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Vortices over bathymetry
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There are numerous examples of long-lived, surface-intensified anticyclones over
submarine depressions and troughs in the ocean. These often co-exist with a large-scale
cyclonic circulation. The latter is predicted by existing barotropic theory but the
anticyclone is not. We extend one such theory, which minimizes enstrophy while
conserving energy, to two fluid layers. This yields a bottom-intensified flow with cyclonic
circulation over a depression. The solution is steady, an enstrophy minimum and stable.
When the Lagrange multiplier, λ, is near zero, the total potential vorticity (PV) becomes
homogenized, in both layers. For positive λ, the surface PV is anticyclonic and strongest at
intermediate energies. In quasi-geostrophic numerical simulations with a random initial
perturbation PV, the bottom-intensified cyclonic flow always emerges. Vortices evolve
independently in the layers and vortex mergers are asymmetric over the depression;
cyclones are preferentially strained out at depth while only anticyclones merge at the
surface. Both asymmetries are linked to the topographic flow. The deep cyclones feed
the bottom-intensified cyclonic circulation while the asymmetry at the surface is only
apparent after that circulation has spun up. The result of the surface merger asymmetry
is often a lone anticyclone above the depression. This occurs primarily at intermediate
energies, when the surface PV predicted by the theory is strongest. Similar results obtain
in a full complexity ocean model but with a more pronounced asymmetry in surface vortex
mergers and, with bottom friction, significant bottom flow beneath the central anticyclone.

Key words: geostrophic turbulence, ocean circulation, topographic effects

1. Introduction

A quasi-permanent, surface-intensified anticyclonic vortex resides near the centre of the
Lofoten Basin in the Nordic Seas (Köhl 2007; Søiland & Rossby 2013; Raj et al. 2015;
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Søiland, Chafik & Rossby 2016; Yu et al. 2017; Fer et al. 2018; Bosse et al. 2019). The
vortex is exceptionally long-lived and clearly seen in satellite data. Most oceanic vortices
are transient features, but the Lofoten vortex has persisted over the five decades of available
observational records (Søiland et al. 2016). Similar such vortices in the area have even been
described in fiction (notably Edgar Allen Poe’s A Descent into the Maelstrom (1841) and
Jules Verne’s Twenty Thousand Leagues under the Sea (1870)). The vortex core lies in the
upper 1000–1500 m of the water column and its radius (Re ≈ 20 km) is somewhat larger
than the local deformation radius.

Originally it was suggested the Lofoten vortex formed by wintertime convection,
by steepening the isopycnals and intensifying the azimuthal flow (Ivanov & Korablev
1995a,b). Subsequent model simulations suggested instead that the vortex is maintained
by mergers with anticyclonic vortices from the adjacent continental slope (Köhl 2007).
These migrate into the basin and align vertically with the central anticyclone (Trodahl
et al. 2020; de Marez, Le Corre & Gula 2021). Wintertime convection then homogenizes
the vertical structure by penetrating through the multiple cores.

Long-lived anticyclones are found in other regions as well, including the Rockall Trough
Eddy southwest of Scotland (Mann 1967; Meinen 2001; Smilenova et al. 2020) and the
Mann Eddy in the central Newfoundland Basin (Rossby 1996). They are also found in the
Iceland Basin (Zhao et al. 2018), over the Kuril-Kamchatka trench, near the deep Bussol
Strait and over the Hikurangi Trough (Chiswell 2005; Prants et al. 2020; L’Her et al.
2021). In most cases, the anticyclones have been linked to same-signed vortices originating
outside the basin or trench (e.g. Itoh & Yasuda 2010; Prants et al. 2016).

Surface anticyclones have been observed in numerical experiments, and these
demonstrate the importance of bottom topography (Cummins & Holloway 1994;
Shchepetkin 1995). Belonenko et al. (2021) showed that the Lofoten vortex disappeared
when the bathymetry was flattened out. Using an extensive set of single-layer simulations
with idealized bathymetry, Solodoch, Stewart & McWilliams (2021) observed that
random initial conditions produce isolated anticyclones over an idealized depression.
They suggested the fate of the vortex depends on a nonlinearity parameter measuring the
vortex strength relative to the topographic gradient (see also McWilliams & Flierl 1979;
Carnevale, Kloosterziel & Van Heijst 1991; Grimshaw, Tang & Broutman 1994; LaCasce
1998). While weaker vortices were trapped in the centre of the depression, stronger vortices
exited. Similar results were obtained in two-layer simulations, with central anticyclones
forming in both layers.

