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Abstract

The idea of the system signature is extended here to the case of ordered system lifetimes
arising from a test of coherent systems with a signature. An expression is given for the
computation of the ordered system signatures in terms of the usual system signature for
system lifetimes. Some properties of the ordered system signatures are then established.
Closed-form expressions for the ordered system signatures are obtained in some special
cases, and some illustrative examples are presented.
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1. Introduction

In studying reliability systems, coherent systems arise naturally in many cases. Coherent
systems are those whose reliability improves when one or more components are improved
and for which each component is relevant to the lifetime of the system. In the study of such
coherent systems, one measure that has become quite useful is the system signature introduced
by Samaniego [6] for coherent systems based on independent and identically distributed (i.i.d.)
components with a continuous lifetime distribution. Some well-known examples of coherent
systems are the series system, parallel system, and k-out-of-m system, which is operational
when at least k of the m components are functioning.

For a coherent system with m components, the system signature is a vector of length m, s =
(s1, . . . , sm), with the j th component representing the probability of the system failing due to the
j th ordered component failure. More formally, if the component lifetimes X1, . . . , Xm ∼ F ,
where F is continuous, and X1:m, . . . , Xm:m represent their order statistics, then, if T represents
the lifetime of the system, for j = 1, 2, . . . , m, we have

sj = P(T = Xj :m).

As noted in [6], the above representation is free of F under the stated assumptions and satisfies
0 ≤ sj (j = 1, . . . , m) and

∑m
j=1 sj = 1. For example, the signature of the k-out-of-m system

is defined by the condition sm−k+1 = 1.
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Ordered system signatures 83

Given the system signature, the system reliability can be readily presented as

P(T > t) =
m∑

j=1

sjP(Xj :m > t) =
m∑

j=1

sj

j−1∑
i=0

(
m

i

)
[F(t)]i[1 − F(t)]m−i .

Much work has been done with regard to the properties of such representations and some others,
and their applications. For a detailed review of all these developments, we refer the reader to
the monograph of Samaniego [7].

Computation of signatures for complex systems can be quite intensive. Recently, Gertsbakh
et al. [4] considered special cases in which the computational burden can be reduced. Specif-
ically, they considered meta-systems wherein the modules are arranged into either series or
parallel, and more generally recurrent systems. The signature for the meta-systems were easily
obtained in these special cases.

Here, we consider a problem which arises in a different context and is a variation of the above
scenario. That is, given a meta-system which failed due to its ith subsystem or module, what
is the conditional signature of the ith module? We will refer to such a conditional signature
vector as the ordered system signature. Such a representation could be useful for the analysis of
meta-systems; see, for example, [9]. As done in [1], nonparametric inference may be developed
based on the ordered system lifetimes.

The rest of this paper is organized as follows. In Section 2 we will formally define the
ordered system signatures and establish some interesting properties. Then in Section 3 we will
consider some special cases and illustrate the results developed here.

2. The ordered system signature

Let us consider a life-test where n independent coherent systems are observed. We assume
that the systems have m components each and share a system signature s. The component life-
times X

(k)
1 , . . . , X

(k)
m , 1 ≤ k ≤ n, are i.i.d. with a common continuous distribution function F .

Let us denote the ordered component lifetimes of the kth system by X
(k)
1:m, . . . , X

(k)
m:m, and the

corresponding system lifetime by Tk . Now, let the system lifetimes T1, . . . , Tn be arranged in
ascending order to give the ordered system lifetimes T1:n, . . . , Tn:n.

It is intuitive to think that when s is nontrivial (i.e. not a k-out-of-m system), early systems’
failures are more likely to have failed due to critical components. More generally, this means
that the signature vector of the ith ordered system lifetime will change accordingly. The ordered
system signature s(i:n) = (s

(i:n)
1 , . . . , s

(i:n)
m ) is thus defined as

s
(i:n)
j =

n∑
k=1

P(Ti:n = X
(k)
j :m), j = 1, 2, . . . , m,

which is the probability the ith module failure occurred to a module which failed due to the
j th ordered component failure. Under the assumption of i.i.d. continuous system lifetimes, we
have the equivalent relation

s
(i:n)
j = P(Tk = X

(k)
j :m | Ti:n = Tk), j = 1, 2, . . . , m,

for any k = 1, 2, . . . , n.
Since the underlying system signature is free of the component lifetime distribution, it would

be natural to expect a similar property to hold for the ordered system signature. This intuition
is in fact confirmed in the following proposition.
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84 N. BALAKRISHNAN AND W. VOLTERMAN

Proposition 1. The vector s(i:n) = (s
(i:n)
1 , . . . , s

(i:n)
m ) is free of the underlying component life-

time distribution F .

