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THE UNTRACEABLE EVENTS METHOD
FOR ABSORBING PROCESSES
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Abstract

In this paper we propose a new method of determining the stability of queueing systems.
We attain it using the absorbing process and introduce the untraceable events method
to show the existence of the absorbing process. The advantage of our method is that
we are able to discuss the stability of various variables for both discrete and continuous
parameters in a general framework with nonstationary input. An untraceable event has
the property that the state loses the memory of its origin. In a concrete model, we use
the boundedness of the state at an epoch in time with respect to the initial condition and
choose the form of the untraceable event corresponding to the input distribution.
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1. Introduction

In the fundamental definition, a model of a queueing system or related stochastic phe-
nomenon is called stable if the probability distribution over the states, as a function of time,
converges to a proper distribution which is independent of initial conditions. The term ‘stability’
is sometimes used in several wider senses (see, e.g. [17] and [7, p. 30]). The stability problem
is concerned with determining whether or not a particular model is stable in such fundamental
or wider senses.

Much has been written about the stability of queueing systems. Some authors have studied
the regenerative process and many have applied Markov theory to it (see [18] and [8]). This
paper belongs to the group stemming from Loynes’ paper [13]. We select the state vector xt at
time epoch t such that, from an arbitrary time r on, the sample path xt , t ≥ r , is completely
determined by the initial state, xr = a, and input, φ. We denote this sample path by xr

t (φ, a).
Before introducing the probability, a new state process,

x∗
t (φ) = lim

r→−∞ xr
t (φ, a),

is constructed, given that this limit does not depend on the initial state a ∈ X̄. Thus, the
parameter space Z on which the times r and t move must contain the past, i.e.

Z = N = {. . . ,−1, 0, 1, . . .} or Z = R = (−∞, ∞).

Loynes [13] dealt with customer-stationary input and Kalähne [11] dealt with time-stationary
input. Their techniques are restricted to special models. Borovkov [2], [3, Chapter 7], [4]
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The untraceable events method for absorbing processes 653

introduced the renewing event A(t) with parameter L as the set of input elements φ such that
the state after t + L is represented by the part of the input after t , that is, the future state is
functionally independent of the past input. He showed that if P(A(0)) > 0 then the stability
holds under a customer-stationary input. Borovkov applied his method to only a few simple
models, and related papers [1], [6], [9], [10], [14], and [15] followed.

Since the customer stationarity of the input is a substantial factor in Borovkov’s proof, it
seems difficult or awkward to extend his result directly to the model with multiple inputs or
to the model with nonstationary or time-stationary input. In this paper we point out that we
can overcome these difficulties by showing the existence of the absorbing process introduced
in [16]. This implies a model setting different from Borovkov’s. Moreover, from the viewpoint
of the absorbing process, the important property of A(t) is not that it be determined by the future
input but that it have lost the memory of the initial epoch r and the initial state xr = a. We give
A(t) a new definition, in harmony with the absorbing process, and call it the untraceable event.
The untraceable event and the renewing event are similar in that they both use the functional
independence of the past in most applications. These events are different in that we can show
an example of the untraceable event without such independence.

Discussing stability via the absorbing process x∗
t (φ) has the following advantages. We can

deal with complicated state spaces. We can give a simple proof of Borovkov’s result. We can
treat nonstationarity and continuous-time parameters. We need not specialize the distribution
of the input a priori. We need only prove the existence of the absorbing process, because it
inherits certain properties, such as ergodicity, stationarity, periodicity, asymptotic stationarity,
and asymptotic mean stationarity (AMS) (see [16, Theorem 6.1 and Theorem 7.2]), from the
input process. Conversely, we can give these properties to the absorbing process by assuming
them of the input. Since the real process xr

t (φ, a) with fixed r and a is absorbed into the
absorbing process, its many properties are derived from the absorbing process. In particular,
the existence of its limiting distribution is guaranteed if we add the assumption of the stationarity
or asymptotic stationarity of the input to the existence condition of the absorbing process.

The continuous-parameter case is particularly useful. The representation of the input by
the point process on the real line is convenient for models with multiple inputs, like polling
systems. Moreover, the departure point process is represented by the counting measure, which
is the mapping h({x∗

t (φ)}) of the total absorbing process {x∗
t (φ) : −∞ < t < ∞}. Therefore,

it inherits the properties, such as ergodicity and stationarity, of the input.
In deriving the many kinds of stability, the distribution of the input must have probability 1

on M∗, the set of all inputs φ with absorbing process x∗
t (φ). To find M∗ directly in each model

seems difficult. The untraceable events method which this paper proposes finds a measurable
subset of M∗ instead of M∗ itself and shows a condition under which the input distribution has
probability 1 on this subset.