Interestingly, the formation of an anticyclone over a depression is counter to expectations
from theories of two-dimensional (2-D) turbulence over bathymetry (Bretherton &
Haidvogel 1976; Salmon, Holloway & Hendershott 1976; Carnevale & Frederiksen 1987;
Merryfield 1998; Venaille 2012). These predict that random initial flows should produce a
cyclonic flow over a depression and an anticyclonic flow over a seamount. The presence of
an anticyclone in the centre of a depression is thus unexpected. Generally, the anticyclone
is attributed to vortex self-propagation across bathymetry, following studies with isolated
vortices (Carnevale et al. 1991; van Heijst 1994; LaCasce 1998; Köhl 2007; Solodoch
et al. 2021). Anticyclones might also be favoured because they are linearly stable over a
depression (Zhao, Chieusse-Gerard & Flierl 2019).

A snapshot of the vorticity from a simulation of the Lofoten Basin, from Trodahl et al.
(2020), is shown in figure 1. The Lofoten vortex is in the centre, near the Greenwich
meridian at 72N. This merges with other anticyclones and is coherent over the entire
eight year simulation. However the surface flow is remarkably turbulent, with vortices
of both signs present. The cyclones also merge, but are preferentially strained out and
do not grow in size. This yields a distinct asymmetry in the vortex evolution. Such an
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Figure 1. The surface relative vorticity from a high-resolution simulation of the Lofoten Basin (§ 4). The figure
is rotated so that west is upward. The flow is significantly turbulent and a prominent anticyclone is seen near
the basin centre. The isobaths are shown in black for every 1000 m and the contours show the Rossby number,
i.e. the relative vorticity normalized by the Coriolis parameter, f . The solid contours are the isobaths, in 500 m
increments.

asymmetry is unusual for balanced (quasi-geostrophic) flows, and ageostrophic effects are
usually invoked to explain such differences (e.g. Polvani et al. 1994; Graves, McWilliams
& Montgomery 2006). Moreover, the vortices in the figure are not isolated. Thus,
self-propagation, which is due to the spin up of secondary ‘beta gyres’ near the bottom
(e.g. LaCasce 1998), would likely be overwhelmed by interactions with nearby vortices at
the surface.

Hereafter we revisit the theory relevant to a turbulent flow over a depression.
A variational solution in two layers predicts a cyclonic flow resembling the topography,
as in the barotropic case. The flow is steady and bottom intensified, as seen in previous
studies with continuous stratification (Merryfield 1998; Venaille, Vallis & Smith 2011).
The surface potential vorticity (PV) is anticyclonic and strongest at intermediate energies.
Thereafter, we test the predictions using solutions from an idealized (quasi-geostrophic)
model and a full complexity general circulation model.

2. Theory

In 2-D turbulence, energy cascades to larger scales while enstrophy cascades to
smaller (Fjørtoft 1953; Kraichnan 1967). Thus, small-scale dissipation preferentially
removes enstrophy while energy is approximately conserved. Bretherton & Haidvogel
(1976) proposed that 2-D turbulence should therefore evolve to a state with minimum
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enstrophy while conserving energy. With bathymetry the predicted flow is correlated with
topography, as follows.

2.1. Single layer
For a barotropic (single layer), quasi-geostrophic (QG) flow, the motion is governed by

∂

∂t
ζ + J(ψ, ζ + h) = 0, (2.1)

where J(a, b) is the Jacobian operator and ζ the relative vorticity,

ζ = ∇2ψ (2.2)

(Pedlosky 1987). Here ψ is the geostrophic streamfunction and h = fLhb/(UH) is the
scaled bottom elevation, with f the Coriolis parameter (assumed constant), L the lateral
domain scale, H the mean depth of the layer, U the velocity scale and hb the dimensional
topographic height. Equation (2.1) admits a set of conserved quantities, one of which is
the potential enstrophy

∫∫
Z d A ≡

∫∫
1
2
(ζ + h)2 d A, (2.3)

and the other the kinetic energy
∫∫

E d A ≡
∫∫

1
2
|∇ψ |2 d A. (2.4)

Bretherton & Haidvogel (1976) defined a functional

L =
∫∫

Z + λ(E − E0) d A, (2.5)

where λ is a Lagrange multiplier. By minimizing this they obtained enstrophy extrema
subject to the constraint that the energy equals its initial value, E0. The first variation of L
is given by

δL =
∫∫

(ζ + h)δζ + λδE d A = 0. (2.6)

Following integration by parts, this reduces to
∫∫

∇2[∇2ψ + h − λψ]δψ d A = 0. (2.7)

This yields an Euler–Lagrange equation

∇2ψ − λψ = −h. (2.8)

Assuming a doubly periodic domain, one can Fourier transform the streamfunction and
bathymetry, i.e.