Proof. Let �j represent the number of modules which failed due to the j th ordered com-
ponent failure for j = 1, 2, . . . , m. Under the assumption of the independence of modules,
we have (�1, . . . , �m) to be distributed as multinomial with parameters (n, s1, . . . , sm). Let
L = {� = (�1, . . . , �m) : �1 + · · · + �m = n}. Then it follows that

s
(i:n)
j =

∑
L

(
n

�1, . . . , �m

){ m∏
k=1

s
�k

k

}
p

(i:n)
j |� , (1)

where p
(i:n)
j |� is the probability that the ith module failed due to the j th ordered component failure,

given that �k modules failed due to the kth ordered component failure for k = 1, 2, . . . , m.
The event that the ith failed module is due to the j th ordered component failure, given �, can

be decomposed into orderings of X
(k)
jk :m. Such orderings of continuous and independent order

statistics are distribution free, and, thus, so is p
(i:n)
j |� .

Remark 1. We can obtain s
(i:n)
j by rephrasing the life-test in terms of a meta-system instead.

Given a coherent meta-system with n modules, having a common signature s, which failed
due to the ith module, what is the probability that this module failed due to its j th ordered
component failure? In this context s

(i:n)
j can be viewed as a conditional probability under the

assumption of independent modules with common system signature s.
When viewing the ordered system lifetimes in terms of a conditional probability in a meta-

system, if the modules are neither independent nor have a common signature s, then (1) will
not hold. Furthermore, when the modules do not have common signature, the ordered system
signature will in fact depend both on the structure of the system and the placement of the
modules within the system.

It is clear that (1) provides a direct method for the computation of the ordered system
signatures which can be expressed in two parts: one depending only on the common signature s,
and the other involving a probability of orderings amongst order statistics which is free of s.
Unfortunately, this also reveals that to obtain s(i:n) a large number of probabilities involving
permutations of continuous and independent order statistics must be computed, even if only
once. When nm is small, this is quite feasible, but when nm becomes large, the required
computation becomes quite heavy. However, the number of ordering probabilities that need to
be computed can be reduced by noting the following.

Lemma 1. The conditional probabilities p
(i:n)
j |� satisfy

�j = n �⇒ p
(i:n)
j |� = 1, (2)

�j = 0 �⇒ p
(i:n)
j |� = 0, (3)

n∑
i=1

p
(i:n)
j |� = �j , (4)

p
(i:n)
j |� = p

(n−i+1:n)
m−j+1|rev�, (5)

where rev � = (�m, . . . , �1) is simply the reverse ordering of � = (�1, . . . , �m).

Proof. Equations (2) and (3) are trivially true, whereas (4) follows as, conditioning on
observing exactly �j systems failing due to the j th ordered component failure, the total number
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over all ordered system lifetimes must be preserved. For (5), the left-hand side is the probability
of a class of orderings of order statistics (OS) from distribution FX. However, using the
transformation X → −X, the considered probability is equivalent to the probability on the
right based on OS from F−X. Since these probabilities are distribution-free, they must be
identical.

To further reduce the necessary computations, we observe the following.

Corollary 1. For any signature vector s and all n = 1, 2, 3, . . ., s(i:n)
j = 0 if and only if sj = 0.

Corollary 1 follows immediately from (1), (3), and the nonnegativity of the signature vector.
With this, we need only compute p

(i:n)
j |� , where �j = 0 for all j such that sj = 0.

An alternate representation to (1) is

s
(i:n)
j =

n∑
�j =1

(
n

�j

)
s
�n

j (1 − sj )
n−�j p

(i:n)
j |�j

, (6)

where p
(i:n)
j |�j

is the probability that the ith module failed due to the j th ordered component failure,
given that exactly �j modules failed due to the j th ordered component failure. Generally, p(i:n)

j |�j

will depend on the system signature s.
The ordered system signature vectors satisfy some other interesting properties which can

also lead to some simplification in the computation.

