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Abstract

In their book Subgroup Growth, Lubotzky and Segal asked: What are the possible types of
subgroup growth of the pro-p group? In this paper, we construct certain extensions of the
Grigorchuk group and the Gupta–Sidki groups, which have all possible types of subgroup growth
between n(log n)2 and en . Thus, we give an almost complete answer to Lubotzky and Segal’s
question. In addition, we show that a class of pro-p branch groups, including the Grigorchuk
group and the Gupta–Sidki groups, all have subgroup growth type nlog n .
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1. Introduction and results

For the rest of this paper, p is a fixed prime and log n = logp n. For a group G,
we denote by sn(G) the number of subgroups of G of index at most n, where if
G is a topological group, we mean closed subgroups. The subgroup growth of G
is the asymptotic behaviour of sn(G). See Lubotzky and Segal [8] for the history
and background of the study of subgroup growth.

Given a function f : N→ R, we say that G has subgroup growth of type f (n)
if there exist a, b > 0 such that sn(G) 6 f (n)a for all n and f (n)b 6 sn(G) for
infinitely many n. If in addition, f (n)b 6 sn(G) for all large n, then we say that
G has strict subgroup growth of type f (n). If G is a pro-p group, we restrict n to
be a power of p in the last condition. Segal in [11] and Pyber in [10] showed that
there are finitely generated profinite groups of any ’reasonable’ subgroup growth
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type. On the other hand, Shalev showed in [14] that for a pro-p group G if there
exists a constant c < 1

8 such that sn(G) 6 nc log n for all n, then G has polynomial
subgroup growth, that is, its subgroup growth is of type n. Therefore, for pro-p
groups, there is a gap in the subgroup growth between type n and type nlog n .

Pro-p groups of subgroup types n, nlog n and 2n are found in many natural
examples. Segal and Shalev [12] constructed metabelian pro-p groups with types
2n1/d for any d ∈ N and Klopsch in [7] constructed metabelian pro-p groups of
types 2n(d−1)/d for any d ∈ N; see [8, Ch. 9]. No other types were discovered.
Hence, Lubotzky and Segal posed in [8, Open Problems] the following problems:

PROBLEM 1.

(a) Are there any other gaps in the subgroup growth types of pro-p groups?

(b) What other subgroup growth types occur for pro-p groups?

(c) Is there an uncountable number of subgroup growth types (up to the
necessary equivalence) for pro-p groups?

In this paper, we show that all functions in the range n(log n)2 to en occur as the
subgroup growth type of a pro-p group. We give two different constructions of
groups. Although the second construction gives the full range, it is not effective
and the growth type is not strict. On the other hand, the first construction gives
only a countable sequence of types, but it is effective and the subgroup growth
type is strict.

THEOREM 1. For every integer k > 1 and prime number p, there exists a
residually finite p-group H such that sn(H) is of strict type n(log n)k . By taking
the pro-p completion of H, we obtain a pro-p group with strict subgroup growth
type n(log n)k .

The second construction is less effective, and gives inferior bounds, but applies
to a larger range of functions.

THEOREM 2. Let f : N→ N be a function such that f (n) > n3 and f (n)
pn → 0.

Then there exists a residually finite p-group H such that sn(H) is of type e f (log n).
By taking the pro-p completion of H, we obtain a pro-p group with subgroup
growth type e f (log n).

Note that this means that we can obtain any subgroup growth type between
n(log n)2

= e(log n)3 and en
= eplog n excluding en . However, we of course obtain
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subgroup growth type en by considering a non-Abelian free pro-p group. Hence,
the only questions left considering the type are the following.

PROBLEM 2. What types of subgroup growth of pro-p groups exist between nlog n

and n(log n)2 ? In particular, is there a gap in the growth types?

We comment that one way of attacking this problem is to better understand the
canonical permutation module of certain branch groups; see Proposition 5 and
the remarks thereafter.

Comparing Theorem 1 with Theorem 2, we pose the following problem.

PROBLEM 3. Let f be a function satisfying the assumptions of Theorem 2. Give
an analytic condition which implies that there exists a pro-p group G of strict
growth type f . For example, is it true that every log-concave function, that is, a
function f satisfying (log f )′′ < 0, is the strict growth type of a pro-p group? Is
it at least true for all functions f (n) = enα logβ n , where 0 6 α < 1?

It is not hard to see from Proposition 3(3) that the subgroup growth of a pro-p
group cannot vary too wildly. We are not sure whether the answer to the second
part is positive, that is, we will not be surprised if there exists a log-concave
function f such that there are no pro-p groups of strict growth type f . However,
we believe that the answer to the third part is positive, that is, for any 0 6 α < 1
and β, there is a pro-p group of strict growth type enα logβ n .

For a group G, we denote by d(G) the minimal number of generators of G,
where if G is a topological group, we mean topological generators. We write
Φp(G) = [G,G]G p, where G p is the (closed) subgroup generated by the p-
powers in G. We denote dp(G) = d(G/Φp(G)) = dimFp(G/Φp(G)). Note that
if G is a pro-p group, then Φp(G) is its Frattini subgroup and d(G) = dp(G).
Note also that if Ĝ is the pro-p completion of G, then d(G) > d(Ĝ) = dp(Ĝ) =
dp(G). We denote by dG(m) the maximum of d(U ), as U ranges over all
subgroups of index pm , where if G is a topological group, we mean closed
subgroups. Similarly, for a group G, we denote by dp,G(m) the maximum of
dp(U ), as U ranges over all (closed) subgroups of index pm . In the case where it
is clear from the context to which p and to which G we refer, we will omit the
subscripts p and G.

For a pro-p group G, the asymptotic behaviour of spm (G) is intimately linked
to the asymptotic behaviour of dG(m). We say that G has logarithmic p-rank
gradient, if α(G) = lim

m→∞

dp(m)
m exists, is finite and positive. Combining [8,

Proposition 1.6.2] and [8, Lemma 4.2.1] yields the following.
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PROPOSITION 3. Let G be a p-group or a pro-p group.

(1) If G has logarithmic p-rank gradient α, then

p
α2

4(α+1)m2
+o(m2) 6 spm (G) 6 p

α
2 m2
+o(m2).

(2) If H is a p-group or a pro-p group, respectively, commensurable with G,
and G has logarithmic rank gradient α, then H also has logarithmic p-rank
gradient α.

(3) If µ 6 dp(m − µ), then

pµ(dp(m−µ)−µ) 6 spm (G) 6 p
∑m−1
ν=1 d(ν).

Our constructions of residually finite p-groups with new types are extensions
of the well-known Grigorchuk group and the Gupta–Sidki groups. These groups
have served as examples displaying quite unexpected behaviour for various
properties; most famously, the Grigorchuk group has intermediate (word) growth.
They are infinite residually finite p-groups and belong to the class of branch
groups. They and their pro-p completions are important examples of just infinite
groups, that is, their only nontrivial quotients are finite. Although they have
been extensively studied, the subgroup growth of these groups has not been
determined up until now. However, it was a common belief that they will provide
a new type of subgroup growth for pro-p groups. Nevertheless, in Theorem 9, we
will prove that a more general class of groups has subgroup growth of type nlog n .
In particular, we will obtain the following corollary.

COROLLARY 4. If G is the Grigorchuk group, then

2
9

40 m2
+o(m2) 6 s2m (G) 6 26m2

+o(m2).

If G is the Gupta–Sidki p-group with p > 3, then

p
1
8 m2
+o(m2) 6 spm (G) 6 p

3p2
−4p+1
2 m2

+o(m2).

The apparent discrepancy between the lower and upper bounds for the
subgroup growth mostly stems from our poor knowledge about the size of α(G).
In theory, arbitrarily good approximations to α(G) are computable. However, the
naı̈ve approach fails due to a huge amount of memory needed. We therefore ask
the following.