(ψ, h) =
∑
k,l

(ψ̂, ĥ) exp(ikx + ily). (2.9)
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Then the solution to (2.8) is

ψ̂ =
∑
k,l

ĥ
K2 + λ , (2.10)

where K2 = k2 + l2. If λ > 0, the streamfunction is a low-pass filtered representation
of the bathymetry, h, with cyclonic flow over depressions and anticyclonic flow over
seamounts. If λ < 0, the flow can be reversed and singularities occur (Carnevale &
Frederiksen 1987; LaCasce, Nøst & Isachsen 2008).

The second variation of L can be shown to be

δ2L = 1
2

∫∫
(∇2δψ)2 + λ|∇δψ |2 d A. (2.11)

Expanding the perturbation δψ also in a Fourier series yields

δ2L = 1
2

∑
k,l

K2(K2 + λ)|δψ̂ |2. (2.12)

This is positive definite if λ > −K2
min, indicating a minimum enstrophy solution

(Carnevale & Frederiksen 1987). Solutions with smaller λ are saddle points, such that
the second variation can be positive or negative, depending on the wavenumber (e.g. Gray
& Taylor 2007).

The minimum enstrophy solution is steady, as any such solution to (2.1) has

ζ + h = F(ψ), (2.13)

where F is a function. Assuming the linear relation F = λψ yields the solution in (2.10).
The solution is also nonlinearly stable. Carnevale & Frederiksen (1987) demonstrated this
by defining a norm based on the enstrophy and energy, identical to the second variation in
(2.12). That this is positive for λ > −K2

min indicates that arbitrary perturbations, no matter
how large, cannot grow in time.

The solution with λ = 1 is shown in figure 2. The bathymetry (upper left panel) is an
elliptical depression, given by

h = h0 exp
[
−

( x
1.5

)2 − y2
]
, (2.14)

with h0 = −1. The relative vorticity (upper right) is positive and about half as strong, so
that the total vorticity, ζ + h, is negative (lower left). The streamfunction is also negative
(lower right), corresponding to cyclonic flow. It is more circular than the depression,
indicating the flow crosses the isobaths. However, the streamfunction is identical to the
total PV, ζ + h (lower left), as expected with λ = 1.

The Lagrange multiplier, λ, is determined by the total (kinetic) energy, given by

KE = 1
2

∑
k,l

K2|ĥ|2
(K2 + λ)2 . (2.15)

The dependence on λ is shown in the left panel of figure 3. The figure closely resembles
those of Carnevale & Frederiksen (1987) and LaCasce et al. (2008). The kinetic energy
decreases monotonically for positive λ and exhibits singularities for negative values (at
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Figure 2. Single-layer minimum enstrophy solution for an elliptical depression with λ = 1. The bathymetry
is plotted in the upper left panel, the relative vorticity in the upper right, the total PV (the sum of the relative
vorticity and topography, h) in the lower left and the streamfunction in the lower right. The domain is 2π × 2π,
so that Kmin = 1.
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Figure 3. (a) Total energy as a function of λ for the solution shown in figure 2. (b) A cross-section in the
middle of the depression of the total PV, ζ + h, for different λ. Note that Kmin = 1.

wavenumbers where the denominator of (2.15) is zero). As the domain scale is 2π × 2π,
these occur at integer wavenumbers, with Kmin = 1.

The value of λ also affects the PV. Cross-sections of ζ + h for various λ are plotted in
the right panel of figure 3. With large positive λ, the relative vorticity is less than h and the
latter dominates the total PV. As λ→ 0, the vorticity is comparable to h and of opposite
sign, so that the total PV is approximately constant, i.e. it is homogenized (also noted by
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Siegelman & Young 2023). With −K2
min < λ < 0, the PV is positive and dominated by

the relative vorticity. As λ approaches −K2
min, the PV increases without bound, in tandem

with the energy.

