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Abstract

To model cohesionless granular flow using continuum theory, the usual approach is to
assume the cohesionless Coulomb-Mohr yield condition. However, this yield condition
assumes that the angle of internal friction is constant, when according to experimental
evidence for most powders the angle of internal friction is not constant along the yield locus,
but decreases for decreasing normal stress component a from a maximum value of JT/2. For
this reason, we consider here the more general yield function which applies for shear-index
granular materials, where the angle of internal friction varies with a. In this case, failure
due to frictional slip between particles occurs when the shear and normal components of
stress T and a satisfy the so-called Warren Spring equation ( |r | /c)" = 1 — (a/t), where
c, t and « are positive constants which are referred to as the cohesion, tensile strength and
shear-index respectively, and experimental evidence indicates for many materials that the
value of the shear-index n lies between 1 and 2. For many materials, the cohesion is close
to zero and therefore the notion of a cohesionless shear-index granular material arises. For
such materials, a continuum theory applying for shear-index cohesionless granular materials
is physically plausible as a limiting ideal theory, and any analytical solutions might provide
important benchmarks for numerical schemes. Here, we examine the cohesionless shear-
index theory for the problem of gravity flow of granular materials through two-dimensional
wedge-shaped hoppers, and we attempt to determine analytical solutions. Although some
analytical solutions are found, these do not correspond to the actual hopper problem, but
may serve as benchmarks for purely numerical schemes. The special analytical solutions
obtained are illustrated graphically, assuming only a symmetrical stress distribution.

1. Introduction

Many industrial processes throughout the world make use of granular materials at
various stages. These granular materials are frequently stored in silos or hoppers,
where the material can be reclaimed at a later date. For dry powder-like materials that
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FIGURE 1. General yield locus.

flow freely from a hopper or silo, the cohesion of the material is often effectively zero.
For such cohesionless granular materials, the usual continuum approach to modelling
the flow is to assume that the material yields according to the Coulomb-Mohr theory,
namely

|T | = c — a tan S, (1.1)

where the cohesion c is set to zero. We note that for this yield condition, both
the cohesion c and the angle of internal friction S are assumed constant, and that a
and r denote the normal and tangential components of compressive traction which
are assumed to be positive in tension, namely the usual convention in continuum
mechanics is adopted that positive forces are assumed to produce positive extensions.
In this paper, we examine the so-called shear-index yield condition for the situation
of vanishingly small cohesion.

Experimental evidence (see Williams et al. [12], Stainforth et al. [10], Eelkman
Rooda [1], Eelkman Rooda and Haaker [2] and Farley and Valentin [3]) indicates that
the angle of internal friction for most granular materials is not constant along the yield
locus, but decreases for decreasing a from a maximum value of 7r/2 at the vertex
(/, 0), as indicated in Figure 1. In general therefore, the angle of internal friction is a
stress-dependent function S(a) which is defined incrementally from the equation

dx = —da tan<5(<7). (1.2)

Clearly, the Coulomb-Mohr yield condition (1.1) satisfies (1.2) when the angle of
internal friction S is constant, but for a yield condition that satisfies (1.2) when <5
varies with a, we assume the shear-index yield condition, sometimes referred to as
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TABLE 1. Typical values of n, t, c and p, when the cohesion is close to zero (Farley and
denotes 981 dynes).

375

Valentin [3], g

Granular material
(Particle size)

CaCO3

(5-lfi)
(16-20/z)
Calcite

(40-44/z)

(+44/*)
Zinc Dust

(coarse)
Alumina
(+37 ii)

Shear-index n

1.35
1.29

1.12
1.12

1.27

1.19

Tensile strength t
(g/cm2)

0.0066
0.00011

0.047
0.0012

0.283

0.179

Cohesion c
(g/cm2)

0.051
0.00443

0.06
0.0026

0.65

0.290

Density p
(gm/cm3)

0.389
0.406

0.445
0.457

0.498

0.250

the Warren Spring equation, namely

(?)"•-?• (1.3)

where t and n are positive constants which are referred to as the tensile strength and
shear index respectively. We note that the Warren Spring equation (1.3) has been
validated experimentally by a number of authors (see Williams and Birks [11] and
Stainforth et al. [10]). Using the Jenike shear tests, Farley and Valentin [3] suggest
that the cohesion c is usually of the order of twice the tensile strength / and that the
shear index n for a particular powder is independent of the bulk density of the compact,
and can therefore be used to classify powders according to their flow properties. In
addition, Farley arid Valentin [3] give simple expressions relating n to the ratio of
volume to surface mean diameter and / to the bulk density. The known experimental
values of shear index n, such as those cited in Farley and Valentin [3], all lie between
1 and 2, and Table 1 gives the typical values of n, t, c and p as determined by Farley
and Valentin [3] when the cohesion c is close to zero. From Table 1 we see that there
exist shear-index granular materials for which the cohesion is close to zero, and as
such, a continuum theory applying for shear-index cohesionless granular materials is
physically plausible as a limiting ideal theory.