Proposition 2. The ordered system signatures satisfy

1

n

n∑
i=1

s(i:n) = s

and
rev s(i:n) = (rev s)(n−i+1:n).

Proof. For the first part, we note that

n∑
i=1

s
(i:n)
j =

n∑
i=1

∑
L

(
n

�1, . . . , �m

){ m∏
k=1

s
�k

k

}
p

(i:n)
j |� =

∑
L

(
n

�1, . . . , �m

){ m∏
k=1

s
�k

k

}
�j ,

which follows immediately from (4). The final expression can be viewed as an expectation
of the j th component of a multinomial random variable, and the required result then follows
immediately.

For the second part, � can be relabeled as rev �. Neither the multinomial coefficient nor the
product

∏
s
�k

k is changed. The result then follows from (5).

Corollary 2. If the system signature is symmetric (i.e. s = rev s), then the ordered system
signatures satisfy the following symmetry property:

rev s(i:n) = s(n−i+1:n).

The corollary follows immediately from Proposition 2.
Consider the partial ordering between signatures based on the same number of componentsm,

as follows. We say that s≥st(≤st)s
′ if

∑k
j=1 sj≤(≥)

∑k
j=1 s′

j for all k = 1, 2, . . . , m. See
[5] where this ordering between signature vectors is used to imply ordering between the
corresponding system lifetimes. Such orderings have also been used in other contexts, such as
in comparing progressive censoring schemes [3].
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Proposition 3. For any 1 ≤ i1 < i2 ≤ n, the ordered system lifetimes satisfy s(i1:n) ≤st s(i2:n).
In addition, if s(i1:n) ≥st s(i2:n) for any 1 ≤ i1 < i2 ≤ n then s is the signature for a k-out-of-m
system.

Proof. For proving the first part, we only need to show that
∑k

j=1 p
(i1:n)
j |� ≥ ∑k

j=1 p
(i2:n)
j |� ,

k = 1, 2, . . . , m. Each sum can be seen as the probability that the ith system failure had no
more than k components failed, conditional on �.

We say that Ti:n ∈ L if the ith system failed due to the failure of no more than k components,
and Ti:n ∈ U otherwise. Furthermore, if Ti:n fails due to the failure of exactly j components,
1 ≤ j ≤ k, we say that Ti:n = Lj , and if k + 1 ≤ j ≤ m, then Ti:n = Uj . So L = ⋃k

j=1 Lj

and U = ⋃m
k+1 Uj , and it follows that

k∑
j=1

p
(i1:n)
j |� = P(Ti1:n ∈ L | �)

= P(Ti1:n ∈ L, Ti2:n ∈ L | �) + P(Ti1:n ∈ L, Ti2:n ∈ U | �)

≥ P(Ti1:n ∈ L, Ti2:n ∈ L | �) + P(Ti1:n ∈ U, Ti2:n ∈ L | �)

= P(Ti2:n ∈ L | �)

=
k∑

j=1

p
(i2:n)
j |� .

To prove the inequality, we have

P(Ti1:n ∈ L, Ti2:n ∈ U | �) =
k∑

jL=1

m∑
jU =k+1

P(Ti1:n = LjL
, Ti2:n = UjU

| �)

≥
k∑

jL=1

m∑
jU =k+1

P(Ti1:n = UjU
, Ti2:n = LjL

| �)

= P(Ti1:n ∈ U, Ti2:n ∈ L | �).

The inequality follows by first conditioning on the i1th and i2th system failures failing at times
u and v, respectively, with u < v, and then unconditioning as

P(Ti1:n = LjL
, Ti2:n = UjU

| �)

=
∑
S∈S

∫ 1

0

∫ v

0
C(S, u, v, jU , jL)ujL−1(1 − u)m−jLvjU −1(1 − v)m−jU du dv

≥
∑
S∈S

∫ 1

0

∫ v

0
C(S, u, v, jU , jL)ujU −1(1 − u)m−jU vjL−1(1 − v)m−jL du dv

= P(Ti1:n = UjU
, Ti2:n = LjL

| �).