PROBLEM 4. Give a numerical approximation to α(G), where G is the
Grigorchuk or a Gupta–Sidki group.
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We comment that previously known examples of pro-p groups with subgroup
growth type nlog n are of different nature, that is, either linear and analytic
groups or the Nottingham group and its index subgroups. Furthermore, many of
these examples are just infinite. Ershov and Jaikin-Zapirain in [2] constructed
new hereditarily just infinite pro-p groups. Moreover, these groups have
subgroup growth type at least n(log n)2−ε , where ε is any positive number (private
communication). However, no additional information is known about the
subgroup growth type of these examples. We therefore suggest the following
problem.

PROBLEM 5. What are the possible subgroup growth types of just infinite pro-
p groups? In particular, compute the subgroup growth types of the examples
constructed by Ershov and Jaikin-Zapirain. Furthermore, can a just infinite pro-
p group have exponential subgroup growth type?

Our constructions depend on the fact that the Grigorchuk group and the Gupta–
Sidki groups act on each element in the boundary of the p-regular rooted tree,
that is, an infinite path, as transitive as pro-p groups can. By that we mean that
if U is a subgroup of finite index, then the number of U -orbits into which the
boundary of the tree decomposes grows only logarithmically with the index of
U . To measure the transitivity of the action of a group, define the orbit growth
on(G, X) of a group G acting transitively on a set X as the maximal number
of orbits of a subgroup U of index at most n in G. Orbit growth and subgroup
growth are linked by the following proposition.

PROPOSITION 5. Let G be a p-group, acting transitively on a set X. Let H be
the wreath product G o Fp induced by this action. Then we have

opn (G, X) 6 dp,H (n) 6 dH (n) 6 opn (G, X)+ n max
m6n

dG(m).

In general, the upper bound in Proposition 5 is probably optimal. However,
in special cases, the gap between the upper and the lower bound may be a lot
smaller. In particular, let G be a Grigorchuk group or a Gupta–Sidki group acting
on the boundary of the p-adic tree, and let X be the orbit of one boundary point,
that is, one infinite branch of the tree under this action. As the action of G on
X is a lot more transitive than the action of an arbitrary p-group, it may well be
possible that on the right, the term n maxm6n dG(m) could be replaced by O(n+
maxm6n dG(m)). If this is true, then the lower bound f (n) > n3 in Theorem 2
could be replaced by f (n) > n2, and Problem 2 would be solved.
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In view of Proposition 5, the problem of constructing pro-p groups of a given
subgroup growth type can be reduced to the problem of finding residually finite
p-groups acting with a given orbit growth type (as long as the orbit growth is
faster than ndG(m)).

THEOREM 6. Let G be the Grigorchuk group or a Gupta–Sidki group. Let f :
N→ N be a nondecreasing function, and assume that f (n)

n →∞ and that f (n)
pn →

0. Then there exists a transitive action of G on a set X, such that opn (G, X) 6
p4 f (n) for all sufficiently large n, and opn (G, X) > 1

p f (n) for infinitely many n.

Theorem 2 now follows easily. Indeed, from Corollary 4, we have dp,G(n) =
O(n). Thus from Proposition 5, we obtain dp,H (n) = opn (G, X) + O(n2).
By Theorem 6, we see that we can choose opn (G, X) as we want, and
Proposition 3(3) then implies Theorem 2.

One of the main ingredients of our proof is the following.

THEOREM 7. Let G be the Grigorchuk group or a Gupta–Sidki group acting on
the p-regular rooted tree T . Let X be the orbit under G of some infinite path in
T . Then opm (G, X) 6 (p5

− 1)m + 1 6 p5m for all m.

Here it is crucial that the number of orbits of a subgroup increases only
slowly with the index. In fact, the logarithmic growth is the smallest possible
and another remarkable property of these groups.

THEOREM 8. Let G be a p-group acting transitively on a set X. Suppose on(G,
X) is unbounded. Then there exist infinitely many m, such that

opm (G, X) > (p − 1)m + 1.

We believe that orbit growth is of independent interest even for discrete groups.
Analogous to Theorem 8, we ask the following.

PROBLEM 6. Is there a discrete group action with orbit growth less than
logarithmic; in particular, is there one with orbit growth ∼ log n

log log n ? Is there a
slowest possible orbit growth for discrete groups?

Moreover, we wonder whether Theorem 7 is a special property of branch
groups.

PROBLEM 7. Is there a class V of pro-p groups, such that for all G ∈ V and all
transitive actions of G on a set X we have that opn (G, X) is either bounded or
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substantially larger than n? For instance, is there a class V such that opn (G, X)
is either bounded or superpolynomial?

We note that the maximal orbit growth possible is linear in the index. Indeed,
for any residually finite infinite group, if we take a descending chain of normal
subgroups and act on the coset tree, we obtain linear growth. It is an interesting
problem to find the possible orbit growth of a given group. For instance, we have
the following problem.

PROBLEM 8. Let G be a p-adic analytic pro-p group. What are the possible
orbit growth of actions of G?

Note that if G is p-adic analytic and n < opn (G) < n2, then we get new types
of subgroup growth. However, we do not know whether this is possible.

2. Subgroup Growth of Self-Replicating p-Groups and Pro- p Groups

A group G is called self-replicating if there exist an integer k and a normal
subgroup G1 6 G of finite index, such that G1

∼= G(k), the direct sum of k copies
of G. (We comment that this definition is different from the standard definition
in the literature.) By iterating this process, we obtain Gn

∼= G(k)
n−1
∼= G(kn), the

nth principal congruence subgroup of G. We say that U < G is a congruence
subgroup if U contains a principal congruence subgroup. If U is a congruence
subgroup, then the level of U is the smallest ` such that U contains the `th
principal congruence subgroup. If G contains a self-replicating normal subgroup
of finite index and every finite index subgroup of it is a congruence subgroup,
then we say that G has the congruence subgroup property. (We comment that
this definition is also slightly different from the standard definition for the
congruence subgroup property for groups acting on trees.)

In this section, we will prove the following theorem.

THEOREM 9. Let G be a finitely generated, self-replicating p-group or pro-
p group that has the congruence subgroup property. Then G has subgroup
growth of type nlog n . More precisely, suppose G contains a principal congruence
subgroup N, such that N ∼= G(k), |G/N | = p`, and N 6 Φp(G). Put dp =

max dp(H), where H runs over all subgroups of the finite group G/N. Then we
have that

(1)
(k − 1)dp(G)

`
6 α(G) 6 (k − 1)dp(G)+ dp;
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(2)

α(G) = lim
m→∞

dp(m)
m
= sup

m>0

dp(m)
m + `

k−1

.

Since for a p-group G we have that dp(G) = d(Ĝ) and spn (G) = spn (Ĝ),
where Ĝ is the pro-p completion of G, it suffices to assume G is a pro-p group in
the proof of the theorem. We also recall that if G is a pro-p group, thenΦp(G) =
Φ(G) and dp(G) = d(G).

The following is almost trivial. Nevertheless, we include the proof for
completeness since direct products often show unexpected behaviour.

LEMMA 10. Let G and H be pro-p-groups, m a natural number, and assume
that there is a constant C, such that for all subgroups U1 < G, U2 < H with
(G : U1) = pk , (H : U2) = p` with k, ` 6 m, we have d(U1) 6 Ck + d(G),
d(U2) 6 C` + d(H). Then for all subgroups U < G × H with index pm , we
have d(U ) 6 Cm + d(G)+ d(H).

Proof. Let U be a subgroup of G × H . Let π : U → H be the canonical
projection. Then consider U1 = U∩G, U2 = im π . Take generators g1, . . . , gr of
U1, and generators h1, . . . , hs of U2. For each hi , choose a pre-image h̃i under π .
Then g1, . . . , gr , h̃1, . . . , h̃s are contained in U , and generate a subgroup Ũ of U .
We have Ũ ∩G = U ∩G, and π(Ũ ) = π(U ); thus, (G×H : Ũ ) = (G×H : U ).
Therefore, U = Ũ , and d(U ) 6 r + s.