In the following section we state the basic equations for a cohesive shear-index
material. In Section 3, we examine the resulting equations applying to shear-index
materials for which the cohesion is zero. The equilibrium equations for a cohesionless
shear-index material are then determined in Section 4 for general n, and some simple
solutions to these equations are presented in Section 5. In Section 6, for a cohesion-
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less shear-index material, we attempt to determine the solution corresponding to the
solution for gravity flow through a two-dimensional converging wedge-shaped hopper
which is known to exist for the Coulomb-Mohr yield condition.

2. Cohesive shear-index materials

In this section, we state the basic equations for the cohesive shear-index yield
condition. However, we first note from Hill and Wu [5] that a general yield function
can be expressed parametrically, in terms of principal stress components, as

(a, - a,,,) cos 8 = 2 / [(a, +CT,, ,) /2 + (a, - or,,,)(sin«)/2],
d (2-1)

tanS = - — / [(a, + am)/2 + (a, - crm)(sin8)/2],
da

where the stress-dependent angle of internal friction 8 = 8(a) is the parameter, andai
and <T|u denote the maximum and minimum principal stresses respectively. Thus, for
example, if the angle of internal friction is constant and r = f(a) is the linear yield
condition (1.1), then (2.1) gives the well-known Coulomb-Mohr yield condition

a, — (Tin = 2c cos 8 — (at + (Tin) sin 5. (2.2)

In the case of the Warren Spring equation (1.3), we find f(a) = c(l — a/t)l/n, and
so the Warren Spring yield condition (2.1) has the parametric form

— = 1 + — ( s e c 5 - t a n S ) - / 3 " , — = 1 - — (sec 5 + tan 5) - 0", (2.3)

where fi is a function of 8 which is defined by

(2.4)

We note that (2.3) and (2.4) are only valid provided n ^ 1. If n = 1 then the angle of
internal friction is constant and the Coulomb-Mohr yield condition (2.2) arises. We
also note for the special cases of n — 1 and n = 2, that we obtain the explicit yield
conditions

, ( / i = D

(1 - a , / 0 l / 2 = (1 - < W 0 l / 2 - c/t, (n = 2)

where the special case of n — 1 corresponds to the Coulomb-Mohr yield condi-
tion (2.2), noting that c/t = tan<5 when n = 1. The above relations become more
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transparent by expressing the parametric solution (2.3) in the form

from which the special roles of n = 1 and n = 2 are apparent and (2.5) can be
easily deduced. It appears that n = 1 and n = 2 are the only values of n giving
rise to simple analytical yield functions. However, other special values of n such as
n = 3/2,4/3 and 8/5 permit further analytical investigation, but the final results are
still complicated (see the Appendix of Hill and Wu [5]). For an explicit form of the
Warren Spring yield condition, we see from Hill and Wu [5] that the parameter /J in
(2.3) may be eliminated to give

/(2-n)L T "

2(n - 1) I L » 2 ' 2 J
where A = (orr — agg)

2 + a}g and B — 1 - (arr + <rgg)/(2t).

3. Cohesionless shear-index materials

In this section, we deduce the governing equations corresponding to free-flowing
(cohesionless) shear-index granular materials. To do this, we examine the cohesive
shear-index yield condition (1.3) in the form

|r|" =c"-c"a/t, (3.1)

from which it is clear that for (3.1) to be meaningful when the cohesion is set to zero,
we must assume

t = yc", (3.2)

for some finite positive constant y. Namely, we assume the tensile strength t and
cohesion c are such that

lim— = y. (3.3)
c— 0 C"
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In this event, the cohesionless Warren Spring yield condition becomes

|r|" = -a/y, (3.4)

and we note from (1.1) for the special case of n = 1, that y = cot S. We also note
that the assumption of (3.2) is more than just an analytical necessity, as from Table 1
we see that there do exist shear-index granular materials whose cohesion is effectively
zero, but which must still yield according to (3.1), which clearly can only happen
provided (3.2) is satisfied.