2.2. Two layers
Now consider the case with two fluid layers. Under the QG approximation, the layer
potential vorticities evolve according to (Pedlosky 1987; Vallis 2006)

∂

∂t
q1 + J(ψ1, q1) = 0,

∂

∂t
q2 + J(ψ2, q2 + h) = 0, (2.16a,b)

with the perturbation PVs given by

q1 = ∇2ψ1 + F1(ψ2 − ψ1), q2 = ∇2ψ2 + F2(ψ1 − ψ2). (2.17a,b)

The PVs are a combination of the ‘relative vorticity’ in the layer and the ‘stretching
vorticity’, which is proportional to the layer interface displacement. Here

Fi = f 2L2

g′Hi
(2.18)

are inverse Burger numbers, with g′ = (ρ2 − ρ1)g/ρ0 the ‘reduced gravity’ and Hi the
undisturbed layer depths. The Fi are the squared non-dimensional ratio between the
domain scale and the ‘deformation radius’,

√
g′Hi/f , in the corresponding layer.

From (2.16a,b), it can be shown that total energy is conserved. This is a combination of
the layer kinetic and potential energies,∫∫

E d A ≡ 1
2

∫∫
[γ1|∇ψ1|2 + γ2|∇ψ2|2 + F(ψ1 − ψ2)

2] d A, (2.19)

where γi = Hi/(H1 + H2) are relative layer depths and F ≡ F1 + F2 = f 2L2(H1 +
H2)/(g′H1H2).

We minimize the total enstrophy while conserving total energy. To this end, we employ
the functional

L =
∫∫

γ1q2
1

2
+ γ2(q2 + h)2

2
+ λ(E − E0) d A. (2.20)

Note the layer potential enstrophies, the first two terms, are weighted by the respective
layer depths. The first variation of L is

δL =
∫∫

γ1q1δq1 + γ2q2δq2 + λδE d A = 0. (2.21)

Integrating the energy term by parts, this can be rewritten as

δL =
∫∫

γ1(q1 − λψ1)δq1 + γ2(q2 + h − λψ2)δq2 d A = 0. (2.22)

Thus, the Euler–Lagrange equations are simply

q1 = λψ1, q2 + h = λψ2. (2.23a,b)

As in the single-layer case, the condition for minimum enstrophy is equivalent to that for a
steady state of the PV equations (2.16a,b); again, the variational solutions are also steady
solutions.
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The solutions are obtained from (2.23a,b), using the PV definitions (2.16a,b). After
Fourier transforming, we have

−(K2 + F1 + λ)ψ̂1 + F1ψ̂2 = 0, (2.24)

F2ψ̂1 − (K2 + F2 + λ)ψ̂2 = −ĥ. (2.25)

Multiplying the first equation by γ1 and the second by γ2 and adding yields

ψB ≡ γ1ψ1 + γ2ψ2 = γ2ĥ
K2 + λ , (2.26)

where ψB is the ‘barotropic streamfunction’, representing the depth-averaged flow. Thus,
the barotropic solution is very similar to that from the single-layer derivation (2.10).
Subtracting the equations instead yields the baroclinic streamfunction

ψT ≡ ψ1 − ψ2 = − ĥ
K2 + F + λ . (2.27)

This has the opposite sign as the topographic perturbation, implying the solution is bottom
intensified if the denominator is positive.

In terms of the layer streamfunctions, the solution can be obtained from (2.25) using
Cramer’s rule

ψ̂1 = F1ĥ
� , ψ̂2 = (K2 + λ+ F1)ĥ

� , (2.28a,b)

with

� = (K2 + λ)(K2 + F + λ). (2.29)

The potential vorticities are then proportional to the streamfunctions, from (2.23a,b).
Again, the solution is bottom intensified if � is positive.

In addition, the second variation of L can be shown to be

δ2L = 1
2

∑
k,l

|F1δψ̂2 − (K2 + F1)δψ̂1|2 + |F2δψ̂1 − (K2 + F2)δψ̂2|2

+ λ[γ1K2|δψ̂1|2 + γ2K2|δψ̂2|2 + F|δψ̂1 − δψ̂2|2]. (2.30)

While more complicated than in the single-layer case, the right-hand side is clearly positive
if λ > 0. As in the single-layer case, one can define a norm based on the potential
enstrophies and the energy, following Carnevale & Frederiksen (1987). The result is the
same, indicating the steady solutions are stable if λ is positive.

