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INTRODUCTION 

The addition of seismic parameters to stellar-model calibrations substantially 
increases the constraints one can place on the properties of stars. We present 
some preliminary calculations to assess the accuracy with which certain stellar 
parameters can be inferred. For simplicity we use just two of the three most 
basic seismic parameters characterizing the low-degree p modes that might be 
measured from intensity variations by instruments such as photometers planned 
for the ESA spacecraft PRISMA. We ascertain the accuracy of a calibration of 
an isolated star and of a cluster of N solar-type stars. 

THE SEISMIC CONSTRAINTS 

We employ two seismic parameters A and do, defined in the manner of Gough 
and Novotny (1990) and obtained from fits of Tassoul's (1980) asymptotic for­
mula to the frequency set. These parameters are essentially representative values 
of A n | = unj - i>n_i,/ and dn0 = vn,o - fn-1,2, where unj is the cyclic frequency 
of the mode of order n and degree /. The frequency separation A depends on 
the gross structure of the star, principally on M/R3, which is proportional to 
the mean density. The separation do depends strongly on the variation of sound 
speed in the core, and is thus sensitive to the amount of helium that has been 
produced by the nuclear reactions; do is therefore sensitive to the age of the 
star. We do not use $, a representative value of vn,l/& - (n + \l), because it 
measures conditions near the stellar surface and is not well modelled by theory. 

As Christensen-Dalsgaard (1986) has pointed out, the mass M and age t 
of a late-type main-sequence star could be determined from A and d0, if only 
the composition and mixing-length parameter a were known and if the stellar 
evolution theory were presumed to be correct. But if the composition and a are 
not known, additional astronomical data must be used. We ask how well the 
stellar parameters can then be determined. 

Stellar models are typically denned by M, a, t and the initial hydrogen 
and heavy-element abundances X and Z; we denote these parameters by a,- (i = 
1, 2,..., 5) = (In M, In a, In t, In X, In Z). They predict ak = (In R, In L, A, d0), 
where R and L are the radius and luminosity of the star. The problem in hand 
is to determine from these models how sensitively the inferred properties of stars 
depend on errors in the observations. 
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ISOLATED STARS 

As an example, consider a star for which /?,• = (In Te, In L, Z/X, A, d0), where 
Te is effective temperature, have been measured. In this and in the subsequent 
section, we consider the seismic parameters A and do to have been determined 
from modes with 0 < / < 2 and 14 < n + \l < 28. The sensitivities of the 
inferred parameters bk = (lnt, InM, lnY, In a) , where Y = 1 — X — Z, are 
obtained simply by transforming the partial derivatives dak/dai of the theory 
to the corresponding derivatives dbkjdPi in the space of observations. 

Derivatives ddk/dcti for a 1M© stellar model of age t = 4.6 X 109y in which 
the mixing length was taken to be a pressure scale heights are listed in Table I. 
They were computed by linear regression against sequences of five models with 
varying a, and fixed ctj(j ^ i). Their transforms dbk/dPi, multiplied by perhaps 
somewhat optimistic observational errors 6 Pi, are listed in Table II. Thus the 
entries in Table II represent the corresponding contributions to the errors in the 
inferred values of 6*. Of course, each row scales linearly with the presumed error 
Sfii in Pi. The total standard errors, for the values of 6Pi (assumed uncorrected) 
listed in the second column, are recorded in the bottom row. It is interesting to 
observe in Table II that age is most susceptible to errors in do, as might have 
been expected. The accuracy of the other stellar properties depends mainly on 
the errors in L. 

TABLE I Sensitivity of the properties a* of a stellar model to the control 
parameters a,-. The unit of A and do is /iHz. 

dak/daj 

ak 
a, 

InM 
In a 
ln< 

lnX 
InZ 

Infl 

2.00 
-0.21 

0.16 
-1.62 
-0.16 

l n i 

6.09 
0.05 
0.40 

-6.25 
-0.79 

A 

-320 
39.8 

-31.0 
308 

30.8 

do 

-27.9 
0.97 

-6.75 
31.3 
2.79 

It is a straightforward matter to transform to a five-dimensional space 
spanned by a different set of Pi; for example, one might replace Te by sur­
face gravity g. Alternatively, one might suppose that the dimension of the space 
of observations is greater than five, say, by adding g to the data, so that the 
calibration problem is formally overdetermined. One can then use this property 
to reduce the formal uncertainty in the inferences. Of course, one could obtain 
more information about the star by analysing the individual frequencies vnj 
rather than only the gross parameters A and do- Such an analysis is presented 
by Gough and Kosovichev (these proceedings). 

CALIBRATION OF A SET OF SIMILAR STARS IN A CLUSTER 

The members of a star cluster are normally assumed to have the same chemical 
composition and the same age. These constraints can reduce the uncertainty in 
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TABLE II Errors 6bk for an isolated star induced by the errors <5/?, listed 
in column 2. The last row is the total error in bk, assuming that Sfii are 
independent. 