Now, upon substituting (3.4) into the general parametric representation of the yield
function (2.1), we find

<7i £ (Tin £
- =-(sec<5-tan<5)-£. \ — = - 1 (sec 5 + tanj) - f, (3.5)
Y Y Y Y

where the parameter £, is defined by

£ = (ny tan 8)>/ll-n), (3.6)

and again we note that n ^ 1. If n = 1 then the yield condition (3.4) becomes
the usual cohesionless Coulomb-Mohr yield condition and £ becomes constant since
S is constant. It should be noted that (3.5) and (3.6) can be derived directly from
(2.3) using (3.2), where £ = c/3. Thus (3.5) is the parametric representation of the
cohesionless shear-index yield condition.

To determine an explicit form of the cohesionless Warren Spring yield equation,
we first need to introduce the positive quantities p and q given by

q = (a, - oi,,)/2, (3.7)

so that from (3.5), we get

2 2 2 ) = ^ ( « V + * 2 - 2 ' - ) 1 / 2 - (3-8)

Next, we introduce P = {{a{ — om)/2y) and Q = -(a, + an,)/2y, so that from
(3.7) and (3.8) we find

t2 fc4-2/i £2-n

p = —2 + V T - Q = r + —• 0.9)
y2 n-y* ny2

Following the derivation of the explicit cohesive shear-index yield condition, as given
by Hill and Wu [5], we introduce x = £2". s u c n

Q-X/ny2 '
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which leads to a quadratic equation for x, namely

(jLiL-Qx + Y2P=0. (3.10)
n2y2

Solving (3.10) for x gives

where from (3.9)2, we note that as Q—x/ny2 — £" > 0, which means that x < ny2Q,
then we must take the minus sign in (3.11), namely

Thus the yield condition for a cohesionless shear-index granular material can be
determined from either (3.9)i or (3.9)2 together with (3.12). From (3.9)2 we have

«/c-») + X _ Q = Q

ny

and using (3.12) we find

where P and Q are defined by (3.9). Thus (3.13) is the explicit cohesionless shear-
index yield condition.

4. General equilibrium equations for gravity flow

In this section, we utilise the cohesionless shear-index yield condition to deter-
mine the resulting equilibrium equations for quasi-static gravity flow from a two-
dimensional converging hopper. In terms of the usual cylindrical polar coordinates
(r, 0, z) as defined by Figure 2, the stress components for quasi-static plane strain flow
in hoppers satisfy the equilibrium equations

darr 1 darB arr — aee

+ +r 36 r ( 4

1 doee 2arB .
+ — — + = -pgsinO,

r 39 r+ +
dr r 39 r
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x

[8]

gravity

FIGURE 2. Coordinates for a two-dimensional wedge-shaped hopper.

where p is the bulk density, g is acceleration due to gravity, and arr, aM and ar9

denote the in-plane physical stress components, which are assumed to be positive in
tension. Namely, we adopt the usual convention in continuum mechanics that positive
forces are assumed to produce positive extensions. We note that we have followed
the notation of Spencer and Bradley [9], including adopting the unusual convention of
the x axis being vertical. Thus, following Spencer and Bradley [9], these components
can be expressed in the standard form

arr = — p + q cos2i/f, aeg = -p — qcos2\//, arB = q sin2\]s, (4.2)

where the positive quantities p and q are defined by (3.7). We note that an equivalent
definition of p and q is

P = ~ T

while the stress angle i/r is given by tan 2 ^ = 7arg/{arr — age), where physically
speaking, \j/ is the angle between the maximum principal stress axis and the x direction,
in the direction of increasing 9.