The two-layer solution with λ = 1 is plotted in figure 4. The bathymetry is the same
elliptical depression used for figure 2. The inverse Burger numbers are F1 = 25 and
F2 = 6.25, so that the domain is five times the surface deformation radius and the layer
depth ratio, H1/H2 = 1/4. The latter is preferable to having equal layer depths, which
excludes a particular triad interaction (Flierl 1978); the chosen value is comparable to the
typical depth ratio in the ocean.

Shown are the relative vorticities (left panels) and the potential vorticities (right) (the
streamfunctions are not plotted but are identical to the PVs). The flow is bottom intensified,
but the surface flow is nearly as strong as that at depth. This is because the depression is
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Figure 4. Two-layer minimum enstrophy solution for an elliptical depression with F1 = 25, F2 = 6.25 and
λ = 1. The relative vorticities are in the left panels and the potential vorticities in the right panels.

significantly larger than the deformation radius; with smaller depressions the surface flow
is weaker. The bottom-intensified solution is in line with previous studies with continuous
stratification (Merryfield 1998; Venaille 2012).

The perturbation PV in the lower layer (not shown) is positive and primarily reflects
the relative vorticity (lower left). Nevertheless, the total PV, dominated by the topographic
contribution, is negative. The surface PV (upper right panel) is also negative and nearly as
strong as that at depth. However, this is due to the stretching term, F1(ψ2 − ψ1), which is
larger because the upper layer is thinner (F1 is four times larger than F2). As such, the PV
does not change sign in the vertical, signifying the flow is baroclinically stable (Pedlosky
1987).

The deep PV (right panel of figure 5) varies with λ as in the single-layer case. For large λ,
the PV is negative and dominated by topography while with −K2

min < λ < 0 it is positive
and dominated by the cyclonic relative vorticity. With λ near zero the two contributions
approximately cancel and the total PV is homogenized.

The surface PV on the other hand exhibits a non-monotonic dependence on λ (left
panel of figure 5). For large positive λ, the PV is near zero and the surface flow is weak.
Decreasing λ, the PV becomes more negative, reaching a minimum near λ = 10. As λ
approaches zero, the PV becomes homogenized. Thus, the surface PV is most pronounced
at intermediate values of positive λ. For negative λ, the surface PV is positive and increases
indefinitely as λ approaches −K2

min.
It is useful to compare these fields with those of topographic waves. Bottom

intensification is a signature of the latter, but the waves have a surface PV that is identically
zero (LaCasce 1998). It can be shown that the surface flow of the minimum enstrophy
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Figure 5. Cross-sections in the middle of the depression of the upper layer PV (a) and the lower layer PV
(b) for different λ, and F1 = 25 and F2 = 6.25.

solution is somewhat weaker. The surface PV will be a central concern when discussing
the numerical results below.

As before, the Lagrange multiplier determines the energy (figure 6). This closely
resembles the single-layer case, with the energy decreasing monotonically for positive
λ and exhibiting singularities for negative values, where � in (2.29) is zero. There are
evidently two sets of singularities, for λ greater and less than roughly −30. Those with
larger λ are associated with the barotropic modes and the others with the baroclinic modes.
Though the solutions are provably enstrophy minima for λ > 0, from (2.30), it is plausible
that all the solutions with −K2

min < λ < 0 are minima as well, as in the one-layer case.
To summarize, the two-layer solutions with positive λ are largely consistent with the

single-layer case, with cyclonic flow in a depression and anticyclonic flow over a seamount.
The flow is bottom intensified, as in previous studies with continuous stratification
(Merryfield 1998; Venaille 2012), and the bottom PV is homogenized as λ→ 0. The flow
also has negative PV at the surface (over a depression); this is homogenized both for large
λ and at λ = 0. The surface PV is strongest with positive λ at intermediate energies.