The outstanding advantage of the absorbing process is not only the generality of the dis-
tribution of the input, but also the generality of the model building. We must not lose these
generalities in finding the subset of M∗ described above. Fortunately, we expect that the set
of state vectors {xr

t (φ, a) : r < t, a ∈ X̄}, for fixed t and φ, occupies only part – often
the bounded part – of the state space X with probability 1 in many models. In the previous
papers [14] and [15], this fact was combined with the renewing event. Here we also assume
this fact to hold, and from it obtain our main result, Corollary 7.1. Since the proof of this
boundedness depends on the structure of each model and requires lengthy discussion, here we
present only one simple example, to help the reader’s understanding.

https://doi.org/10.1239/jap/1158784936 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784936


654 T. NAKATSUKA

2. Untraceable events

We consider a system with state vector xt for which, when the input φ is given, the following
relation holds:

xt = f (xs , φ, s, t) if s < t and (s, t) ∈ Z2. (2.1)

In this equation the parameter space Z is R = (−∞, ∞) or N = {0, ±1, ±2, . . .}. Let X be the
space of states and M be the space of inputs. Let x∗

t (φ) be the absorbing process with initial
state space X̄, and let M∗ ⊂ M be the space of inputs φ with absorbing process x∗

t (φ). We use
φ to denote an element of M , not a random input. We let xr

t (φ, a) = f (a, φ, r, t). If φ ∈ M∗
then xr

t (φ, a) = x∗
t (φ) (a ∈ X̄) for large t . For details, see [16]; we make Assumption 2.1

thereof.
Let � ≡ �(ω) be a random input which is the measurable mapping from the basic probability

space (�, σ (�), P) to (M, σ(M)). If P(D) = 1 for a measurable set D in M∗, we say that
there exists an absorbing process with probability 1. As stated in the introduction, if we know
that the existence condition of the absorbing process is satisfied, many stability problems about
xr

t (φ, a) are automatically solved, because the absorbing process inherits some properties of
the random input �. Therefore, the technical aim of this paper is to find the condition on P
under which a measurable subset of M∗ has probability 1.

First of all we will find a subset of M∗. We show that the events with the following property
generate a subset of M∗. The notation Z̃ is used for a subset of Z which contains at least one
doubly infinite sequence.

Definition 2.1. Suppose that a set X̄ in X and a class {A(t) : t ∈ Z̃} of sets in M are given.
Assume that there is a positive function L(t, φ) satisfying limt→−∞{t + L(t, φ)} = −∞. If

xr
t+s(φ, a) = f (b, φ, t, t + s)

holds for all (r, t, a, b, s, φ) satisfying

t ∈ Z̃, r ≤ t, a ∈ X̄, b ∈ X̄, L(t, φ) ≤ s,

φ ∈ A(t), (r, t + s) ∈ Z2,

then we call {A(t)} the class of untraceable events with interval length L(t, φ) and set of initial
states X̄.

Remark 2.1. The function L(t, φ) is chosen to be constant, L(t, φ) = L, in most applications.
We suppress φ and write L(t) ≡ L(t, φ) if no confusion will occur.

Remark 2.2. If the condition in Definition 2.1 is satisfied then, when t and φ are fixed,
xr

t+s(φ, a) does not depend on the initial condition (r, a) for any s larger than L(t). This
means that we cannot trace the origin from the current state after t + L(t); in other words, the
state loses the memory of its initial condition. We thus call the set defined in Definition 2.1 the
untraceable event.

Remark 2.3. If X̄ = X, Definition 2.1 becomes meaningless in most models. In such cases it
is useful to select a sequence of sets X̄1, X̄2, . . . , such that X̄1 ⊂ X̄2 ⊂ · · · and

⋃∞
i=1 X̄i = X.

Let M∗
i be the set of all elements in M which have an absorbing process with initial state space

X̄i . From Theorem 2.2 of [16], the set M∗ with X̄ = X is given by M∗ = ⋂∞
i=1 M∗

i . If, for each
i, we can find the measurable subset D∗

i of M∗
i which has probability 1 for a given distribution
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of the input, the set
⋂∞

i=1 D∗
i is a subset of M∗ and has probability 1. Thus, we achieve our

aim by finding the untraceable events for each X̄i .
Loss of memory of the initial condition is also the essential property of the absorbing process.

This common property generates the following theorem.

Theorem 2.1. If an input φ has a class {A(t) : t ∈ Z̃} of untraceable events, with interval
length L(t) and a set of initial states X̄, such that φ ∈ A(tj ) for a doubly infinite sequence
{tj } ⊂ Z̃ with limj→−∞ tj = −∞ and limj→∞ tj = ∞, then φ is contained in the set M∗
with the same initial state space X̄.

Proof. Without loss of generality we assume that tj + L(tj ) < tj+1 + L(tj+1) for every
j ∈ N. We define

x∗
t (φ) := f (b, φ, tj , t), tj + L(tj ) ≤ t < tj+1 + L(tj+1), b ∈ X̄.