Since (G × H : U ) = (G : U1)(H : U2) by our assumption, we get that

r+s 6 log(G :U1)+d(G)+log(H :U2)+d(H)= log(G×H :U )+d(G)+d(H),

and our claim follows.

LEMMA 11. Let G be a finitely generated self-replicating pro-p-group that has
the congruence subgroup property. Define N, k and d as in Theorem 9. Then
a subgroup of index pm has at most Cm + d(G) generators, where C = (k −
1)d(G)+ d.

Proof. We prove our assertion by induction on m. If m = 0, then U = G, and our
claim is trivial. Now let U be an open subgroup of index pm . If U N/N = G/N ,
then in particular UΦ(G)/Φ(G) = G/Φ(G), and we conclude that U = G
again. Henceforth, we assume that U N/N < G/N . Put V = U ∩ N . Then

(G : U ) = (G : U N )(U N : U ) = (G/N : U N/N )(N : V ),

https://doi.org/10.1017/fmp.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.8


Branch groups, orbit growth, and subgroup growth 9

and thus, (N : V ) < (G : U ). As V 6 N ∼= G(k), we can use Lemma 10 and the
induction hypothesis to obtain that d(V ) 6 C(m − 1)+ kd(G). Thus,

d(U ) 6 d(V )+ d(U N/N ) 6 d(V )+ d.

We deduce that

d(U ) 6 C(m − 1)+ kd(G)+ d
= ((k − 1)d(G)+ d)(m − 1)+ ((k − 1)d(G)+ d)+ d(G) = Cm + d(G),

and our claim is proven.

Proof of Theorem 9. We start with part (2). The inequality lim d(m)
m 6 sup d(m)

m+c
holds for any sequence d(m) and for any positive real number c. For the reverse
inequality, we start by showing that for any r > 0, we can find in G a subgroup
of index p`r which is isomorphic to G((k−1)r+1). This is done by induction on
r . For r = 0, we take G itself. Suppose we know it for r ; we will prove it for
r + 1. Take one of the components in the subgroup isomorphic to G((k−1)r+1) and
replace it by N . The index of the new subgroup increases by p`, so it is p`(r+1),
while the number of components increases by k − 1; so we obtain that the new
subgroup is isomorphic to G((k−1)(r+1)+1) as required, and thus the induction is
proved.

Let U < G be a subgroup of index pm with d(U ) = d(m). By taking
a subgroup isomorphic to U in each component of G((k−1)r+1), we have
that G contains a subgroup V ∼= U ((k−1)r+1) of index p`r (G : U )(k−1)r+1

=

p`r (pm)(k−1)r+1
= p(`+m(k−1))r+m with d(V ) = ((k − 1)r + 1)d(U ) =

((k − 1)r + 1)d(m).
For a natural number n > m, take r such that (` + m(k − 1))r + m 6 n <

(`+m(k−1))(r+1)+m, that is, r = b n−m
`+m(k−1)c; pick a subgroup V as described

in the last paragraph and choose H < V with (V : H) = pn−(`−m(k−1))r−m . Then
(G : H) = pn , and (V : H) < p`+m(k−1); thus, d(H) > d(V )− `−m(k − 1) =
((k − 1)r + 1)d(m)− `− m(k − 1). Note that m, k, and ` are constant while n
and r tend to infinity. We conclude that

d(n) > d(H) > ((k − 1)r + 1)d(m)−

O(1)︷ ︸︸ ︷
`− m(k − 1)

=

n+O(1)︷ ︸︸ ︷
(`+ m(k − 1))r −`r

m
d(m)+O(1)

=
n − `r

m
d(m)+O(1).

https://doi.org/10.1017/fmp.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.8


Y. Barnea and J.-C. Schlage-Puchta 10

Recall that n = (`+m(k−1))r +O(1). Thus, `rn =
`

`+m(k−1) +O(
1
n ). Therefore,

dividing the equations above by n, we obtain

d(n)
n

>
n − `r

nm
d(m)+O

(
1
n

)
=

d(m)
m

(
1−

`

`+ m(k − 1)

)
+O

(
1
n

)
=

d(m)
m

m(k − 1)
`+ m(k − 1)

+O
(

1
n

)
=

d(m)
`

k−1 + m
+O

(
1
n

)
,

and our claim follows.
Finally note that the lower bound in Theorem 9(1) follows from Theorem 9(2)

since

sup
m>0

d(m)
m + (`/(k − 1))

>
d(0)
`

k−1

=
(k − 1)d(G)

`
.

The most notable examples of self-replicating p-groups are the Grigorchuk
group and the Gupta–Sidki groups. Therefore, we can prove Corollary 4.

Proof of Corollary 4. Suppose G is the Grigorchuk group. Since G is a 2-group,
its profinite completion is the same as its pro-2 completion. It follows from [5,
page 167, Proposition 8] that G has a self-replicating subgroup K of index 16,
which is 3-generated. Write Ki for the i th principal congruence subgroup of K .
Then K1 is of index 4 with K1

∼= K × K , and K/K1
∼= C4. Also, from [5,

page 169, Proposition 10], G has the congruence subgroup property. Thus, we
can assume that G is a pro-2 group with the congruence subgroup property. Then
Φp(K ) contains N = K2

∼= K1 × K1
∼= K (4) of index 43

= 26 in K . Hence, in
the theorem, we have ` = 6, k = 4 and d = 3; thus, 3

2 6 α(K ) 6 12. From
Proposition 3, we obtain that the same inequality holds for α(G), and our claim
follows.

Suppose G is the Gupta–Sidki p-group. Since G is a p-group, its profinite
completion is the same as its pro-p completion. The lower bound for the Gupta–
Sidki groups is just the lower bound for non-p-adic analytic pro-p groups,
established by Shalev [14]. Note that the following properties of the Gupta–Sidki
groups were established by Sidki [13] for p = 3. These can be generalized easily
for p > 3; see Garrido [4, Section 2] for proofs of most of these generalizations.
For the upper bound, we use the fact that K , the commutator of subgroup of G,
is self-replicating, and we have thatΦp(K ) > K2, K1

∼= K (p), (K : K2) = p p2
−1,

and d(K ) = p − 1. Moreover, K has the congruence subgroup property, and
d = p(p − 1), the maximum being attained by the subgroup K1/K2 of K/K2.
Hence, by Theorem 9, we have α(G) 6 (k − 1)d(K )+ d = 3p2

− 4p + 1, and
our claim follows from Proposition 3.
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3. Orbit growth and subgroup growth

For the proof of Proposition 5, we need the following results.

LEMMA 12. Let G be an m-generated p-group and M a d-generated FpG-
module. Let N be a submodule of M, which as an Fp-vector space has
codimension 1. Then N is at most (d + m − 1)-generated as an FpG-module.

Proof. Let g1, . . . , gm be generators of G and v1, . . . , vd be generators of M as
an FpG-module. Then {vg

i |i 6 d, g ∈ G} generates M as an Fp-vector space.
Let ϕ : M → Fp be the module homomorphism given by the canonical map
M → M/N . Note that kerϕ = N . Since the action of a p-group on a cyclic
group of order p − 1 is trivial, we have that Fp is a trivial FpG-module, that is,
for all m ∈ M , we obtain ϕ(mg) = ϕ(m)g

= ϕ(m).
Suppose without loss of generality that ϕ(v1) 6= 0. We claim that as a vector

space N is generated by

D = {ϕ(vi)v
g
1 − ϕ(v1)v

h
i |1 6 i 6 d, g, h ∈ G}.