3. Quasi-geostrophic simulations

We now consider simulations using a QG model, with one and two layers. The model
solves (2.1) and (2.16a,b), respectively, with a doubly periodic domain and N = 512 grid
points in both lateral directions. The code is implemented with the GeophysicalFlows.jl
pseudo-spectral package (Constantinou et al. 2021). Time stepping is with a fourth-order
Runge–Kutta scheme and an exponential filter is employed to remove enstrophy near the
grid scale (Canuto et al. 1988). Total energy is conserved to within 0.5 % in all cases. The
flow is initialized with a random perturbation PV that is barotropic, surface trapped or
bottom trapped, with specified initial energies. The initial perturbations are derived from
a uniform (white) spectrum with random phases. The spectrum is truncated between two
wavenumbers Kl and Kr. Various Kl and Kr were tested, but the results shown hereafter
are based on runs with Kl = 4 and Kr = 10 (the deformation wavenumber in the two-layer
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Figure 6. Total energy for the two-layer minimum enstrophy solution as a function of λ with F1 = 25 and
F2 = 6.25.

experiments is K = 11). Both the late time flow and energy spectra were insensitive to this
choice, and it minimized energy dissipation across all experiments.

The bathymetry consists of a depression and a seamount, of identical dimensions. We
examine both symmetric (circular) and asymmetric (elliptical) features. Specifically, the
topographic height h is given by

h = h0 exp[−(x − x0s)
2/(2σ 2

x )− ( y − y0s)
2/(2σ 2

y )]

− h0 exp[−(x − x0b)
2/(2σ 2

x )− ( y − y0b)
2/(2σ 2

y )], (3.1)

where h0 = 3, σx and σy are respectively the semi-major and semi-minor axes (σx = σy for
the circular topography simulations). The centres of the depression and elevation are given
respectively by (x0b, y0b) and (x0s, y0s). In discussing the results we focus primarily on the
depression, for brevity. The situation over the seamount is qualitatively the same but with
the circulations reversed. All experiments are performed on the f plane. The single-layer
experiments (figures 7, 8 and 10) all have an initial energy of E = 0.05. Different initial
conditions and energies are employed in the two-layer experiments, as listed in table 1
below.

3.1. Single layer
Shown in figure 7 are snapshots of the relative vorticity and streamfunction for a
single-layer simulation, with a circular depression and seamount. The ellipse axes are
σx = σy = 0.7. The depression lies in the lower left of the panels and the seamount in
the upper right. The upper panels are from early in the simulation and the lower from a
late phase, after the flow has settled into a statistically stationary state.

Early on, vortices merge throughout the domain. Significantly, there is an asymmetry
between cyclones and anticyclones. Over the depression, the cyclones (in red) are strained
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Figure 12,13 13,14,15 16 17

q1 0 Random Random —
q2 Random 0 0 —
ψ1 — — — Topography following
ψ2 — — — 0
E0 0.05 0.05 0.0125, 0.05, 1.0 0.05

Table 1. Initial conditions for the two-layer QG experiments with corresponding figure numbers. The dashes
indicate the fields were calculated from the specified PV or streamfunctions.

–10.4 0 10.4
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ζ, early Ψ, early

ζ, late Ψ, late

Figure 7. Evolution of the flow in a single-layer circular depression at early (top row) and late (bottom row)
times. The former is at roughly one advective time scale, T = L/U, and the latter at about 30 T . The energy
is E = 0.05. Left column: relative vorticity; right column: streamfunction. The maximum topographic height
is h = ±3.0 and the ellipse axes are σx = σy = 0.7. The solid and dashed circles indicate the h = −0.5 and
h = 0.5 contours, respectively.

out while the anticyclones (blue) retain an approximately axisymmetric shape. At the late
stage there is a large-scale cyclonic flow with a single anticyclone at the centre (lower left
panel). The cyclonic flow dominates the streamfunction, while the anticyclone is barely
visible (lower right panel). As noted, the situation over the seamount is similar, but with
the circulations reversed.

The streamfunctions agree qualitatively with those of Bretherton & Haidvogel (1976).
However they did not observe the central anticyclone, most likely as their simulations
were of low resolution (64 × 64 grid points). When we used the same resolution, the
anticyclones were lost to dissipation. The solution agrees well though with those described
by Solodoch et al. (2021), who found both the cyclonic circulation and the strong
anticyclone in the centre, across a range of simulations with a circular depression.
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Figure 8. As in figure 7, but for an elliptical depression. The topographic height is the same, but now
σx = 1.4 = 2σy.