Definition 2.1 shows that this x∗
t (φ) is independent of the selection of b and that xr

t (φ, a) =
x∗

t (φ) for any (r, t, a) such that r ≤ tj < tj + L(tj ) ≤ t and a ∈ X̄. This means that
the function h(r, a, φ) of [16, Equation (2.2)] is smaller than or equal to tj + L(tj ). Hence,
limr→−∞ h(r, a, φ) = −∞ and x∗

t (φ) is the absorbing process.

For a class {B(t) : t ∈ Z̃} of subsets in M , we will often use the set of the form

�(B) ≡ �(B(t) : t ∈ Z̃) :=
{ ∞⋂

s=−∞

⋃
t≤s

B(t)

}
∩

{ ∞⋂
s=−∞

⋃
s≤t

B(t)

}
,

where s ∈ Z̃ and t ∈ Z̃. Using this notation, we can write Theorem 2.1 as �(A) ⊂ M∗.
In applications the measurability of A(t) is usually clear for any fixed t . We can choose the

countable set Z̃ in later sections in such a way that �(A) is measurable.

3. Method of untraceable events and main results

Our ultimate aim is to find the sufficient condition for the existence of a subset of M∗ with
probability 1. To do so we will use the fact that �(A) ⊂ M∗.

First, how do we construct the untraceable events? Let us consider the case in which,
for a fixed φ, the state xr

t (φ, a) at an arbitrarily fixed t exists in a certain set in X for any
(r, a), r ≤ t, a ∈ X̄. That is, while the strict proof of this assertion is necessary, in many
models there is a measurable set M1(t) with positive probability satisfying

M1(t) ⊂ {φ : xr
t (φ, a) ∈ Y for all r ≤ t and all a ∈ X̄} (3.1)

for a sufficiently wide and usually bounded set Y in X. Using this boundedness we will restrict
the state on the interval [t, t + L). That is, we construct a measurable set M2(t) such that

M2(t) ⊂ {φ : xt
t+L(φ, b) = xt

t+L(φ, a) for any (b, a) ∈ Y × X̄}.

If φ ∈ M1(t) ∩ M2(t) then xr
t+L(φ, a) does not depend on r ≤ t and a ∈ X̄. Hence,

A(t) = M1(t) ∩ M2(t) is the untraceable event and �(A) ⊂ M∗.
Second, we will consider the probability P(�(A)). In the case with customer-stationary

and ergodic input on the nonnegative integer domain {0, 1, 2, . . .}, Borovkov [4] (or [5, Theo-
rem 11.3]) gave a useful theorem. His proof is somewhat complicated. The untraceable events
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method gives a simple proof of his result, as follows. This theorem holds for both Z = N and
Z = R. It is applicable also for a periodic input distribution. We choose Z̃ = {jd : j ∈ N} ⊂ Z

for a positive number d , and let {Tt : t ∈ Z̃} be a group of measurable transformations on
(M, σ(M)).

Theorem 3.1. Assume that TsA(t) = A(t − s) for arbitrary t and s in Z̃. Assume that the input
� is stationary and ergodic with respect to Ts on Z̃. Then there exists an absorbing process
with probability 1, if P(A(0)) > 0.

Proof. From part (e1) of [12, Proposition 1.8, p. 6], or by Birkhoff’s ergodic theorem applied
to the set function of {ω : �(ω) ∈ A(0)}, we have Ttj �(ω) ∈ A(0) with probability 1 for a
certain doubly infinite sequence {tj (ω) ∈ Z̃}. This means that P(�(A(t) : t ∈ Z̃)) = 1.

We assume that we can prove that P(M1(0)) > 0 for a certain model. Then, if we
construct M2(t) satisfying P(M2(0) | M1(0)) > 0, we clearly obtain P(A(0)) > 0. Usually
the transformation Tt defined in the concrete model is the shift transformation satisfying

M1(t) = T−tM1(0) and M2(t) = T−tM2(0).

Therefore, from this theorem we obtain the existence of the absorbing process by showing the
positivity of P(M2(0) | M1(0)) and P(M1(0)) individually.

When it is difficult to prove P(M1(0)) > 0 directly, we usually consider members of an
increasing sequence of sets {Yδ} in place of Y in (3.1), and construct the sets M1(t, δ), M2(t, δ),
and Aδ(t) for each Yδ . Then we prove that

lim
δ→∞ P(M1(0, δ)) = 1, (3.2)

in which case there is a δ0 such that P(M1(0, δ0)) > 0. Since we do not know its value,
we choose M2(0, δ) such that P(M2(0, δ) | M1(0, δ)) > 0 for any δ. Then we can obtain
P(Aδ0(0)) > 0 and use Theorem 3.1. This method was first used in [14].