{dbkldfStfpj 

Pi 

lnTe 

In I 
Z/X 

A 
do 

M 

0.005 
0.1 
0.003 
0.2 pHz 
0.5/tHz 

All 

St/t SM/M SY/Y Sala 

-0.017 -0.031 0.082 -0.024 
0.005 0.153 -0.353 0.209 

-0.020 -0.001 0.040 0.012 
0.003 0.003 -0.009 0.008 

-0.112 -0.001 0.023 -0.033 

0.12 0.16 0.37 0.21 

the determination of Y and t dramatically. We denote the control parameters of 
stellar evolution theory for each star s by a* = (In M*, In a*, In t, In X, In Z) and 
the predicted properties by ak = (In R',hiLs, A * , ^ ) . Note that since the value 
of the mixing length is an assumption of the theory, the parameter a* must be 
permitted to be different for each star. We consider an example in which the 
values of f3f = (InT*, lnZ*, A*, rig, Z/X) have been measured with standard 
error crt- in a set of N solar-type stars of a cluster. We assume that the stars are 
sufficiently similar that their properties can be obtained by linearization about 
our stellar model of the previous section, using the partial derivatives in Table 
I. Moreover, for simplicity, we assume cr; to be the same for all the stars. The 
calibration is an overdetermined problem (if N > 2), and we carry it out by 
minimizing amongst bk = (In Ms, In a", In t, In Y, In Z) the deviation 

» i 

where j3*(bk) are the result of theory, obtained by transforming a'k{a\); and 
/?obs* are measured values. We do not assume stellar evolution theory to be 
perfect, so the minimum value of A"2 would not necessarily be zero in the absence 
of observational errors. But in the presence of random errors 6(3' in /?*bsi, errors 
Sb'k in bk arise. Let the contribution from 60' to the standard deviation of 6b'k be 
eki. Then we can define the error sensitivity to be deki/d<Ti. Error sensitivities 
for a group of 10 stars are listed in Table III. In this example, we have assumed 
the errors 6f3f in the intrinsic quantities /?,• (»' = 1,2,3,4) to be uncorrelated. 
The quantity Z/X, on the other hand, is assumed to be a cluster average, and 
its error is common to every star. In reality, there is also a common contribution 
to the error in ln i 4 , for example, which arises from an error in the measurement 
of the distance to the cluster, so that the errors £/?| are not wholly uncorrelated. 
However, we have ignored that complication here, which results in the error 
sensitivities being independent of CT,-. The bottom row in Table III provides the 
total uncertainty in the calibration. Those entries were computed assuming that 
the errors for different i are uncorrelated. 
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TABLE III Error sensitivities des
kJdoi of the calibration of a cluster of 

10 stars to observational errors in P^si w*th standard deviation <7,-, the 
unit of CT3 and CT4 being /xHz. The measurement errors for each star were 
assumed to be uncorrected for i = 1,2,3,4, and the error in Z/X (i = 5) 
was taken to be common to all the stars. The bottom row is the total 
uncertainty in b'k obtained by adopting the values of cr, listed in column 2. 

For clarity, we have adopted the notation: e'g<T—' for 9eft/3tr,-, etc. 

fit 

lnT/ 
InL" 

A3 

d'0 

Z/X 

°i 

0.005 
0.1 
0.2/zHz 
0.5/iHz 
0.005 

All 

9e(lnAP) defined) 9e(lnt) de(lnY) 3e(lnZ) 
3<r,- dai dai d<Xi Boi 

2.06 5.12 1.05 5.20 1.78 
0.49 0.66 0.02 1.12 0.38 

0.005 0.015 0.005 0.014 0.005 
0.001 0.022 0.071 0.014 0.005 

0.02 0.41 6.73 13.5 31.9 

0.05 0.07 0.05 0.13 0.16 

The redundancy amongst the measurements that has been introduced by 
assuming that age and composition are the same for all the stars has caused 
a degree of cancellation amongst the errors. Comparison of Tables II and III 
reveals that the uncertainties in all the calibrated quantities have been reduced, 
notwithstanding the increased value of the uncertainty in Z/X that has been 
adopted. Larger values of N lead to a further reduction, but the errors in 
the intrinsic variables In M' and In a* soon stabilize. The errors in the global 
quantities In t, In Y and In Z continue to decline, approximately in proportion to 
N~ll2. Indeed, if it is assumed that cr, (i = 1,2,3,4) are independent of TV, but 
that <r5 is proportional to JV-1/2, as one might expect from a cluster average, 
then the standard erors e'ki in the global quantities bk (k — 3,4,5) eventually 
decline to zero strictly in proportion to TV-1/2. 

It is straightforward to include other information in the analysis, such as 
g°, as it is, also, to take correlated errors into account. In particular, in view of 
the high sensitivity of the inferred values of b\ to Ls, such a calibration might 
lead to a determination of the distance to the cluster that is more accurate than 
the methods currently in use. We shall report on ou« analysis in more detail 
elsewhere. 
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