Now, we find from (3.8) and (4.2) that the stresses become

arr = -11
ny

^-
ny

+ i - {n2y2

ny

- -i- («V
ny

cos2^

(4.3)

ny

where \j/ = \j/(r, 6) and £ = £(r, 9). Substitution of these expressions directly into
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the equilibrium equations (4.1), and simplifying, gives

cos2\jroF . dF~\ pgny sin(0 + 2^)

2F (4 4)

r ad r 2dr
pgny cos(0 •

2F

which are the general equilibrium equations for a cohesionless shear-index granular
material, where F is defined by

F(r,0)—^[n2y2 + ^2~2"]1 , (4.5)

and noting we have used the fact that

Now, we need to determine the appropriate boundary conditions for gravity flow
through a hopper. To do this, we assume that due to the geometry of the hopper, the
stress distribution is symmetrical around the vertical axis. As a result, we observe
from the equilibrium equations (4.1) that arT and a9e must be even functions of 6,
while arg must be an odd function or skew-symmetric. Thus, to ensure continuity, <jrg
must vanish at the origin giving rise to the boundary condition

iKO) = 0. (4.6)

To determine the second stress boundary condition, following Spencer and Bradley [9]
we assume a Coulomb friction condition at the wall of the hopper at 6 = a, such that

ar9 = —oegtar\ix, at 9 = a, (4.7)

where ^ is the angle of wall friction and a denotes the semi-vertex angle as indicated
in Figure 2. Thus, from (4.2) and (4.3) we find that (4.7) becomes

+ g)
sin/* ( n V + S2-2")'/2' a Y'
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5. Some simple solutions of (4.4)

In this section, we examine the general equilibrium equations (4.4) for a cohesion-
less shear-index granular material in order to determine some simple solutions. We
first look for a simple solution of the form

t = -e + ifr0, (5.1)

for some constant rj/0, which is a well-known solution for the Coulomb-Mohr yield
condition (Sokolovsky [8]) and corresponds to the Cartesian stresses being linear in
both x and y. From (4.4) and (5.1), we find

F s i n [ 2 ( * o - 0 ) ] 1 3 F . r*"cos[2(*o-0)] , ] 3 ^ , ,„ . m
— tf),- ll — - -

J 3 r^2-n r d 0 |_ ^2-n

where k — pgny. On solving (5.2) for dF/dr and 3F/39, we obtain the expressions

3 F _ [G cos (9 + c o s ^ o - 0)}

(5.3)
dF _ [G s\n9 - sin(2xl/0 - 9)]

l9~ r [G2 - 1] '

where G is defined by

G = F/?-n. (5.4)

Now, upon checking the consistency of (5.3), we obtain

(G2 sin 9 + 2G sin(6> - 2f0) + sin d)r —v dr

+ (G2 cos 9 + 2G cos(9 - 2TJ/0) + cos 9)-— = 0, (5.5)
69

which is a first-order partial differential equation and is readily solved by the method
of characteristics to yield

(G2 + 2G cos 2TJ/0 + l) r cos0 + 2G sin 2^0 r s\n9 = <P(G), (5.6)

where <t> denotes an arbitrary function. Although (5.6) constitutes the general solution
of (5.5), its usefulness is limited because G(r, 9) is not given explicitly. Alternatively,
suppose that

G = * (r sin(0 - ft,)), (5.7)
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for some function * and constant 0O, then from (5.5) we have immediately

(G2 + 1) cos 0O + 2G cos(2^0 - #o) = 0,

so that for non-constant G, we require

0O = (2a + 1)JT/2, VO = (a + b + l)n/2, (5.8)

for any integers a and b. If instead G is a constant, then we find from (4.5) and (5.4)
that both F and £ must also be a constant. However, from (3.6) we find that £ is only
constant for the special case of n — 1, namely for the Coulomb-Mohr yield condition,
and so we assume that G is a non-constant. Thus, for a cohesionless shear-index
material (1 < n < 2), non-trivial solutions of the form (5.1) and (5.7) only exist
provided 0O and r//0 are given by (5.8).

Now, for 0O and yj/0 defined by (5.8), we see that sin 2^o = 0 and so both the general
solution (5.6) and (5.7) yield

G = G*(r cos 0), (5.9)

for some function G*. From (4.5), (5.4) and (5.9) we also find that

F = / ( r c o s 0 ) , £ = £(rcos0) , (5.10)

for some functions / and E. Thus (5.2) becomes

0 ) ,

/ ' [ G C O S ( 2 T A O - 0 ) - C O S 0 ] = - A ( 2 ^ 0 )

where the prime denotes differentiation with respect to r cos0. For 0o and V'o given
by (5.8), we see that (5.11) becomes

f'{\-exf/E
1-t) = eik, (5.12)

where £) and e2 are parameters whose values depend on \J/0. In particular, e, = e2 = 1
for Vo = 0, and e( = — 1 and e2 = =fl f° r V'o = ±7r/2. In order to solve (5.12), we
find from (4.5) and (5.10) that / = E[n2y2 + E2'2"]*'2, and therefore (5.12) can be
written in the form

if [nV + £2-2"]'/2 j ' - £,nV£"~'£" - (2 - n)e,E]~nE' = s2k. (5.13)