As ϕ(ϕ(vi)v
g
1 − ϕ(v1)v

h
i ) = 0, we have that D ⊆ N . Let m ∈ N be an arbitrary

element. Write m =
∑

i, j λi jv
h j
i , where h j ∈ G. We have that∑

i, j

λi jv
h j
i +

∑
i, j

λi j

ϕ(v1)
(ϕ(vi)v1 − ϕ(v1)v

h j
i )︸ ︷︷ ︸

∈D

=

(∑
i, j

λi j

ϕ(v1)
ϕ(vi)

)
v1.

The left-hand side is in N , and since v1 is not in N , the right-hand side can only
be in N if it vanishes. But then we have represented m as a linear combination
of elements of D, that is, D generates N as a vector space.

We next claim that as an FpG-module N is generated by the set

{v1 − v
g1
1 , v1 − v

g2
1 , . . . , v1 − v

gm
1 , ϕ(vi)v1 − ϕ(v1)v2, . . . , ϕ(vi)v1 − ϕ(v1)vd}.

Let V be the FpG-module generated by this set. It suffices to show that D ⊆ V .
We show first that v1 − v

g
1 ∈ V for all g ∈ G. To do so, we write g as a word in

{g±1
1 , . . . , g±1

m }, say g = gε1
i1
. . . gεk

ik
. Then

v1 − v
g
1 = v1 − v

g
εk
ik

1 + (v1 − v
g
εk−1
ik−1

1 )
g
εk
ik + · · · + (v1 − v

g
ε1
i1

1 )
g
ε2
i2
...g

εk
ik ,

and since v1 − v
g−1

1 = −(v1 − v
g
1 )

g−1 , we find that v1 − v
g
1 ∈ V for all g ∈ G.

Next for g, h ∈ G, we have ϕ(vi)v
g
1 − ϕ(v1)v

h
i ∈ V since

ϕ(vi)v
g
1 − ϕ(v1)v

h
i = ϕ(vi)(v1 − v

hg−1

1 )g
+ (ϕ(vi)v1 − ϕ(v1)vi)

h.
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We have found a generating system consisting of d + m − 1 elements, and our
claim follows.

Proof of Proposition 5. We first give the upper bound. Let U be a subgroup of
H of index pn , let B be the base group of the wreath product, and denote by π
the canonical projection π : H → G. Let O1, . . . , ON be a complete list of the
orbits of π(U ). For each orbit, pick an element xi ∈ Oi and define bi ∈ B to
have xi coordinate 1 and all other coordinates 0. Then b1, . . . , bN generate B as
a π(U )-module. We conclude that π−1(π(U )) > U is generated by

N + d(π(U )) 6 N +max
m6n

dG(m)

elements.
Since B is Abelian, we observe that the action of U on B factorizes through

π(U ). Therefore, we need to bound the number of generators of U ∩ B as a
π(U )-module. As π(U ) is a p-group and U ∩ B is of finite index in B, there
exists a sequence of π(U )-submodules B = M0 > M1 > · · · > M` = U ∩ B
with (M j : M j+1) = p. We can repeatedly apply Lemma 12 to find that for
each 1 6 j 6 `, we have that M j can be generated by 6 N + j (d(π(U )) −
1) 6 N + j maxm6n dG(m) elements. Hence, U can be generated by 6 N +
n maxm6n dG(m) elements.

For the lower bound, define a map ϕi : U → Fp, 1 6 i 6 N , as follows.
Write an element of U as (g, f ), where g ∈ G and f : X → Fp has finite
support. Then we define ϕi : U → Fp by ϕi((g, f )) =

∑
x∈Oi

f (x). This map is
a homomorphism since

ϕi((g, f )(g̃, f̃ )) = ϕi((gg̃, f g̃
+ f̃ )) =

∑
x∈Oi

f g̃(x)+
∑
x∈Oi

f̃ (x)

=

∑
x∈Oi

f (x g̃)+
∑
x∈Oi

f̃ (x) =
∑
x∈Oi

f (x)

+

∑
x∈Oi

f̃ (x) = ϕi((g, f ))+ ϕi((g̃, f̃ )).

Let V = FN
p ; we define ϕ : U → V by ϕ((g, f )) = (ϕi((g, f )))N

i=1. For i in
the range 1 6 i 6 N , fix an element xi ∈ Oi . Given (ai) ∈ FN

p , we define
f : X → Fp by f (x) = ai if x = xi for some i 6 N , and f (x) = 0 otherwise.
Then ϕ(1, f ) = (ai). Thus, ϕ is a surjective homomorphism.

We conclude that if U is a subgroup of G, then π−1(U ) maps onto FN
p . By the

definition of orbit growth, there exists a subgroup U of index pn , which acts with
on(G, X) orbits, and (G : U ) = (H : π−1(U )); thus π−1(U ) has index pn and
maps onto Fon(G)

p . Since dp(U ) equals the maximal dimension of an Fp-vector
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space onto which U surjects, we obtain on(G) 6 dp,H (n). Finally, the inequality
dp,H (n) 6 dH (n) always holds, and the proof is complete.

Next we prove Theorem 8.

Proof of Theorem 8. Pick a natural number n. Let U be a finite index subgroup,
which acts with at least n orbits on X . Pick a normal subgroup N G G of finite
index within U . Write O for the set of orbits of N acting on X . We have |O| > n,
as N has at least as many orbits as U . Clearly, G/N acts transitively on O.
Choose o ∈ O, and let H be the pre-image in G of the stabilizer (G/N )o. We
will show that H has at least (p − 1) log(G : H)+ 1 orbits.

Note that the orbits of (G/N )o on O are in one-to-one correspondence with
the orbits of H on X . For instance, if {o1, o2, . . . , or } is an orbit of (G/N )o on
O, then the corresponding orbit of H on X is ∪i oi . In particular, the number of
orbits of H on X equals the number of orbits of (G/N )o on O. Let O1, . . . ,

Ok be the orbits of (G/N )o, and put (G : H) = (G/N : (G/N )o) = pm . We
have pm

= |O| > n; in particular, by choosing n appropriately, we can make m
arbitrarily large. Since G/N is a p-group, we have for each i that |Oi | = pmi for
some m i > 0. We conclude that

∑k
i=1 pmi = pm . Note that at least one of the m i

equals 0, since (G/N )o has the fixed point o, say m1 = 0.
We claim that every integral solution of the equation

∑k
i=1 pmi = pm with

m1 = 0 satisfies k > (p−1)m+1. We prove our claim by induction over m. For
m = 1, the only integral solution is 1+ 1+ · · · + 1 = p. Now assume our claim
holds for m − 1. Let µ j be the number of indices i with m i = j . Then we have∑

j µ j p j
= pm . We have to show that µ0 > 1 implies

∑
µ j > (p − 1)m + 1.

Let (µ0, . . . , µm) be a tuple minimizing
∑
µ j . Then

µ0 ≡
∑

j

µ j p j
= pm

≡ 0 (mod p);

together with µ0 > 1 we conclude µ0 > p. If µ0 > 2p, then the tuple (µ0 − p,
µ1 + 1, . . . , µk) is also a solution of

∑
j µ j p j

= pm . The sum of the entries of
the new tuple is (

∑
µ j) − (p − 1), contradicting minimality. Hence, we may

assume µ0 = p. We now get 1 +
∑

j>1 µ j p j−1
= pm−1; thus, by the inductive

hypothesis, we conclude
∑

j>1 µ j > (p− 1)(m − 1). Together with µ0 = p we
obtain

∑
j>0 µ j > (p − 1)m + 1, as claimed.

4. Proofs of Theorems 1 and 7

For p = 2, let G be the first Grigorchuk group and let K be the self-replicating
subgroup of index 16 in it, while for p > 2, let G be the Gupta–Sidki p-group
and let K be the self-replicating subgroup of G of index p2 (see [4]). Let us
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emphasize that in this section, we take G and K to be the discrete p-groups
rather than their pro-p completions.