Third, in Sections 6 and 7 we consider nonstationary or nonergodic input with respect to
the transformation Tt . Let us consider the events Aδ(t) = M1(t, δ) ∩ M2(t, δ), δ ∈ �, on a
doubly infinite sequence . . . , t−1δ, t0δ, t1δ, . . . , · · · < t−1δ < t0δ < t1δ < · · · . Here � is a
countable set. Theorem 3.1 shows the existence of one class of untraceable events such that
P(�(Aδ)) = 1. However, it seems difficult to show such existence for nonstationary input. We
consider many classes such that limδ→∞ P(�(Aδ)) = 1 or, more generally,

P

(⋃
δ∈�

�(Aδ)

)
= 1. (3.3)

Let πjδ be the class of all subsets of M1(tjδ, δ) which have positive probabilities
and are represented as the intersections of the finite sets among M1(tiδ, δ), i ≤ j , and
M \ M2(tiδ, δ), i < j . In Section 6 we prove that if

inf−∞<j<∞ inf
D∈πjδ

P(M2(tjδ, δ) | D) > 0, (3.4)

then P(�(Aδ(tjδ, δ))) = P(�(M1(tjδ, δ))). Hence, (3.3) is reduced to

P

(⋃
δ∈�

�(M1(tjδ, δ))

)
= 1. (3.5)

We summarize our technique in the following theorem.
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Theorem 3.2. Assume that, for fixed initial state space X̄, there are measurable sets M1(t, δ)

and M2(t, δ) and a doubly infinite sequence Z̃δ = {tjδ : j ∈ N} for each δ ∈ � which satisfy
(3.4) and (3.5). Moreover, assume that, for every δ, {Aδ(t) = M1(t, δ) ∩ M2(t, δ) : t ∈ Z̃δ}
is the class of untraceable events. Then with probability 1 there exists an absorbing process
x∗

t (φ) with the initial state space X̄.

Fourth, in the concrete model we choose M2(t, δ) to satisfy (3.4) according to the distribution
of the input. However, (3.5) must be proved. We will use (3.2), because its proof is obtained
generally under a mild condition and needs neither stationarity nor ergodicity. Since (3.2)
does not imply (3.5), we need the additional assumption that we can use our main result
Corollary 7.1 (see below) with C(t, δ) = M1(t, δ). We can then achieve our aim under a wide
range of distributions of the input.

We often prove (3.2), even if we use Theorem 3.1. Therefore, though we must modify
M1(t, δ) a little, the result of Theorem 3.1 is extended under Corollary 7.1, which is then more
useful in application.

4. Borovkov event

In this section, which is independent of the others, we will clarify the relation between
Borovkov’s renewing event and the untraceable event. In Borovkov’s event the future state
is determined by the future input. We use this functional independence in applications. His
model setting is largely different from ours, so we will define the renewing event under our
setting. His definition uses both the future part and the past part of the input, so we represent
the input φ in the form of a marked point process in the continuous-parameter case and by
φ = (. . . , τ−1, τ 0, τ 1, . . .) in the discrete case.

Definition 4.1. We call the set A(t) the Borovkov event if A(t) has the following mapping g.
In the continuous-parameter case, let φ[t,∞) be the restriction of φ to the half-open interval
[t, ∞). If φ ∈ A(t) then

xr
t+s(φ, a) = g(s, Ttφ[t,∞))

for any r ≤ t, s ≥ L, and a ∈ X̄. In the discrete case, if φ ∈ A(n) then

xr
n+j (φ, a) = g(j, τn, τn+1, . . .)

for any r ≤ n, j ≥ L, and a ∈ X̄, where τn is the mark at the position n.

Borovkov called this the renewing event in his model setting. However, neither the renewing
event nor our event implies the probabilistic past–future independence, i.e. under the condition
� ∈ A(t), the future {xr

t+s(�, a) : s > L(t)} may be influenced by the stochastic behavior of
the past {e(n), τK(n) : e(n) < t}. Thus the term ‘renewing’ or ‘renovation’ is liable to cause
misunderstanding, so we call this the Borovkov event.

Clearly the Borovkov event is the untraceable event. The converse does not hold generally.
Our definition of the untraceable event does not need even the time parameter of φ. In the
Borovkov event the future state functionally depends on neither the initial condition nor the
past input. Our event can functionally depend on the past input. Consider an ordinary one-
server queueing system in which the service time τS(n) of the nth customer is represented by
the moving average process τS(n) = ∑∞

i=0 2−iεn−i . Define the input φ as the point process
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with mark {e(n + 1) − e(n), εn} instead of {e(n + 1) − e(n), τS(n)}. We let

A(n) = {φ : There is no customer in the system at e(n + L) when the system starts with an
arbitrary initial condition (r, a), r < n, a ∈ X̄}.