Here S represents all possible placements S of the n − 2 remaining system lifetimes such that
(i1 − 1), (i2 − i1 − 1), and (n − i1 − i2) system lifetimes fall in (0, u), (u, v), and (v, 1),
respectively. Then C(S, u, v, jU , jL) is simply the product of the multinomial probabilities
representing the probability of S, and the normalizing constants for the appropriate beta
distributions. This constant is positive, and, for all 0 < u < v < 1, we have

ua−1(1 − u)m−avb−1(1 − v)m−b > ub−1(1 − u)m−bva−1(1 − v)m−a
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whenever a < b. Setting a = jL and b = jU yields the inequality. Equality holds if and only
if P(Ti1:n = LjL

, Ti2:n = UjU
| �) = 0, in which case the set S is empty.

To prove the second part, we have, for some i1 �= i2, s(i2:n) ≥st s(i1:n) and s(i1:n) ≥st s(i2:n),
which immediately implies that s(i1:n) = s(i2:n). Let κ be the smallest k such that sk > 0. If
only one such k exists, we are done. Let κ ′ be any other k such that sk > 0, and so κ < κ ′ and

0 =
κ∑

j=1

(s
(i1:n)
j − s

(i2:n)
j ) =

∑
L

(
n

�1, . . . , �m

){ m∏
k=1

s
�k

j

} κ∑
j=1

[p(i1:n)
j |� − p

(i2:n)
j |� ]. (7)

Let � be such that �κ = 1 and �κ ′ = n − 1 > 0. Then

κ∑
j=1

[p(i1:n)
j |� − p

(i2:n)
j |� ] = p

(i1:n)
κ|� − p

(i2:n)
κ|� > 0

as P(Ti1:n = Lκ, Ti2:n = Uκ ′ | �) > 0, since both �κ and �κ ′ are nonzero. Consequently, the
right-hand side of (7) is 0 only if sκsn−1

κ ′ = 0, which contradicts the existence of κ ′.

The reverse statement for the second part of Proposition 3 is trivially true as shown in the
subsequent section.

3. Special cases and computation

Closed-form solutions for the ordered system signatures are in general not available. How-
ever, there are two situations in which the ordered system signatures can be explicitly obtained.
The simplest such scenario is the k-out-of-m system. Equations (1) and (6) both simplify
trivially, so that s(i:n) = s for i = 1, 2, . . . , n in this case.

A more interesting case that can be handled is the uniform signature, that is, when s =
(1/m, . . . , 1/m) is a signature vector of size m. In such a case, the system lifetime T has
the same distribution as the individual component lifetimes. Using this fact, a combinatorial
argument can then be used to show that, for j = 1, 2, . . . , m and i = 1, 2, . . . , n, we have

s
(i:n)
j =

(
i+j−2
j−1

)(
m+n−i−j

m−j

)
(
m+n−1

n

) . (8)

While s = (1/m, . . . , 1/m) is not the signature vector of a coherent system itself and is in fact
the signature of a mixed system, (8) can be used to either further reduce the computation of the
conditional probabilities p

(i:n)
j |� , or for the purpose of verifying the computations. See [2] for a

discussion on mixed systems.

3.1. Examples

We consider the computation of the ordered system signatures for some specific cases of m

and n to illustrate the results established in the preceding section. In Tables 1–4 we present the
conditional probabilities p

(i:n)
j |� necessary to compute all ordered system signatures with three

and four components for sample sizes 2 and 3. The required computations were reduced using
Lemma 1, so that for Tables 1, 2, 3, and 4 only 2, 8, 4, and 20 conditional probabilities p

(i:n)
j |�

were explicitly computed, respectively. The uniform ordered system signature in (8) was used
to verify the correctness of the computations.

The ordered system signatures for all coherent systems with three or four components are
presented in Table 5, which have been computed from (1) with the conditional probabilities
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Table 1: Conditional probabilities p
(i:n)
j |� for i = 1, 2, . . . , n, j = 1, 2, . . . , m, m = 3, and n = 2.