Pervova in [9] showed that G has no maximal subgroups of infinite index;
thus Φp(G) = Φ(G), the Frattini subgroup of G, and dp(G) = d(G). This was
generalized to finite index subgroups of the Grigorchuk groups and the Gupta–
Sidki groups by Grigorchuk and Wilson [6], and to finite index subgroups of
multiedge spinal torsion group by Alexoudas, Klopsch and Thillaisundaram in
[1]. We can therefore work with the discrete p-groups and later pass to their pro-
p completion without changing the results of our computation. The advantage of
doing so is that for discrete groups, wreath products are much easier to analyse
than for topological groups.

Let T be the p-regular rooted tree; G acts naturally on T and so does K .
Let Tn be the nth level of the tree and let St (n) = StG(Tn) be the stabilizer
of Tn , where the root is considered as T0; thus, St (0) = G. Note that St (1)
contains K (p) geometrically, that is, each component K acts independently on
the corresponding child tree of the first level. For p = 2 this was proven by
Grigorchuk [5, page 167, Proposition 8], for p = 3 by Sidki [13], and for p > 3
by Fernandez-Alcober and Zugadi-Reizabal [3].

Clearly, K acts on the set of infinite paths in T . Pick one such path x , and let
X = {x g

: g ∈ K } be the orbit of x under K .

Proof of Theorem 7. It is easier to work with K in place of G. As (G : U ) >
(K : K ∩ U ), it is enough to consider the case when U is a subgroup of K . We
will show by induction on m that if U is a subgroup of K with (K : U ) = pm ,
then U has at most (p5

− 1)m + 1 orbits on X .
For m = 0, we have to show that K acts transitively on X . Pick g ∈ G. We have

to show that there exists some k ∈ K such that x g
= x k . As K acts transitively

on each level, there exists for every i some ki , such that x g and x ki coincide on
the first i nodes. We know that K is closed in G with respect to the topology
induced by T , and that K is compact. Hence, we can choose a subsequence ki j

converging to some element k ∈ K , which satisfies x g
= x k .

Henceforth, we assume m > 1. We have thatΦp(K ) contains St (5). For p = 2
this was shown by Grigorchuk [5, page 168, Proposition 9]; for p > 3 Garrido [4,
Proposition 2.6] actually proved Φp(K ) > St (4). Since K is a p-group and U
is a proper subgroup of K of finite index, we have UΦp(K ) 6= K and hence
U St (5) 6= K . Thus, we have

(St (5) : U ∩ St (5)) = (U St (5) : U ) < (K : U ).

As St (5) contains K (p5) geometrically, we have that

(K (p5)
: U ∩ K (p5)) 6 (St (5) : U ∩ St (5)) < (K : U ).
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Because U∩K (p5) is a subgroup of U , the number of orbits of U on X is bounded
from above by the number of orbits of U ∩ K (p5).

For 1 6 i 6 p5, let X i be the subset of X consisting of the paths passing
through the i th vertex of the fifth level. Then X is a disjoint union of the X i

and each X i is invariant under U ∩ K (p5) because U ∩ K (p5) 6 St (5). Thus, the
number of orbits of U ∩ K (p5) acting on X is the sum of the number of orbits of
U ∩ K (p5) acting on X i . Write K (p5)

= K1 × · · · × K p5 , where Ki
∼= K . Let Ũi

be the projection of U ∩ K (p5) onto Ki . The action of U ∩ K (p5) on X i factors
through Ũi , so the number of orbits of U ∩ K (p5) acting on X i is the number of
orbits of Ũi acting on each X i .

For 1 6 i 6 p5, let Ui be the projection of U ∩ (K1×· · ·× Ki) onto Ki . Then
Ui is a subgroup of Ũi , so the number of orbits of Ũi acting on X i is bounded
above by the number of orbits of Ui acting on X i .

Using induction on r , it is easy to prove that (K1×· · ·× Kr : U ∩ (K1×· · ·×

Kr )) =
∏r

i=1(Ki : Ui). We deduce that

p5∏
i=1

(Ki : Ui) = (K (p5)
: U ∩K (p5)) = (U K (p5)

: U ) 6 (UΦ(K ) : U ) < (K : U );

in particular, each single factor on the left is strictly smaller than pm . Viewing
Ui as a subgroup of Ki acting on the i th subtree, we can apply our induction
hypothesis to find that the number of orbits of U ∩ K (p5) acting on X is at
most

p5∑
i=1

((p5
− 1) log(Ki : Ui)+ 1) = (p5

− 1) log(K (p5)
: U ∩ K (p5))+ p5

6 (p5
− 1)(m − 1)+ p5

= (p5
− 1)m + 1,

and the proof is complete.

By taking componentwise action, we obtain for k > 2 a transitive permutation
group (K (k), X (k)), where (x1, . . . , xk)

(g1,...,gk ) = (x g1
1 , . . . , x gk

k ). For a set Y , we
write F(Y )p for the direct sum of Fp indexed by Y . Let Hk be the restricted wreath
product Fp o (K (k), X (k)) ∼= F(X (k))p o K (k). Then Hk is a finitely generated p-
group. Let B be the base group of the wreath product and π : Hk → K (k) be the
projection onto the active group.

In general, wreath products of residually finite groups need not be residually
finite. However, in all situations we are interested in, residually finiteness can be
obtained from the following.
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LEMMA 13. Let Γ be a residually finite group and Ω a set on which Γ acts
transitively. Suppose that for all x, y ∈ Ω , there exists a finite index subgroup∆
such that x and y are not in the same∆-orbit. Then the restricted wreath product
Fp o Γ given by the action is residually finite.

Proof. Let ( f, γ ) be a nontrivial element of the wreath product, where f : Ω →
Fp is a function with a finite support and γ ∈ Γ . If γ 6= 1, then there exists a
subgroup ∆ < Γ of finite index not containing γ , and the pre-image of ∆ under
the canonical projection is a finite index subgroup not containing ( f, γ ). Now
suppose that γ = 1, f does not vanish identically, and has support supp f = {x1,

. . . , xn} 6= ∅. For 1 6 i < j 6 n, choose a finite index subgroup∆i j such that xi

and x j are not in the same ∆i j -orbit. Then ∆ =
⋂
∆i j is a finite index subgroup,

which acts on Ω with finitely many orbits Ω1, . . . ,ΩN . Then

M =
{

m : Ω → Fp : |supp m| <∞,∀i 6 N :
∑
x∈Ωi

m(x) = 0
}

is ∆-invariant and of finite index in F(Ω)p . Hence, {(m, δ) ∈ Fp o Γ : m ∈ M,
δ ∈ ∆} is a finite index subgroup of Γ , which does not contain ( f, γ ), because
each Ωi contains at most one point on which f does not vanish, and f does not
vanish identically.

COROLLARY 14. Hk is residually finite.

Proof. Let x, y ∈ X be different paths. In view of Lemma 13, we have to
show that there exists a finite index subgroup U of G, such that x and y are in
different orbits of U . But if x and y are different, there is some ` such that their
intersection with the `th level is different, and St (`) does what we need.

We now show that there are positive constants c1, c2, such that c1nk 6
opn (G(k), X (k)) 6 c2nk . We start with a lower bound.

LEMMA 15. Let Γ be a p-group acting on T . Then for every natural number `,
we have that (Γ : StΓ (`)) 6 p p` .

Proof. We know there is an injective homomorphism Γ/StΓ (`) → Sp` . The
image of this homomorphism is a p-subgroup and hence a subgroup of the p-

Sylow subgroup of Sp` . The latter has order p
p`−1
p−1 , and our claim follows.

LEMMA 16. Let G be the Grigorchuk group or a Gupta–Sidki group. We
have that (G(k)

: St (`)(k)) 6 pkp` , and St (`)(k) has at least pk` orbits on X (k).
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In particular,

opn (G(k), X (k)) >
1

(pk)k
nk .

Proof. The bound for the index follows immediately from Lemma 15. Now
recall that G(k) acts transitively on T (k)

` , whereas St (`)(k) acts trivially on T (k)
` .