Since the waiting time Wn depends on εk for any k < n, the future {Wi : i ≥ n} with φ ∈ A(n)

is not determined only by the future input {εn, εn+1, . . .}. Thus, if the state of the system is Wn,
then A(n) is not the Borovkov event, but it is the untraceable event. That is, our untraceable
event does not always need the relation in Definition 4.1.

It seems difficult to extend Borovkov’s proof to nonstationary or time-stationary models
directly. The absorbing process is convenient in such cases and the untraceable event is naturally
compatible with it, so here we use the untraceable events method.

5. Example of a queueing system

As a simple example, we will construct the untraceable event in the ordinary one-server
queueing system with setup time. Customers arrive at our queueing system at times

· · · ≤ e(−1) ≤ e(0) < 0 ≤ e(1) ≤ e(2) ≤ · · · .

Let τS(n) be the service time of the nth customer. He has the associated setup time τ s
n. If

there are no customers in the system when the nth customer arrives, the server takes a setup
time of length τ s

n. Then the server begins service and continues to work according to a work-
conserving service discipline until no customers remain in the system. If the nth customer
finds other customers at his arrival, his setup time is not used. Brandt et al. [7, Theorem 5.8.4]
showed the existence of a strong solution for the waiting time for customer-stationary arrival
epochs. Here we consider the arrival epochs in as much generality as we can.

We consider the continuous-parameter case. The input φ is the counting measure whose
position is e(n). The mark of e(n) is τ (n) = {τS(n), τ s

n}. The elements of the state vector xt

consist of the remaining setup time, x(0), the remaining service time, x(1), of the customer
receiving the service, and the service times, x(2), x(3), . . . , of the waiting customers. If there is
no corresponding customer, we let x(i) = −1. Then the state is an infinite-dimensional vector
and the state space X is a subset of R

∞. This model has the relation xt = f (xs , Tsφ, t − s),
which is of the same type as (2.1). We let |xt | = ∑

i{x(i) : x(i) ≥ 0, i ≥ 0} and X̄ = {x : |x| ≤
ã}, for a certain number ã.

First we will show that the direct method like those of [11] and [13] is impossible. Consider
the following special input: e(n) = n − 1, τS

n = 0.5, and τ s
n = 0.6, for all n. Assume that the

initial state is idle and that the customer who arrives at r receives service after his setup time.
Then, if r is an even number, there is one customer just before 0. If r is an odd number, there
is no customer at this epoch. That is, xr

0(φ, a) depends on r .
We will choose the untraceable event satisfying (3.4) and (3.5) under the following assump-

tions.

(a) With probability 1, for a certain constant λ,

lim sup
n→−∞

−n

−e(n)
≤ λ and lim sup

n→∞
n

e(n)
≤ λ.

(b) The sequence of the two variables {τS(n), τ s
n} is independent, identically distributed, and

independent of arrival epochs.
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(c) λ E(τS(n)) < 1, E(τ s
n) < ∞, and P(τS(n) + τ s

n ≤ E(τS(n))) > 0.

(d) The input � has the AMS distribution of Corollary 7.1, or a related one.

Assumption (b) is not an essential condition, although it does affect the choice of untraceable
event.

In order to construct M1(t), we must find Y in (3.1). From (b) and (c) we have

lim
n→−∞

τ s
n

−n
= 0 and lim

n→−∞
1

−n

0∑
i=n

τS(i) = E(τS(n))

with probability 1. To satisfy (c) we choose a positive number ε such that E(τS(n))+2ε < λ−1.
For sufficiently large −n we have

1

−n

{
ã + τ s

n +
0∑

i=n

τS(i)

}
< E(τS(n)) + ε <

1

λ
− ε <

−e(n)

−n
.

This implies that this φ is contained in the measurable set

C(δ) =
{
φ : sup

n≤0

{ 0∑
i=n

τS(i) + τ s
n + ã + e(n)

}
< δ

}

for a certain value of δ. Hence, we have limδ→∞ P(C(δ)) = 1.
Next, if the customer arriving at e(n) < 0 finds no customer and remains until the time

epoch 0, we have |xr
0(φ, a)| = ∑0

i=n τS(i) + τ s
n + e(n). Therefore, |xr

0(φ, a)| < δ for φ in
C(δ). Hence, if φ ∈ T−tC(δ) then |xr+t

t (φ, a)| = |xr
0(Ttφ, a)| < δ. We will choose a subset

of T−tC(δ) to be M1(t), because T−tC(δ) satisfies (3.1) for Y = {x : |x| < δ}.
We use Corollary 7.1. We define the set of the input

H =
{
φ : lim sup

n→∞
n

e(n)
≤ λ

}
.

