In summary, we have developed an off-lattice, on-the-
fly KMC model for simulating stress assisted diffusion
and trapping of hydrogen in bcc iron. Given an inter-
atomic potential, barriers to diffusion are computed by
performing local energy minimization calculations on a
ball of atoms surrounding the diffusing H atom. This
minimization procedure is computationally inexpensive,
due to the small number of degrees of freedom, and yet
is accurate since H–Fe interactions are fairly localized in
nature. Because the actual atomic configuration is used to
compute energy barriers, these barriers are automatically
sensitive to stress-gradients arising from lattice defects
and boundary conditions. The other advantage of directly
using atomic configurations within an off-lattice ap-
proach is the ability to handle trapping of H at lattice
defects at no extra cost. To speed up the KMC calcula-
tions, on-the-fly calculations are supplemented with pre-
computed strain-dependent energy barriers, which are
used in defect-free parts of the crystal at small strains.
These precomputed barriers are obtained with high-
accuracy DFT and EAM calculations, the latter being in
reasonable agreement with the former. The DFT calcu-
lations thus serve as a check on the EAM potential,
which is fit only to bulk equilibrium properties. As a
demonstration of the KMC model, we have presented
examples of bulk diffusion of H in an �–Fe lattice con-
taining a screw dipole and vacancies, both of which have
well-known trapping energies. The results from KMC
simulations and theory are found to be in good agreement
for trapping at screw dipoles. For the case of trapping at
vacancies, the results from purely EAM-based calcula-
tions show a marked disagreement with theory for the
most part. The cause of this disagreement is attributed to
spurious energy barriers from the EAM potential at va-
cancies. DFT calculations are invaluable in ascertaining
the cause of this discrepancy and subsequently for re-
placing these erroneous values with correct energy bar-
riers. The resulting KMC calculations with DFT-based
corrections at vacancies are in much better accord with
theory.

The focus of this article has been on outlining the
development of the on-the-fly KMC model and demon-
strating its efficacy for simulating diffusion over long
time scales. In subsequent work, we will extend our

model to simulate quasistatic crack propagation in �–Fe
single crystals. The adsorption of H at crack flanks, its
absorption in the bulk, and its trapping by stress-fields/
defects near the crack tip can all be handled by the ap-
proach developed here. The key issue, in our estimation,
will be the accuracy of the H–Fe interatomic potential, as
is always the case for any empirical potential based at-
omistic simulation. As seen in this work, even though the
H–Fe potential was fit to reproduce the measured va-
cancy binding energy, the barrier for hopping to the va-
cancy binding site is grossly incorrect. Therefore, some
caution will have to be exercised when ascertaining bar-
riers for absorption into the bulk, and vice versa, at free
surfaces19 (e.g., crack flanks). Similarly, it is not clear
whether the potential will accurately describe pipe-
diffusion along dislocation cores or diffusion along grain
boundaries. It should be emphasized that this is not a
shortcoming of the KMC model per se, which can readily
incorporate a better interatomic potential should one be-
come available. One noteworthy shortcoming of the
KMC model is that true dynamics is not accounted for in
any way. This is probably a reasonable approximation
when simulating quasistatic processes, given that H has a
very high diffusivity in Fe, and may be partially allevi-
ated by a staggered KMC and lattice relaxation proce-
dure. Using such methods in the future, we hope to ad-
dress the issue of HEDE and HELP in �–Fe crystals and
contribute to a better understanding of the microscopic
mechanisms that govern these phenomena.
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