Thus, if (x1, . . . , xk), (x ′1, . . . , x ′k) ∈ X (k) are in the same St (`)(k)-orbit, we have
for all i that xi and x ′i pass through the same point in level `. Therefore, the
number of orbits is at least the number of k-tuples of vertices of level `, which is
(p`)k = pk`. We conclude that

opn (G(k), X (k)) > max
{`:kp`6n}

pk` > pk(log(n/k)−1)
=

1
(pk)k

pk log n
=

1
(pk)k

nk,

proving the last claim of the lemma.

One can give more precise bounds for the index of St (`). Doing so is
essentially equivalent to determining the Hausdorff dimension of G, which was
done for p = 2 by Grigorchuk [5, Section 5], and for p > 3 in vast generality by
Zugadi-Reizabal [15].

Now we turn to upper bounds for opn (G(k), X (k)).

LEMMA 17. Let (Γ,Ω), (∆,Λ) be two permutation groups. Let U be a
subgroup of Γ × ∆. Suppose that U ∩ Γ has m orbits on Ω , and UΓ/Γ < ∆

has n orbits on Λ. Then U has at most mn orbits on Ω ×Λ.

Proof. Let x1, . . . , xm be representatives of the orbits of U ∩ Γ acting on Ω ,
and y1, . . . , yn be representatives of UΓ/Γ acting on Λ. Then by considering
the action of UΓ/Γ on Λ, every element (x, y) ∈ Ω × Λ is equivalent to an
element of the form (z, y j), 1 6 j 6 n. Take an element u ∈ U ∩ Γ such that
zu
= xi for some 1 6 i 6 m. By applying it to (z, y j), we obtain that (x, y) is

equivalent (xi , y j).

LEMMA 18. Let U be a subgroup of K (k) of index pn . Then U has at most O(nk)

orbits on X (k).

Proof. We prove our claim by induction on k. The case k = 1 is Theorem 7. Now
suppose that k > 2, and our claim is already shown for all smaller values of k.
Write K (k)

= K1×· · ·×Kk . Assume that (U K1 :U )= (K1 :U∩K1)= pm . Then
from the induction hypothesis for k = 1, we deduce that U ∩ K1 acts with O(m)
orbits on X . Note that U K1/K1 acts on X (k)/K1

∼= X (k−1), and that (K (k)/K1 :

U K1/K1) = (K (k)
: U K1) =

(K (k)
:U )

(U K1:U )
= pn−m ; applying the induction hypothesis
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for k − 1, we find that the number of orbits of this action is O((n − m)k−1).
Lemma 17 implies that U itself has O(m(n − m)k−1) = O(nk) orbits, and the
proof of the general case is also complete.

Proof of Theorem 1. For k = 1, this is Corollary 4. From Lemmas 16 and 18, we
obtain

c1nk 6 opn (G(k), X (k)) 6 c2nk

for some positive constants c1 and c2. Theorem 9 implies dG(k)(n) 6 Cn.
Applying Proposition 5 with these values, we obtain c1nk 6 dp,Hk (n) 6 c2nk

+

Cn2, which for k > 2 implies our claim.

5. Trees with a single infinite path

In this section, we consider subtrees S ⊆ T , which contain exactly one
infinite path. We denote by Inj(S, T ) the set of injective root preserving graph
homomorphisms ϕ : S → T . The action of G on the nodes of T induces an
action of G on Inj(S, T ) via ϕg(x) = ϕ(x)g. As usual, ϕG

⊆ Inj(S, T ) denotes
the orbit containing ϕ under this action.

The following theorem implies Theorem 6.

THEOREM 19. Let f : N→ N be a function, such that f (n)
n →∞ and f (n)

pn → 0.
Then there exist a tree S ⊆ T , which has a single infinite path, and a map ϕ ∈
Inj(S, T ), such that for all n large enough and for all U < G with (G : U ) = pn ,
we have that U acts with at most p4 f (n) orbits on ϕG , and there exist infinitely
many n and subgroups U with (G : U ) = pn , such that U acts with at least
1
p f (n) orbits on ϕG .

Before proving the theorem, we need to study stabilizers of antichains in T .
The subgroups determining the lower bound of the orbit growth in the theorem
will be certain stabilizers of antichains in T . If A = {x1, . . . , xk} is a maximal
antichain in T , then we denote by T A the finite tree obtained from T by deleting
all vertices below any element of A. Denote by GA the pointwise stabilizer of
A in T . If S is a subtree of T , we put SA

= S ∩ T A.
We say that a subtree S is complete, if v ∈ S is a vertex and if w is a sibling

vertex of v, then w ∈ S as well. The completion S of S is the smallest complete
subtree of T containing S.

LEMMA 20. Let S be a subtree of T , and denote by S the completion of S in T .
Suppose that ϕ ∈ Inj(S, T ) is an extension of ϕ ∈ Inj(S, T ).

(1) The restriction ρ : Inj(S, T )→ Inj(S, T ), ρ(ψ) = ψ |S defines a bijection
between ϕG and ϕG .
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(2) Let U be a subgroup of G. Then ρ induces a bijection between the U-orbits
on ϕG and the U-orbits on ϕG .

Proof. Note that the G-action and ρ commute. Thus, ρ(ϕg) = ρ(ϕ)g
= ϕg for

all g ∈ G, so ρ is surjective on ϕG . Suppose ρ(ϕg) = ρ(ϕ). Each y ∈ S has a
sibling x ∈ S. Since ρ(ϕg) = ρ(ϕ), we have that ϕ(x)g

= ϕg(x) = ϕ(x). Now
〈g〉 acts on ϕ(x) and its siblings. As G is a p-group, 〈g〉 is a finite p-group. Since
ϕ(x) and its siblings form a set of size p and g fixes one element, we obtain that
〈g〉 acts trivially on it. Thus, ϕg(y) = ϕ(y)g

= ϕ(y), as ϕ(y) is a sibling of ϕ(x).
We conclude that ϕg

= ϕ, so ρ is injective. This completes the proof of part (1).
As ρ commutes with the action of G, part (2) follows trivially.

LEMMA 21. Let G be the Grigorchuk or a Gupta–Sidki group. Let v be a vertex
of level `. Let ρ be the restriction of the action of G on T to Tv, the tree with root
v. Then ρ(Gv) ∼= G as a permutation group and (ρ(Gv) : ρ(St (`)) 6 p4.

Proof. We first prove that ρ(Gv) ∼= G as a permutation group. Suppose first that
` = 1. We adopt the notation from [5], where for automorphisms ϕ1, . . . , ϕp of
T we denote by (ϕ1, . . . , ϕp) the automorphism fixing the uppermost layer of T ,
and acting by ϕi on Svi , where vi is the i th vertex in the uppermost layer. If p = 2,
then G = 〈a, b, c, d〉, where a interchanges the points of level 1, and b = (a, c),
c = (a, d), d = (1, b). From this, we see that Gv = 〈b, ba, c, ca, d, da

〉. Assume
without loss of generality that v is the right point on the first level. Then

ρ(Gv) = 〈ρ(b), ρ(ba), ρ(c), ρ(ca), ρ(d), ρ(da)〉 = 〈c, a, d, a, b, 1〉 = G.

For p > 3, we have G = 〈a, b〉, where a is the cyclic permutation of the p
vertices of level 1, and b = (a, a−1, 1, . . . , 1, b). Now Gv = 〈b, ba, . . . , ba p−1

〉.
If we again assume that v is the rightmost vertex, we obtain

ρ(Gv) = 〈ρ(b), ρ(ba), . . . , ρ(ba p−1
)〉 = 〈b, a, a−1, 1, . . . , 1〉 = G.