Solving (5.13) yields

£,£" [ny2 + E2'2n] - E [n2y2 + E2'2"]1'2 = -e2krcos9 + C, (5.14)
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which is a transcendental equation for E(r cosO), where C is a constant of integration.
Thus we have determined an exact solution for a cohesionless shear-index granular
material which satisfies the equilibrium equations (4.4), where y\r (9) is of the form of
(5.1) and £(r, 9) = E(r cos9) satisfies (5.14). Therefore, from (5.1) and (5.14) we
can write the stresses (4.3) as

arr = el£2pgr cos 9 + C - ^ [n2y2 + E2"2"]'72 sin20,
ny

[ny + E2"2"]1' /2cos2

2 - 2 ' ' ] 1 / 2 si

= e^pgrcosG + C* - ^ [n2y2 + E2"2"]1'/2cos29, (5.15)
ny J

ny
Wy2 + £2-2'']1/2 sine cos9,

where C* = C/ny and £ — E(rcos9) satisfies (5.14).
To apply the simple solution (5.15) for gravity flow through a two-dimensional

wedge-shaped hopper, we need to apply the boundary conditions (4.6) and (4.7). We
know that if et = e2 — 1, then \^Q — 0 and (4.6) is satisfied. However, we find
that we are unable to satisfy (4.7) unless n — 1. This means that while the simple
solution (5.15) satisfies the governing equations for gravity flow through a wedge-
shaped hopper, we are unable to satisfy the appropriate boundary conditions. Despite
this, for the purpose of completeness, in Figure 3 we demonstrate the variation of
the stresses (5.15) for three values of the shear-index, where (4.6) is satisfied, for the
constant values C = 25, y = 1, p — 1.018 and a = 2877r/900. We observe from
Figure 3 that the curves given tend to straight lines as the shear-index n approaches
unity, a result which might be expected.

In this section, we have looked for a simple solution for \// which is known to
exist for the Coulomb-Mohr yield condition, namely where i// = —9 + \j/0 and \j/0 is
a constant. This solution for xj/ leads to a corresponding solution for F of the form
F = f(rcos9), but which cannot satisfy the appropriate boundary conditions for
gravity flow through a wedge-shaped hopper. For this reason, we now look for a more
general solution of the form

yj/ = -e+h(y), F = f(y), (5.16)

where y = r sin(# — 90) for some constant 90. This means that the equilibrium
equations (4.4), after simplifying, become

d/i k cos(2/i - <?0) _ sin(2/i - 26»O) d /

d7 27 ~ W" d?
1 d/ k sin(2/i - 90) cos(2/i - 26>O) d / l " ;

/ d7 7 ~ £2~" dy'
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25

(a)

0.5

(b)

1.5

(C)

FIGURE 3. Variation of the stresses with r for three values of the shear-index, where & is defined by (5.1)
with fa = 0, C = 25, y = 1, a = 287^/900 and E satisfies (5.14). ((a) n = 1.19, (b) n = 1.5 and
(c) n = 2.)

where k — pgny. On dividing (5.17)2 by (5.17),, we find

Af dh
sin(2/i - 20O)— + 2/cos(2/i - 290)— - kcos60.ay ay

Clearly, (5.18) can be solved to yield

sin(2/i - 20O) =
ky cosOo + c,

7

(5.18)

(5.19)

where C\ is a constant of integration. Thus, upon substituting (5.19) into either (5.17)|
or (5.17)2, we obtain

t2-n
— ^ sin c?o, (5.20)
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where the prime denotes differentiation with respect to y. In order to solve (5.20) we
note from (4.5) and (5.16) that / = £ [ « V + S2-2"]"2, and therefore (5.20) becomes

+ /i V £ " - ' § ' + (2 - n)£ '""£' = £ sin 0O,

which upon integrating yields

0 2 ( « V + £2~2") - (*? cos6>o + c,)2]'/2

+ £" [«y2 + ?2"2"] = Ay sin0o + c2, (5.21)

where c2 is a second constant of integration. Thus we have determined a solution
of the equilibrium equations (4.4) for a cohesionless shear-index granular material,
where \j/ and F are of the form of (5.16). Note that when h(y) = constant = V'o.
and in particular is given by (5.8)2, then we find from (5.19) that C) = 0 and 60 must
satisfy (5.8),, and hence (5.21) becomes (5.14) where § = E(rcos6).