(�1, �2, �3)
i j

(1, 1, 0) (1, 0, 1) (0, 1, 1)

1 1 4
5

19
20 0

2 1
5 0 4

5

3 0 1
20

1
5

2 1 1
5

1
20 0

2 4
5 0 1

5

3 0 19
20

4
5

Table 2: Conditional probabilities p
(i:n)
j |� for i = 1, 2, . . . , n, j = 1, 2, . . . , m, m = 3, and n = 3.

(�1, �2, �3)
i j

(2, 1, 0) (2, 0, 1) (1, 2, 0) (0, 2, 1) (1, 0, 2) (0, 1, 2) (1, 1, 1)

1 1 11
12

83
84

29
42 0 383

420 0 131
168

2 1
12 0 13

42
191
210 0 287

420
32
168

3 0 1
84 0 19

210
37

420
133
420

5
168

2 1 23
30

97
105

23
105 0 8

105 0 32
168

2 7
30 0 82

105
82
105 0 7

30
104
168

3 0 8
105 0 23

105
97

105
23
30

32
168

3 1 133
420

37
420

19
210 0 1

84 0 5
168

2 287
420 0 191

210
13
42 0 1

12
32
168

3 0 383
420 0 29

42
83
84

11
12

131
168

Table 3: Conditional probabilities p
(i:n)
j |� for i = 1, 2, . . . , n, j = 1, 2, . . . , m, m = 4, and n = 2.

(�1, �2, �3, �4)
i j

(1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1) (0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, 1)

1 1 11
14

13
14

69
70 0 0 0

2 3
14 0 0 53

70
13
14 0

3 0 1
14 0 17

70 0 11
14

4 0 0 1
70 0 1

14
3

14

2 1 3
14

1
14

1
70 0 0 0

2 11
14 0 0 17

70
1

14 0

3 0 13
14 0 53

70 0 3
14

4 0 0 69
70 0 13

14
11
14
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Ta
bl

e
4:

C
on

di
tio

na
lp

ro
ba

bi
lit

ie
s
p

(i
:n)

j
|�

fo
r
i
=

1,
2,

..
.,

n
,j

=
1,

2,
..

.,
m

,m
=

4,
n

=
3.

(�
1
,
�

2
,
�

3
,
�

4
)

i
j

(2
,1

,0
,0

)(
2,

0,
1,

0)
(2

,0
,0

,1
)(

1,
2,

0,
0)

(0
,2

,1
,0

)(
0,

2,
0,

1)
(1

,0
,2

,0
)(

0,
1,

2,
0)

(0
,0

,2
,1

)(
1,

0,
0,

2)
(0

,1
,0

,2
)(

0,
0,

1,
2)

(1
,1

,1
,0

)(
1,

1,
0,

1)
(1

,0
,1

,1
)(

0,
1,

1,
1)