In general, let v be a vertex of level ` and w the parent of v. The restriction
of Gw to the subtree with root w is isomorphic to G by the inductive hypothesis,
and the restriction of Gv equals the restriction of (Gw)v. Since v is of level 1 in
the subtree with root w, the restriction of Gv to the tree with root v is isomorphic
to G by the case ` = 1 already proven.

On the other hand, we know that G contains a subgroup K , such that St (`)
contains K (p`) geometrically, which is of index 16 or p2, depending on whether
p = 2 or p > 2. Hence, ρ(St (`)) > K , and we conclude that (ρ(Gv) :

ρ(St (`))) 6 p4.

In particular, we have the following.
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LEMMA 22. Let S be a complete tree and let ϕ ∈ Inj(S, T ). Let U < G be a
subgroup of level at most ` and let L be the antichain of vertices of level `. We
denote by ρ the restriction of the action of G from Inj(S, T ) to Inj(SL, T L). If S
has exactly p vertices of level `, then ρ induces a surjection from the orbits of
U on ϕG to the orbits of U on ρ(ϕ)G , and each pre-image under this injection
contains at most p4 elements.

Proof. As ρ commutes with the action of G, it sends an orbit of U on ϕG to an
orbit of U on ρ(ϕ)G ; thus, the restriction to orbits is well defined. Since ρ is
surjective on Inj(SL, T L), it is also surjective on the orbits.

Let v be the parent of the p vertices of level ` in ϕ(S), and let σ be the
restriction of the action of Gv to the subtree Tv of vertices below v. By Lemma 21,
we have (σ (Gv) : σ(ST (`))) 6 p4; let g1, . . . , gk , k 6 p4 be elements of Gv,
such that {σ(g1), . . . , σ (gk)} is a right transversal of σ(St (`)) in σ(Gv).

Suppose ρ(ϕ)g
= ρ(ϕ); then vg

= v as there are exactly p vertices of level
` in ϕ(S), and therefore, their parent is unique. Suppose that g ∈ G satisfies
ρ(ϕ)g

= ρ(ϕ)u for some u ∈ U . Then gu−1
∈ Gv; hence, there exists some ig

such that σ(gu−1g−1
ig
) ∈ σ(St (`)). We claim that if g, g′ are elements in G with

ρ(ϕ)g, ρ(ϕ)g′
∈ ρ(ϕ)U and ig = ig′ , then ϕg

∈ ϕg′U . Write i = ig = ig′ . By our
argument above, there are u, u ′ ∈ U , such that ρ(ϕ)gu−1

= ρ(ϕ) = ρ(ϕ)g′u′−1 and
σ(gu−1g−1

i ), σ(g′u ′−1g−1
i ) ∈ σ(St (`)). Hence, ρ(ϕ)gu−1g−1

i = ρ(ϕ)g′u′−1g−1
i . Take

s ∈ St (`) such that σ(gu−1g−1
i ) = σ(g′u ′−1g−1

i s). Then we also have that
ρ(ϕ)gu−1g−1

i = ρ(ϕ)g′u′−1g−1
i s . Since S is contained in T L

∪ Tv, we conclude
ϕgu−1g−1

i = ϕg′u′−1g−1
i s , so ϕg

= ϕg′u′−1g−1
i sgi u . As St (`) is normal in G, we have

that s ′ = g−1
i sgi ∈ St (`), so ϕg

= ϕg′u′−1s′u . As St (`) 6 U , we deduce that
ϕg
= ϕg′u′′ for some u ′′ ∈ U .

We conclude that the number of orbitsΩ of U on ϕG , such that ρ(Ω)= ρ(ϕ)U

is at most equal to the number of possible choices of i , which is k 6 p4. By
symmetry, the same holds true for the other orbits of U on ρ(ϕ)G , and our claim
follows.

LEMMA 23. Suppose that S′ ⊂ S ⊆ T are complete trees, such that S \ S′

consists of p vertices, which are siblings of each other. Pick ϕ ∈ Inj(S, T ), and
let ρ(ϕ) ∈ Inj(S′, T ) be its restriction to S′. Let U be a subgroup of finite index
of G. Write N (U ) for the number of orbits of U on ϕG and N ′(U ) for the number
of orbits of U on ρ(ϕ)G . Then N ′(U ) 6 N (U ) 6 pN ′(U ).

Proof. Clearly, ρ commutes with the action of G; hence, ρ maps U -orbits to U -
orbits. Since every map S′→ T can be extended to a map S→ T , ρ is surjective
on the set of orbits, and we obtain N (U ) > N ′(U ).
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As G is a p-group, the image of any subgroup of it in the symmetric group
of S \ S′ is either trivial or cyclic of order p. Therefore, for g ∈ G, the pre-
image of an orbit (ρ(ϕg))U consists of 1 orbit or p orbits. We conclude that
N (U ) 6 pN ′(U ), and the proof is complete.

LEMMA 24. Let U < G be a subgroup of index pn and level at most `. Let L be
the antichain consisting of all vertices of level `. Assume that S is complete, that
SL contains k vertices, and that |S ∩ L| = p. Pick ϕ ∈ Inj(S, T ). Then U acts
with at most np

k−p`−1
p +9 orbits on ϕG .

Proof. By Lemma 22, we have that the restriction ρ : Inj(S, T ) 7→ Inj(SL, T L)

induces a surjection from the set of orbits of U on ϕG to the set of orbits of U on
ρ(ϕ)G , which is at most p4

: 1. It therefore suffices to prove that U acts with at
most np

k−p`−1
p +5 orbits on ρ(ϕ)G .

To avoid repeating arguments, we would like to use Theorem 7 again.
Therefore, as our claim does not depend on the shape of S below level `, we do
not estimate the number of orbits on ρ(ϕ)G , but assume without loss of generality
that below level `, S consists of an infinite path and the siblings of the vertices
on this infinite path.

We now prove our claim by induction on k. On each of the first ` levels, S
has at least p points. Together with the root we find that k > `p + 1, and
k = `p + 1 if and only if S is the completion of a single infinite path. In this
case, S has no automorphisms, that is, the actions of G on ϕG and on SG are
equivalent. By Lemma 20(2), we may further restrict attention to a single path
without completion. We can now invoke Theorem 7 to find that the number of
orbits of U on ϕG is at most p5n.

Now suppose that k > `p+1 and our claim holds for all trees S′ such that S′L
has less than k vertices. Since k > `p+ 1, then S is not a completion of a single
infinite path. Therefore, there exists a vertex of level at most ` such that its parent
is not on the infinite path. Let x1 be such a vertex of maximal level. Then x1 and
its siblings x2, . . . , x p are leaves in S. Let S′ be the tree that is obtained from S
by removing x1, . . . , x p. Pick a map ϕ ∈ Inj(S, T ), and let ϕ′ ∈ Inj(S′, T ) be its
restriction.

By Lemma 23 N (U ), the number of orbits of U on ϕG is at most p times
N ′(U ) the number of orbits of U on ϕ′G . By our inductive hypothesis,

N ′(U ) 6 np
|S′L |−`p−1

p +5
= np

|SL |−p−`p−1
p +5

= np
k−`p−1

p +4
,

and our claim follows.
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Proof of Theorem 19. Let f : N→ N be a function, and suppose that f (n)
n →∞,

f (n)
pn → 0. We will construct a tree S together with an increasing sequence of

integers (ni), such that for ϕ ∈ Inj(S, T ) the orbit growth of G on ϕG is strictly
bounded by f , and for all i there exist some m i ∈ [ni−1, ni ] and a subgroup
Ui < G of index pmi , such that Ui has at least f (mi )

p orbits on ϕG .
We will construct recursively a sequence of complete subtrees Si with Si ⊂

Si+1 for all i and Si \S1 is finite and a sequence of maps ϕi ∈ Inj(Si , T ), such that
ϕi |Si−1 = ϕi−1. Our construction will satisfy that there exists a strictly increasing
sequence of integers (ni) with the following properties:

(i) For all n > n1, the action of G on ϕG
i satisfies opn (G, ϕG

i ) 6 f (n).