To apply the solution (5.21) for gravity flow through a two-dimensional wedge-
shaped hopper, we need to apply the boundary conditions (4.6) and (4.7). Unfortu-
nately, we are unable to determine the constants ct and c2 such that (4.6) and (4.7) are
satisfied. Again, for the purpose of completeness, in Figure 4 we demonstrate the vari-
ation of the stresses (4.3) where £ satisfies (5.21), for three values of the shear-index
and the constant values c, = 1, c2 = 140, y = 1, p - 1.018 and a = 2877r/900. We
again observe that the curves tend towards linear dependence as n approaches unity.

6. Possible forms for hopper flow solutions of (4.4)

In this section, for cohesionless shear-index materials we attempt to determine the
corresponding solution known to exist for the Coulomb-Mohr yield condition and
which applies for granular flow through a wedge-shaped hopper under the action of
gravity. The Coulomb-Mohr theory assumes a wedge-field solution for the stresses so
that all stress components are linear in r, thus

<?rr = rf,(9), or9=rf2{0), aeB = rf3(6), (6.1)

for certain functions fu f2 and / 3 . Accordingly, we look for a wedge-field solution
for a cohesionless shear-index granular material with 1 < n < 2. From (4.3), on
assuming \// = \j/(6), we require that
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FIGURE 4.

with \jra =
Variation of the stresses with r for three values of the shear-index, where \j/ is defined by (5.16)

= 0, 90 = j r /3, c, = 1, c2 = 140, y = 1, a = 287^/900 and £ satisfies (5.21). ((a) n = 1.19,
5 and (c) n = 2.)

for some F*(0) and G*(9) to be determined. Upon rewriting (6.2) in the form

we find that subtracting (6.3)i from (6.3)2 gives

n(n- .2 _ r2Gt2(9) rF*(6)

(6.3)

(6.4)

which in principle is a transcendental equation for £ in terms of F* and G*. Alter-
natively, upon multiplying (6.3)i by n and subtracting from (6.3)2, we determine the
following quadratic equation for £2~", namely

in - I)?4"2" - " + r2G*2(9) = 0,
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which upon solving yields

£2~" = 2 ( / _ 1 ) \nF*(6) ± [n2F'2(9)-4(n - 1)G*2(0)]'/2}, (6.5)

noting that we need to assume the minus sign in (6.5) to ensure that the special case
of n = 1 is well-defined. Substituting (6.5) into (6.4) yields a relationship between
F*(9) and G*{6) where the r dependence must cancel out in order that the relationship
be valid, since F* and G* are functions of 9 only. However, from these equations this
relationship becomes

n{n - \ ) Y
2 L r_ 1}1 [nF\9) - {n2F*2(9) - 4(n - l)Gt2(9)}U2]V(2"'}

'iB) ~ ln2F*2(9) - 4(/t - 1)G*2(0)}'/21 - r2G*2(9) = 0,
2(« - 1)

from which it is clear to see that the assumed r dependence is consistent only for the
special case of n = 1, namely only for the Coulomb-Mohr yield condition. Therefore
for 1 < n < 2, it is not possible to obtain a wedge-field solution of the form (6.1)
to the equilibrium equations. We note that a similar situation also applies even if we
neglect gravity. In this case we have equations of the form

$" (ny2 +£2"2") =r"F*(0), £ (n2y2 +£2~2") ' / 2 = rbG*{9), (6.6)

for certain constants a and b and the same conclusion may be deduced.
Thus we need to assume that the dependence on r is more complicated than either

(6.2) or (6.6) allows. This means that we need to look for a solution of the form

x(, =-9 + h(9), F = F(r,6), (6.7)

for some function h(9). In this event, after solving for dF/dr and 8F/99, the
equilibrium equations (4.4) give

3F _ [*f [Gcos[2(/z-<?)]+ \]fe-k[Gcos9 + cos(2h-9)]]

nr // -i ( 6 - 8 )

dF [vGsin[2(/i - 9)]'% + k [G sin 0 - sin(2h - 9)]]