1
1

10 11
54 55

49
4

49
5

37 55
0

0
29 33

0
0

33
73

34
65

0
0

25 33
43 55

10
63

11
55

0

2
1 11

0
0

18 55
14

6
16

5
22

6
23

1
0

72
7

11
55

0
0

33
7

38
5

0
1 5

7 33
0

84
1

11
55

3
0

1 55
0

0
19 16

5
0

4 33
42

8
11

55
34

6
38

5
0

0
51 77

7 16
5

0
16 23

1
8 35

4
0

0
1 49
5

0
0

5 23
1

0
0

39 38
5

92 34
65

48 38
5

26 77
0

1 16
5

4 38
5

10 23
1

2
1

58 77
34

4
38

5
67

6
69

3
87 38

5
0

0
23 23

1
0

0
17 69

3
0

0
46 23

1
16 77

17 23
1

0

2
19 77

0
0

29
8

38
5

17
2

23
1

20
8

23
1

0
59 23

1
0

0
41 38

5
0

4 7
16

6
23

1
0

53 23
1

3
0

41 38
5

0
0

59 23
1

0
20

8
23

1
17

2
23

1
29

8
38

5
0

0
19 77

53 23
1

0
16

6
23

1
4 7

4
0

0
17 69

3
0

0
23 23

1
0

0
87 38

5
67

6
69

3
34

4
38

5
58 77

0
17 23

1
16 77

46 23
1

3
1

26 77
48 38

5
92 34

65
39 38

5
0

0
5 23
1

0
0

1 49
5

0
0

10 23
1

4 38
5

1 16
5

0

2
51 77

0
0

34
6

38
5

42
8

11
55

4 33
0

19 16
5

0
0

1 55
0

8 35
16 23

1
0

7 16
5

3
0

33
7

38
5

0
0

72
7

11
55

0
22

6
23

1
14

6
16

5
18 55

0
0

1 11
84

1
11

55
0

7 33
1 5

4
0

0
33

73
34

65
0

0
29 33

0
0

37 55
49

4
49

5
54 55

10 11
0

10
63

11
55

43 55
25 33
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Table 5: List of ordered system signatures for all system signatures s of coherent systems of size 3 and
4, omitting k-out-of-m systems and systems with reverse signatures.

m = 3 and n = 2, 3

s = 1
3 (1, 2, 0)

s(1:2) = 1
15 (7, 8, 0) s(2:2) = 1

15 (3, 12, 0)

s(1:3) = 1
210 (115, 95, 0) s(2:3) = 1

210 (64, 146, 0) s(3:3) = 1
210 (31, 179, 0)

m = 4 and n = 2, 3

s = 1
2 (1, 1, 0, 0)

s(1:2) = 1
14 (9, 5, 0, 0) s(2:2) = 1

14 (5, 9, 0, 0)

s(1:3) = 1
770 (553, 217, 0, 0) s(2:3) = 1

770 (379, 391, 0, 0) s(3:3) = 1
770 (223, 547, 0, 0)

s = 1
4 (1, 3, 0, 0)

s(1:2) = 1
14 (5, 9, 0, 0) s(2:2) = 1

14 (2, 12, 0, 0)

s(1:3) = 1
1540 (658, 882, 0, 0) s(2:3) = 1

1540 (334, 1206, 0, 0) s(3:3) = 1
1540 (163, 1377, 0, 0)

s = 1
12 (3, 7, 2, 0)

s(1:2) = 1
420 (155, 231, 34, 0) s(2:2) = 1

420 (55, 259, 106, 0)

s(1:3) = 1
9240 (4123, 4641, 476, 0) s(2:3) = 1

9240 (1984, 5964, 1292, 0) s(3:3) = 1
9240 (823, 5565, 2852, 0)

s = 1
4 (1, 1, 2, 0)

s(1:2) = 1
140 (55, 39, 46, 0) s(2:2) = 1

140 (15, 31, 94, 0)

s(1:3) = 1
3080 (1505, 843, 732, 0) s(2:3) = 1

3080 (620, 888, 1572, 0) s(3:3) = 1
3080 (185, 579, 2316, 0)

s = 1
6 (0, 5, 1, 0)

s(1:2) = 1
21 (0, 19, 2, 0) s(2:2) = 1

21 (0, 16, 5, 0)

s(1:3) = 1
924 (0, 859, 65, 0) s(2:3) = 1

924 (790, 134) s(3:3) = 1
924 (0, 661, 263, 0)

s = 1
3 (0, 2, 1, 0)

s(1:2) = 1
105 (0, 82, 23, 0) s(2:2) = 1

105 (0, 58, 47, 0)

s(1:3) = 1
1155 (0, 958, 197, 0) s(2:3) = 1

1155 (0, 790, 365, 0) s(3:3) = 1
1155 (0, 562, 593, 0)

s = 1
2 (0, 1, 1, 0)

s(1:2) = 1
35 (0, 22, 13, 0) s(2:2) = 1

35 (0, 13, 22, 0)

s(1:3) = 1
140 (0, 97, 43, ) s(2:3) = 1

140 (0, 70, 70, 0) s(3:3) = 1
140 (0, 43, 97, 0)

computed in Tables 1–4. The reader is referred to [8] for the computation of the signatures of
all coherent systems with three or four components. The k-out-of-m systems and the systems
with reverse ordered system signatures have been omitted from Table 5.

It should be noted that, for coherent systems, it is not necessary to obtain all conditional
probabilities p

(i:n)
j |� . For example, when � = (1, 0, 1), the probability of observing such an �

is 0. However, for mixed systems with arbitrary signatures, it would be necessary to obtain all
conditional probabilities p

(i:n)
j |� .
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