According to (c), there are positive numbers S̃, η, and υ satisfying (λ + η)S̃ < 1 − υ and
E(τS(n)) < S̃ < λ−1. We choose a number Lδ satisfying υLδ > δ. Let n(φ, δ) be the number
of customers arriving during the half-open interval [t, t + Lδ). We let

M1(t) = T−tC(δ) ∩ {φ : n(φ, δ) < (λ + η)Lδ} ∩ H. (5.1)

From (a), the probability of H is 1 and limδ→∞ P(n(�, δ) ≤ (λ + η)Lδ) = 1. Hence, (3.2)
holds.

The set C(t, δ) = M1(t) satisfies parts (ii), (iii), and (v) of Corollary 7.1. With respect to
part (iv), the set C(δ) of (5.1) is the nondecreasing set of δ. The elements of {φ : n(φ, δ) <

(λ + η)Lδ} ∩ H satisfy n(φ, ξ) < (λ + η)Lξ for all ξ larger than a sufficiently large ξφ .
Therefore, C(0, δ) satisfies (iv) and M1(t) satisfies (3.5). The set H is unnecessary in (5.1) if
we use Theorem 3.1.

Next, we choose M2(t) such that

M2(t) = {φ : τS(n) + τ s
n < S̃ if t ≤ e(n) < t + Lδ}. (5.2)
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Equation (3.4) holds from condition (b). That is,

inf−∞<j<∞ inf
D∈πj

P(M2(tj ) | D) ≥ P(τS(1) + τ s
1 < S̃)n(δ) > 0,

where n(δ) is the maximum integer smaller than (λ + η)Lδ . We let A(t) = M1(t) ∩ M2(t).
Finally, we must prove that A(t) is the untraceable event. Note that the condition (5.2) of

this set removes the counterexample (e(n) = n − 1, τS
n = 0.5, τ s

n = 0.6) which we showed
first.

Theorem 5.1. A(t) = M1(t) ∩ M2(t) is an untraceable event with interval length Lδ .

Proof. Consider an input φ ∈ M1(t) ∩ M2(t). Let e(n), n ≥ p, t ≤ e(p) ≤ e(p + 1) ≤
· · · ≤ e(p + n(φ, δ) − 1) < t + Lδ , be the arrival epochs of φ in [t, t + Lδ). We have
|xr

t (φ, a)| < δ and τS(n) + τ s
n < S̃ on [t, t + Lδ). Therefore, if there is an integer i ≥ p such

that

δ + (j − p)S̃ ≥ e(j) − t, j = p, . . . , i − 1,

δ + (i − p)S̃ < e(i) − t,
(5.3)

then there is no customer just before e(i), for every r < t and a ∈ X̄. When (5.3) does not
hold for i = p, . . . , p + n(φ, δ) − 1, we have

δ + n(φ, δ)S̃ < δ + (λ + η)S̃Lδ < δ + Lδ − υLδ < Lδ.

Hence, the system becomes idle at t +Lδ . Consequently, after t +Lδ the state does not depend
on (r, a).

By Corollary 7.1 and Theorem 3.2, the absorbing process x∗
t (φ) exists with probability 1

under the assumptions (a), (b), (c), and (d).

6. Proof of Theorem 3.2

We will consider the probability P(�(A)) or P(�(Aδ)) under a general input distribution.
If the decomposition representation A(t) = M1(t) ∩ M2(t) holds for t on a doubly infinite
sequence {tj } ⊂ Z̃, we have the relation

M∗ ⊃ �(A) ⊃ �(A(tj : j ∈ N)) ⊂ �(M1(tj : j ∈ N)).

In this section we show that P(�(A(tj ))) = P(�(M1(tj ))) under a certain condition.
We fix a doubly infinite sequence . . . , t−1, t0, t1, . . . , · · · < t−1 < t0 < t1 < · · · . Let πj be

the class defined in Section 3. Assumption (6.1), below, means that if � ∈ M1(tj ) then the event
M2(tj ) occurs with probability larger than a positive constant irrespective of the occurrence of
the past untraceable events A(ti).

Theorem 6.1. Assume that

inf−∞<j<∞ inf
D∈πj

P(M2(tj ) | D) > 0. (6.1)
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Then

P

( ∞⋂
i=−∞

⋃
j≥i

M1(tj ) −
∞⋂

i=−∞

⋃
j≥i

(M1(tj ) ∩ M2(tj ))

)
= 0, (6.2)

P

( ∞⋂
i=−∞

⋃
j≤i

M1(tj ) −
∞⋂

i=−∞

⋃
j≤i

(M1(tj ) ∩ M2(tj ))

)
= 0. (6.3)

Proof. As a preparation, we define, for a pair (p, φ) ∈ N × M , the integers s1, . . . , sv,

p ≤ s1 < · · · < sv , by φ ∈ M1(tsi ). The v ≡ v(φ) ≤ ∞ in this definition is the maximum
integer i such that φ ∈ M1(tsi ). We define

Dp,q = {φ : v(φ) ≥ q and φ /∈ M2(tsi ) for all i ≤ q}.