The corresponding fields for an elliptical depression and seamount are shown in figure 8.
The semi-major axis in this case is twice the semi-minor, with σx = 1.4 while σy = 0.7.
Again the mergers are asymmetric, with the cyclonic vortices preferentially sheared
out over the depression. But in contrast with the circular depression, the final central
anticyclone is much smaller and weaker (lower left panel). As such, the result is even
more sensitive to model resolution. With 2562 grid points, the anticyclone appeared less
often, and was rarely observed with 1282 grid points. In the high-resolution simulations
with different random initial conditions, we sometimes found two small vortices orbiting
the centre or no central anticyclone at all, but cases with a strong anticyclone were rare.

Why do the symmetric and asymmetric basins differ? With a single layer and radially
symmetric topography, angular momentum is conserved in the absence of lateral fluxes
(Nycander & LaCasce 2004):

d
dt

∫∫
r2(ζ + h) d A = 0. (3.2)

Thus, if the angular momentum is nearly zero initially, a cyclonic circulation would have
to be balanced by an anticyclonic flow in the interior. In reality there are lateral fluxes
and these alter the net circulation, as seen next. But the fact remains that a symmetric
depression is probably a special case.

The cyclonic circulation spins up at the expense of the cyclonic vortices strained
out during mergers, but cross-boundary vorticity fluxes also contribute, as noted above.
Integrating (2.1) over a region bounded by an outer isobath (the h = 0.05 contour,
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Figure 9. The PV budget terms in the single-layer elliptical depression experiment (figure 8) as the flow
approaches the final state. The blue and red curves are respectively the area-integrated vorticity (the circulation)
and the time-integrated vorticity flux across an isobath bounding the depression.

indicated by the solid ellipse in figure 8) and in time, we have

∫∫
ζ(t)− ζ(0) d A +

∫
dt

∮
ζu · n̂ dl = 0. (3.3)

The two terms are plotted in figure 9. The circulation, initially near zero, is briefly negative
before the cyclonic (positive) circulation is established at roughly t = 80. The integrated
flux mirrors this, with an initially positive flux followed by a negative one. The latter
primarily reflects an inward drift of cyclones.

Such a drift is contrary to the behaviour of solitary cyclones, which tend to propagate
out of a depression (Carnevale et al. 1991). The net convergence of cyclones here occurs
because they are preferentially strained out during mergers. As such, there is a ‘sink’ for
cyclonic vortices in the depression; those that enter often do not leave. This is not the case
with anticyclones, which survive the mergers and can exit the depression again.

Whether the central anticyclone is trapped in the depression depends on the PV;
consistent with the minimum enstrophy solution, the PV becomes homogenized for more
energetic flows. Shown in figure 10 are two cases, one with E = 0.05 (left panel) and
one with a kinetic energy ten times larger (right panel). As seen in the inserts, the
total PV is negative with E = 0.05, but near zero with E = 0.5. In the former case, an
anticyclone/cyclone settles in the middle of the depression/seamount while in the high
energy case, the vortices move freely about, as over a flat bottom. Thus, having PV
gradients in the depression is essential to trapping the anticyclone, as would be expected
with self-propagation of the vortex (§ 5).

Interestingly, the PV is homogenized at the largest energies, corresponding to the λ = 0
minimum enstrophy solution. Cases corresponding to the range −K2

min < λ < 0, in which
the cyclonic relative vorticity exceeds the topographic contribution, were never observed.
So it appears only the positive λ solutions are relevant for the simulations.
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Figure 10. Late time snapshots of total PV ζ + h, with the circular depression in single-layer experiments with
E = 0.05 (a) and E = 0.5 (b). The relative and total PV across the centre of the depression (as indicated by the
dashed line) are shown in the inserts.

Lastly, consider the q − ψ relation, shown for the elliptical depression case in figure 11.
The dependence is nearly linear, approximately obeying

q ≈ 2.7ψ. (3.4)

This too is consistent with the minimum enstrophy solution. The central anticyclone and
cyclone contribute only by producing the sharp deviations seen at the extremes of the
distribution.

3.2. Two layers
Now consider the two-layer case. We restrict attention to the elliptical depression and
seamount, and set the parameters so that the domain scale is roughly 10 times the
surface deformation radius and the layer depth ratio is 1/4. The different experiments are
summarized in table 1.

We begin with experiments in which the perturbation PV in the lower layer, q2, is
random and that in the upper layer, q1, is zero. In these, the bottom layer evolves as before,
with cyclones preferentially strained out in the depression as the cyclonic topographic flow
spins up (figure 12). In the final state, a small anticyclone remains in the centre (bottom
left panel), as with a single layer (figure 8).

