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Filaments and prominences are classical examples of condensations 
of nongravitational origin, their formation being due to the thermal 
instability. The physics of this instability in a uniform plasma at 
coronal temperatures, which exhibits increasing radiative output as it 
cools, is well known (Field, 1965). Filaments, however, form in regions 
of sheared magnetic fields, as evidenced by their location above photo­
spheric polarity-inversion lines and their occurrence after a period of 
increasing fibril inclination (Tandberg-Hanssen, 1974). Physically, the 
importance of the field structure is readily understood if one recalls 
the capability of magnetic field of strongly collimating the local heat 
conduction. Thus, the preferred locations for the development of the 
thermal instability will be those where the field configuration inhibits 
the stabilizing effects of thermal conduction on the growing temperature 
perturbation. 

In this brief report we summarize the results of a self-consistent 
calculation of this instability in a non-uniform field, showing how the 
dynamic response of density and temperature to the competing effects 
of optically-thin radiation and field-collimated thermal conduction 
leads to the formation of characteristic "knife-blade11 filaments 
(Chiuderi and Van Hoven, 1979). 

The equilibrium magnetic field in the region of filament formation 
is assumed to have the model force-free form: 

B Q ( X ) = B Q[e ytanh(x/a) + e"zsech (x/a)] . (1) 

This field exerts a constant magnetic pressure and is therefore con­
sistent with a uniform equilibrium state, yet it exhibits a field 
reversal. The calculation is based on the use of the standard ideal MHD 
equations, to which the following energy equation is added: 

(2) dt 
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where H is a generalized heat function, (f)(T) specializes the temperature 
dependency of the radiative loss, K is the heat conduction coefficient 
and e, = B/B is a unit vector along B. Every quantity appearing in the 
equations is now written as A(r,t) = A Q ( X ) + A ^ ( X)exp(vt-ky), 
|AjJ « and the whole set of equations is linearized. This leads 
to a system of seven equations, five being algebraic and the remaining 
two first-order coupled differential equations in the var^ialjles 
£ = v /v, the transverse displacement, and q = p ^ + (B *B^)/y , the 
total pressure perturbation. H is considered to operate only in equili­
brium. The equations contain a number of characteristic frequencies: 

-(Y-D ^ (p 2<0(T)| p % = U / Y X l - 2 ^ dT>V 
CTK= l ^ - i ) K 0 ^ / 2 / P | k J « n p 

In the range 1 0 5 ' 9 < T < 1 0 6 ' 8 , 

n * i o ~ 3 , 6 n Q T " 2 , n = 1.8 Q . p - 9 6 ' p p 

^ T 1 (Hildner, 1974) and we have 

Finally, introducing the variable n = tanh ? = tanh(x/a) and 
normalizing wavenumbers and frequencies as follows, a = ka, v = va/c 

2 2 a 

•(c - B
0 ^ o P o ^ ' w e a r r i v e a t t h e second-order equation (f = d/dO : 

v +a n 
(3) 

where can be negative and contains all the physical parameters 
of the problem. Eq. (3) has the form of a non-standard eigenvalue 
equation and must be supplemented by suitable boundary conditions. It 
is assumed here that q is a localized, even-parity, monotonic function 
of £. It is then possible to show that these boundary conditions imply 
certain limitations on the possible frequencies and wavenumbers of the 
purely growing solutions. More precisely, 

Figure 1 . The allowed growth rate (v) 
vs. wavenumber (a) parameter space, 
for monotonic filament profiles, is 
shown in the unshaded central window. - 2 . 0 -i.o 

log a = log ka 
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a < v < Q = (Q+h )/U+&> ; a?(v) < a 2 < min[a2(v),a2(v)] 

where $ = yB/2 = yy^P/B 2, and a 2(v), a 2(v), a 2(v) can be explicitly 
given in terms of B and the characteristic frequencies. The above 
conditions define a limited region in the (a,v) plane where solutions 
may be found, as shown in Fig. 1. 

A first set of numerical calculations have been performed, with the 
following choice of physical parameters, illustrative of the ambient 
coronal conditions before the start of filament condensation: 
n = 10 9' 8 cm"3, T = 10 6* 2 K, B = 7.5 G and a = 10 8* 5 cm. These give 
(3=1, ^ = 1 0 s . The computed eigenvalues turn out to satisfy 
v(a) ^ v(cO (Fig. 1) for V < ft . Concentrating on the fastest growing 
solutions, V ^ ft , we can make following comments. 

(i) The computed eigenfunctions, q(x), have the general aspect of 
decreasing exponentials (except for very small x) with a typical 
half-width of 10 a. This, however, is not the important empirical 
transverse scale, which is given by the variation of the physical ob-
servables p^ and T^. From the linearized MHD equation we find, in our 
regime, 

p x = (av/va)2q ; T ^ * -( Y/# + l)(p 1/p ( )) • (4) 
2 

Since a (n) varies with x much faster than q, it actually determines the 
shape or1 p and T^ near the origin. We can now establish that the 
overall filament geometry corresponds to the empirica^ requirements that 
the horizontal width, 6 (determined by the shape of a ) is much less 
than the vertical width, T T / K ) , which is much less than the hori­
zontal length (̂  0 0 in this model).^ For our choice of parameters and 
ftc-v = 0.1 ^ , we obtain 6/£ M O . 

(ii) The initial growth time of the fastest growing mode, 
-1 3 5 — 1 2 

T
c ^ ^ c

 i s estimated to be 10 * n 9 T 9 which predicts a typical 
e-foldmg time somewhat shorter than is normally quoted. However, what 
is observed is the nonlinear stage of filament formation which usually 
has a much longer timescale. 

(iii) Sheared magnetic fields are intimately connected with 
flares, both observationally and theoretically. The excess magnetic 
energy stored in the nonpotential field can be released due to finite 
resistivity effects, but the timescale of the process appears to be too 
long. The thermal instability timescale is much faster and it is 
therefore conceivable that the magnetic reconnection will take place in 
the nonlinear stage of filament development, at a considerably lower 
temperature and at a much faster rate, due to the strong temperature 
dependence of normal resistivity. 
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DISCUSSION 

Nakagawa: The effect of gravity is one of the crucial problems in 
the formation of condensations because the increased density required 
to induce thermal instability is immediately subject to gravitational 
acceleration downward. Your field configuration does not provide any 
support. 

Van Hoven: I agree; this is only the initial step in a filament 
model, but it is the first dynamic calculation to reflect the sheared 
magnetic field and the finite geometry. 

Foukal: The density assumed in calculations of thermal instability 
is critical in determining the growth rates, and the spatial wave 
numbers of the growing modes. Were you able to find reasonable growth 
rates for densities of the order of the background corona, from which 
such a filament would be expected to condense? ^ g _^ 

Van Hoven: The density in the example quoted here is 10 cm , 
and the growth rate is approximately proportional to this parameter. 
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