Since {φ : s1 = i} = {M \⋃i−1
j=p M1(tj )}∩M1(ti), as a function of φ s1 ≡ s1(φ) is measurable.

Similarly, si, v and Dp,q are all measurable. Thus,

P(Dp,q) =
∑

p≤j1<···<jq<∞
P(φ : si(φ) = ji and φ /∈ M2(tji

) for all i ≤ q)

=
∑

p≤j1<···<jq<∞
P((M \ M2(tjq )) ∩ D̃(j1, . . . , jq)),

where

D̃(j1, . . . , jq)

:= {φ : si(φ) = ji for all i, 1 ≤ i ≤ q, and φ /∈ M2(tji
) for all i, 1 ≤ i ≤ q − 1}.

If the probability of this set is positive, it is contained in πjq . Denoting the value of the left-hand
side of (6.1) by ξ , we obtain

P(Dp,q) ≤ (1 − ξ)
∑

p≤j1<···<jq<∞
· · ·

∑
p≤j1<···<jq<∞

P(D̃(j1, · · · , jq)) ≤ (1 − ξ) P(Dp,q−1).

Repeating this process yields P(Dp,q) ≤ (1 − ξ)q , which decreases to 0 as q → ∞.
Now consider (6.2). Let A = ⋂

i

⋃
j≥i (M1(tj ) ∩ M2(tj )) and B = ⋂

i

⋃
j≥i M1(tj ).

Clearly A ⊂ B. Assume that P(B \ A) > ε > 0. Then we find that there is an integer p such
that

P(φ : φ ∈ B and if φ ∈ M1(tj ) for j ≥ p, then φ /∈ M2(tj )) > ε. (6.4)

For this integer p, the left-hand side of (6.4) is contained in Dp,q for any q, meaning that (6.4)
is impossible, since limq→∞ P(Dp,q) = 0. Hence, (6.2) holds.

Next we consider (6.3). Let A = ⋂
i

⋃
j≤i (M1(tj ) ∩ M2(tj )) and B = ⋂

i

⋃
j≤i M1(tj ).

Let Ck,v be the set of inputs φ for which

(i) there are an infinite number of epochs tji
, i ≤ 0, · · · < tj−1 < tj0 , such that φ ∈ M1(tji

),
and

(ii) if φ ∈ M1(tj ) for j, k ≤ j ≤ v, then φ /∈ M2(tj ).
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Assume that P(B \ A) > ε > 0. If φ ∈ B \ A then φ ∈ C−∞,v for small v, meaning that
P(C−∞,v) > ε for a certain v. Let nk,v be the number of time epochs for which k ≤ ji ≤ v. If
φ ∈ Ck,v then limk→−∞ nk,v = ∞. Hence, we obtain

Dk,q ⊃ Ck,v ∩ {nk,v ≥ q} k→−∞−−−−→ C−∞,v

for any q. This is inconsistent with P(Dk,q) < (1 − ξ)q .

Proof of Theorem 3.2. From Theorem 6.1, we have

P(�(M1(tj , δ))) = P(�(M1(tj , δ) ∩ M2(tj , δ))) = P(�(A(tj , δ))).

Since � is a countable set, we have P(
⋃

δ �(Aδ)) = P(
⋃

δ �(M1δ)). Hence, the theorem
follows from (3.5).

7. limδ→∞ P(�(M1δ)) = 1 for AMS input

The purpose of this section is to obtain Corollary 7.1, which is used to mitigate the difficulty
of proving condition (3.5) of Theorem 3.2.

Lemma 7.1. Let {Mj(δ) : j ∈ N, δ > 0} be the sets in σ(M). If

lim
δ→∞ lim sup

j→−∞
P(Mj (δ)) = lim

δ→∞ lim sup
j→∞

P(Mj (δ)) = 1,

then limδ→∞ P(�(Mj (δ))) = 1.

Proof. We have

P

{
φ : φ /∈

⋃
j>k

Mj (δ) for an integer k

}
≤ 1 − lim sup

j→∞
P(Mj (δ))

δ→∞−−−→ 0.

Since a similar argument holds for j < k, the lemma follows.

Let µZ be the Lebesgue measure on Z when Z = R. When Z = N, it is the measure
such that µZ({n}) = 1 for n ∈ N and µZ(R \ N) = 0. Let {C(t, δ) : t ∈ Z, δ > 0} be a set
in σ(M). In applications, we let C(t, δ) = M1(t, δ). Equation (7.2), below, means that, for
properly chosen δ and most u in Z, the random input � takes an element in C(u, δ) with high
probability. We define [D]t = [−t, t] ∩ D for a set D ⊂ Z and use the formula

P

( k⋂
i=1

Ei

)
≥ 1 −

k∑
i=1

(1 − P(Ei)) (7.1)

for arbitrary sets Ei .