(ii) For all k > 2, there exist some mk ∈ [nk−1, nk] and a subgroup Uk of index
pmk , such that for all i > k we have that Uk acts on ϕG

i with at least f (mk )

p
orbits.

We let S1 be the completion of some infinite path. As S1 has no automorphisms,
any map in Inj(S1, T ) can be identified with its image and thus, we can identify
ϕG

1 with SG
1 . By Theorem 7 and the assumption that f (n)

n →∞, we can choose
n1 in such a way that for all n > n1, opn (G, ϕG

1 ) 6 f (n).
Suppose we constructed S j and n j for all j < i . If we add vertices to Si−1,

then from Lemma 23 the orbit growth cannot decrease. Let ` be the maximum
between the maximal level of a subgroup of index at most pni−1 and the maximal
level of a vertex in Si−1 \ S1. If we only add vertices below level ` to Si−1, then
the orbit growth up to ni−1 does not change. Write I (m) = (G : St (m)). We
would like to pick a number `′ > `+ 2, such that

for all t > I (`′ − `) we have
t

pI (`)
> f (log t). (1)

To see that such an integer `′ exists, assume that there exist arbitrarily large t ,
such that t

pI (`) 6 f (log t). Then for arbitrarily large n = log t , we have f (n) >
pn

pI (`) , contrary to the assumption f (n)
pn → 0. Hence, there exists some t0, such that

t
pI (`) > f (log t) holds for all t > t0. As I (`′− `) tends to infinity with `′, we can
pick any `′ such that I (`′ − `) > t0.

Since f grows faster than linearly, we can choose ni such that for all n > ni ,

np
p`
′
−`
−1

p(p−1) +
p`+1

−1
p(p−1) +9

< f (n). (2)

The reason for these choices will become clear below; for now, it is sufficient to
picture these numbers as much larger than ` and ni−1, respectively.
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We will construct Si by adding vertices to Si−1 between levels ` + 2 and `′.
More specifically, let vi be the unique vertex of level ` + 1 on the infinite path
of S1. Then define S as the set of all complete trees R containing Si−1 and such
that all vertices of R \ Si−1 are descendants of vi and have level at most `′. We
will eventually choose Si within S .

We first note that from the choice of ` it follows that for all n 6 ni−1 and
for all R ∈ S , we have that opn (G, ϕG

R ) = opn (G, ϕG
i−1), where ϕR ∈ Inj(R, T )

is an extension of ϕi−1. On the other hand, we claim that opn (G, ϕG
R ) < f (n)

for all n > ni and all R ∈ S . To see this, note that for R ∈ S , all vertices in
R \ Si−1 are descendants of vi , and therefore, |R \ Si−1| 6

p`
′
−`
−1

p−1 , and |R \ S1| 6
p`
′
−`
−1

p−1 +
p`+1
−1

p−1 .
Let U be a subgroup of index pn and pick λ > `′ such that λ is greater than

the level of U . Let L be the antichain consisting of all vertices on level λ and let
k = |RL

|. Since λ > `′, then |R ∩L| = p. We can now apply Lemma 24 to find
that the number of orbits of U on ϕG

R is at most np
k−pλ−1

p +9. Now,

k = |RL
| = |(S1)

L
| + |(R \ S1)

L
| 6 |(S1)

L
| + |R \ S1|

6 pλ+ 1+
p`
′
−`
− 1

p − 1
+

p`+1
− 1

p − 1
,

so

k − pλ− 1 6
p`
′
−`
− 1

p − 1
+

p`+1
− 1

p − 1
.

Therefore, the number of orbits of U on ϕG
R is at most

np
k−pλ−1

p +9 6 np
p`
′
−`
−1

p(p−1) +
p`+1

−1
p(p−1) +9

.

By the choice of ni in (2), we deduce that opn (G, RG) < f (n) for all n > ni as
claimed. We conclude that condition (i) holds for all R ∈ S and all n satisfying
n 6 ni−1 or n > ni .

Call a tree R ∈ S small, if the action of G on ϕG
R has orbit growth bounded by

f (n) for all ni−1 < n 6 ni , and large otherwise. We know that Si−1 itself is small.
Next we claim that a large tree exists. To see this, take the tree Smax, consisting
of Si−1 together with all vertices of level 6 `′, which lie below vi . Let ∆ be all
the descendants of vi of level `′. Let A be the antichain in T consisting of all
vertices of level ` except the parent of vi , the p − 1 siblings of vi , and ∆. Since
all vertices in A are of level at most `, we have that GA 6 St (`). Also, GA acts
trivially on ∆ as ∆ ⊆ A.

Pick ϕmax ∈ Inj(Smax, T ), and put Y = ϕSt (`)
max . Then Y is GA-invariant as GA 6

St (`); thus, Y is the union of GA-orbits. If two elements ϕg
max, ϕh

max of Y are
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in the same GA-orbit, then ϕg
max(x) = ϕ

h
max(x) holds for all x ∈ ∆ because GA

acts trivially on ∆. Therefore, the number of different orbits of GA on Y is at
least equal to the number of permutations of ∆, which occur as restrictions of
elements of St (`)∩Gvi . The kernel of the map (St (`)∩Gvi )→ Sym(∆) is GA;
therefore, the number of orbits of GA is at least

((St (`) ∩ Gvi ) : GA) =
(G : GA)

(G : St (`))(St (`) : (St (`) ∩ Gvi ))
=
(G : GA)

pI (`)
.

Let Tvi be the subtree of T with root vi , and let ρ be the restriction of Gvi to Tvi .
By Lemma 21, we have ρ(Gvi )

∼= G as permutation groups and by definition,
ρ(GA) ∼= St (`′ − `). Then

(G : GA) > (Gvi : GA) > (ρ(Gvi ) : ρ(GA)) = (G : St (`′ − `)) = I (`′ − `).

In particular, we can apply the definition of `′ in (1) with t = (G : GA), as the
condition t > I (`′ − `) is satisfied. Doing so, we obtain

o(G:GA)(G, ϕ
G
max) > ((St (`) ∩ Gvi ) : GA) =

(G : GA)

pI (`)
> f (log(G : GA)),

that is, Smax is large.
Define a graph on S by drawing an edge between two subtrees if one of them

can be obtained from the other by adding or deleting one vertex and its siblings.
The graph is connected as every tree in S is connected to Si−1. Since there are
small and large trees, there exists a small tree Si , which is connected to a large
tree S+i . As Si is small, it satisfies condition (i).

Since S+i is large, there exist some ni−1 6 m i < ni and a subgroup Ui of index
pmi , which acts with more than f (m i) orbits on (ϕ+i )

G for some ϕ+i ∈ Inj(S+i , T ).
Since Si and S+i are complete, we can apply Lemma 23 and find that the number
of orbits of Ui on (ϕ+i )

G is at most p times the number of orbits of Ui on ϕG
i ,

where ϕi is the restriction of ϕ+i to Si . In particular,

opmi (G, ϕG
i ) >

1
p

opmi (G, ϕ+i
G
) >

1
p

f (m i).

We conclude that Si satisfies condition (ii) as well.
Now define the tree S =

⋃
Si , ϕ =

⋃
ϕi . It follows from Lemma 23 that

the number of orbits of a finite index subgroup U on ϕG is at least equal to the
number of orbits of U on ϕG

i for any i . On the other hand, by the construction
of the trees Si , we know that there are arbitrarily large values `, such that
the intersection of S with the `th level consists of p points only. For each of
these levels, we can apply Lemma 22 to find that the number of orbits of U

https://doi.org/10.1017/fmp.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.8


Branch groups, orbit growth, and subgroup growth 25

on ϕG is at most p4 times the number of orbits of U on ϕG
i , provided that i is

sufficiently large. We conclude that the action of G on ϕG satisfies the conditions
of Theorem 19, and the theorem is proven.
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