19 = r [G2-l] '
where k = pgny, and G is defined by (5.4). We note if h{9) — constant = \j/Q, then
(6.8) simplifies to become (5.3). We now assume that gravity may be neglected. This
assumption is made to facilitate the analytical results, noting that including gravity
further increases the complexity of the results, and if an analytical solution cannot be
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obtained when gravity is neglected, then obtaining an analytical solution with gravity
included is not likely. Thus (6.8) simplifies to become

^L = -[Gcos[2(h-9)] + l]^,
dr r dO ( 6 9 )

?f- = HGsm[2(h-9)]^-,
da uu

where H = 2F/[G2 — 1]. Equations (6.9) can be shown to be consistent provided
that

F - 9)] + ̂ 1 ̂  = R(r), (6.10)

for some function R(r), and hence, from (6.10) we are able to write

\G2ha-{GR-h'f\n

sin[2(fc - 9)] = i "— '-^—, (6.11)

where the prime denotes differentiation with respect to 9. Thus, from (6.10) and
(6.11), we find that (6.9) becomes

Since we have rewritten (6.9) in the form of (6.12), we again need to confirm the
consistency of (6.12), from which we find

and therefore we have

R(r) = - ^ - + T(0), (6.13)
u(r, U)

for some arbitrary function T(9). However, as R is only a function of r, then we
see that we need to take T{9) = 0 and G becomes a separable function. Thus (6.12)
becomes

dF HGR dF „ . ^ , , x

- = — , ^ = HGH', (6.14)

which may be readily verified to be consistent. However, from (6.13) with T(9) = 0,
we can rewrite (6.14) as

, = HC*: ,6,5,
or r 89
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and the consistency of (6.15) now yields the separable equation

h"(G) r dR

where A. is the constant of separation. Upon solving (6.16), we find

( 6 1 6 )

R(r)= / (6.17)
A.ln(r/r0)

where fi0, Mi and >~o are constants of integration and we must assume that A. / 0. We
note that if A. = 0 then (6.16) yields

= -ilnf—0 + - V
A. \nt HI/

= r0. (6.18)

Thus, from (6.13) and (6.17), we find for A, ^ 0 that

(6.19)

where v = iio/k and from (4.5) and (5.4), we find that (6.19) gives

where
_ ln(r/r0)

and K is a constant defined by K = (ny)i/0'n). We further note that we obtain G — —r\.
From (4.5) and (6.20), we have F = f(rj) and therefore (6.14) becomes

which can be solved to yield

T^i) ' (6-22)

where r]0 is a constant of integration. Now, from (5.4), (6.19) and (6.20) we may
determine an alternative expression for /(rj), namely

(6.23)

From (6.22) and (6.23), the two expressions for /(/j) are clearly not consistent and by
substituting (6.23) into (6.21), we find the following quadratic equation for >?, namely

A.q2-2(1 -«)r? + A.(l - « ) = 0,
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from which it is clear to see that we must have both n = 1 and k = 0 for (6.22) to be
consistent with (6.23). This means that a solution of the form (6.7) only exists when
both n = 1 and k = 0, which corresponds to the Coulomb-Mohr yield condition.
This means that we are unable to determine a solution of the form yjr = \jf{6) for
a shear-index granular material with 1 < n < 2 for flow through a wedge-shaped
hopper. For the case when k = 0, we note that h(6) and R(r) are given by (6.18) and
for k ^ 0 we still require n = 1.

7. Conclusions

In this paper, we have presented the limiting ideal theory for shear-index cohesionless
granular materials. We find that the cohesive shear-index yield condition can only
apply for cohesionless granular materials provided that in the limit as c tends to zero,
t = yd1, where t, c and n are positive constants referred to as the tensile strength,
cohesion and shear index respectively, and y is a positive constant such that (3.3)
is satisfied. While the notion of a shear-index yield condition is generally used
for cohesive materials, it is clear from Table 1 that there exist shear-index granular
materials for which the cohesion is close to zero, and therefore there is a need to
formulate the corresponding theory for free flowing or cohesionless materials as a
plausible limiting ideal theory. Here, we have attempted to apply the cohesionless
shear-index yield condition to the problem of gravity flow in a two-dimensional wedge-
shaped hopper. Although we have determined some simple solutions of the appropriate
cohesionless equilibrium equations (4.4), we are unable to determine values of the
constants of integration which satisfy the boundary conditions (4.6) and (4.7), except
for the special case when n = 1, namely the Coulomb-Mohr yield condition. Despite
this, these simple solutions might be useful as numerical benchmarks for purely
numerical schemes.
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