Theorem 7.1. Assume that, for any numbers R and q such that 0 ≤ R < 1 and 0 ≤ q < 1, we
can choose a δ such that

lim inf
t→∞

µZ([u : P(C(u, δ)) ≥ q]t )
2t

> R. (7.2)

Then there is a sequence {δh : h = 1, 2, . . .} of parameter values such that

lim
h→∞ P(�(C(sj , δh))) = 1

for some doubly infinite sequence {sj }.
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Proof. Let qi be numbers such that 0 < qi < 1 and limi→∞ qi = 1. Let n be a positive
integer. Let δi be the value of δ in (7.2) corresponding to q = qi and R = 1 − n−i . We will
show the existence of a doubly infinite sequence sj , · · · ≤ s−1 ≤ s0 = 0 ≤ s1 ≤ · · · , such that

lim
j→−∞ sj = −∞, lim

j→∞ sj = ∞,

P(� ∈ C(sj , δi)) ≥ qi for any j ≤ −i and any j ≥ i.
(7.3)

The theorem then follows from Lemma 7.1.
Let Di = {u : P(C(u, δi)) ≥ qi}. Considering µZ([Di]t )/(2t) as a probability, from (7.1)

we obtain
µZ([⋂j

i=1 Di]t )
2t

≥ 1 −
j∑

i=1

{
1 − µZ([Di]t )

2t

}
. (7.4)

Since lim inf t→∞ µZ([Di]t )/(2t) > 1 − n−i from (7.2), (7.4) yields

lim inf
t→∞

µZ([⋂j
i=1 Di]t )
2t

> 1 −
j∑

i=1

n−i .

We select an n larger than 3. Then 1 − ∑j
i=1 n−i > (n − 2)/(n − 1) ≥ 2

3 . Hence, the region⋂j
i=1 Di expands in both directions in Z. We can thus select a doubly infinite sequence {sj }

such that

s−j ∈
j⋂

i=1

Di and sj ∈
j⋂

i=1

Di,

for any positive j . This sequence satisfies (7.3).

We define the interval J (t) = (−t, t).

Theorem 7.2. Property (7.2) holds if, for any positive ε, there is a number δ such that

lim inf
t→∞ µZ(J (t))−1

∫
J (t)

P(� ∈ C(u, δ)) dµZ(u) > 1 − ε. (7.5)

Proof. We select nonnegative numbers R < 1 and q < 1 arbitrarily. Choose an ε such
that (1 − ε − q)/(1 − q) > R. Assume that δ satisfies (7.5) for this ε. Define the set
D = {u : P(� ∈ C(u, δ)) ≥ q}. We replace P(� ∈ C(u, δ)) in (7.5) by 1 on D and q on
J (t) \ D. We then have

lim inf
t→∞

q(2t − µZ([D]t )) + µZ([D]t )
2t

≥ 1 − ε.

Hence,

lim inf
t→∞

µZ([D]t )
2t

≥ 1 − ε − q

1 − q
> R.

Corollary 7.1. Property (7.2) holds under the following assumptions:

(i) � is doubly ended AMS.

(ii) TsC(t, δ) = C(t − s, δ).

(iii)
⋃

0<δ<∞ C(t, δ) = ⋃
0<δ<∞ C(0, δ) for any t .

https://doi.org/10.1239/jap/1158784936 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784936


664 T. NAKATSUKA

(iv) C(0, δ) ∈ ⋃
0<η<∞

⋂
η≤ξ<∞ C(0, ξ) for any δ.

(v) limδ→∞ P(C(0, δ)) = 1.

Proof. Let D = ⋃
0<δ<∞ C(0, δ). Then D is the invariant set in (ii) and (iii), meaning

that P(Tu� ∈ D) = P(� ∈ D) ≥ P(C(0, δ)) → 1 as δ → ∞. Hence, P̃ (D) = 1, for the
stationary distribution P̃ in the definition of doubly ended AMS in [16].

Moreover, if φ ∈ D then φ ∈ C(0, δ) for some δ, meaning that φ ∈ ⋂
η<ξ<∞ C(0, ξ) for

some η, from (iv). Thus, limξ→∞ P̃ (C(0, ξ)) ≥ P̃ (D) = 1.
From (ii), the left-hand side of (7.5) is equal to P̃ (C(0, δ)), so limξ→∞ P̃ (C(0, ξ)) = 1

implies the existence of a δ satisfying (7.5). The corollary follows.

We can weaken condition (i). For example, it can be replaced by ‘� is both right-side
AMS and left-side AMS’ or ‘some other input �̃ satisfies the conditions of Corollary 7.1 and
P(� ∈ C(u, δ)) ≥ P(�̃ ∈ C(u, δ)) holds for all u’.

If C(0, δ) is nondecreasing with respect to δ, then condition (iv) holds.
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