The surface streamfunction (upper right panel of figure 12) indicates cyclonic circulation
above the depression, somewhat weaker than that at depth (lower right). The surface PV
(upper left) is nearly zero, as required from the conservation of upper layer PV. Thus, the
vertical structure of the mean flow is that of topographic waves. As noted, this differs from
the minimum enstrophy solution, which has negative surface PV, but it is straightforward to
obtain a minimum enstrophy solution with zero surface PV imposed. This yields a nearly
identical flow (not shown).
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Figure 11. A scatterplot for the total PV versus the streamfunction in the single-layer, elliptical depression
case with E = 0.05.

The PV fluxes can be obtained by integrating (2.16a,b) over an area bounded by an
isobath, i.e.

∫∫
qj(t)− qj(0) d A +

∫
dt

∮
qjuj · n̂ dl = 0, (3.5)

where the index, j = 1, 2, indicates the layer. The surface fluxes are necessarily near zero,
while those in the lower layer (not shown) closely resemble the fluxes in the single layer.
Thus, again the net cyclonic circulation over the depression is supported by a net influx of
cyclones.

As with a single layer, the q2 + h − ψ2 scatterplot (blue curve in the left panel of
figure 13) is nearly linear with a positive slope. The q1 − ψ1 curve instead lies mostly
along the q1 = 0 axis, with small deviations due to numerical noise.

Thus, the bottom-trapped PV case is very similar to that with a single layer, with a
bottom-intensified cyclonic circulation dominating the flow and the upper layer largely
passive.

The evolution with an initially surface-trapped PV is somewhat different. Shown
in figure 14 are the fields that result with a random initial q1, with q2 = 0.
A bottom-intensified cyclonic flow spins up, but no central anticyclone forms over the
depression. Because q2 = 0 initially, the anticyclones that form are weak and do not
survive. Instead, and strikingly, a large anticyclone appears at the surface.

Vortices form initially at the surface and merge actively thereafter. The surface vortices
are approximately deformation scale and ‘compensated’, i.e. they have no deep flow. As
such, their horizontal flow does not extend far beyond the PV contours (upper panels of
figure 14). This is as expected for vortices above a resting lower layer (e.g. Flierl et al.
1980; Larichev & McWilliams 1991). As is typical in 2-D turbulence simulations, only a
dipole remains at the end, but here with the anticyclone trapped over the depression and
the cyclone over the seamount.
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Figure 12. Late time configuration of the flow in two layers with initially random q2 and q1 = 0. (a) Surface
PV, (b) surface streamfunction, (c) bottom PV, (d) bottom streamfunction.
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Figure 13. Scatterplots of the total layer PVs versus the streamfunctions for the simulations with initially
bottom-trapped (a) and surface-trapped PV (b).
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Figure 14. As in figure 12, but for an initially random surface PV.

The vortex mergers are again asymmetric, but in a different way than before. After the
cyclonic flow spins up, only anticyclones merge over the depression. The cyclones enter
and leave, but merge instead outside, and over the seamount. Thus, there is a sink for
surface anticyclones over the depression. Notably though, the cyclones are not strained
out as the bottom-intensified flow spins up (animations are available in the supplementary
movies available at https://doi.org/10.1017/jfm.2023.1084).

The potential circulation over the depression and integrated PV fluxes are shown in
figure 15. The evolution in the lower layer (b) resembles that with a single layer, with a
strengthening cyclonic circulation (blue curve) balanced by negative PV fluxes (red curve).
As before, cyclones enter the depression and are lost to the large-scale circulation. The
circulation in the upper layer (blue curve, left panel) evolves more sporadically, reflecting
the motion of individual vortices. It eventually hovers around a negative value, due to the
lone central anticyclone. The integrated flux is accordingly positive, consistent with a net
inward drift of anticyclones. Significantly, the surface circulation is consistently negative
only after the deep flow is established (by roughly t = 200 in the figure). This suggests the
merger asymmetry is related to the cyclonic flow.

The q2 + h − ψ2 curve is linear with a positive slope, as in the bottom-trapped PV case
(left panel of figure 13). However, the surface layer curve (in red) exhibits two regions
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Figure 15. As in figure 9, but for the upper (a) and lower (b) layers in the experiment with initially
surface-trapped PV.

with negative slopes. These correspond to the two surface vortices, a negative one over the
depression and a positive one over the seamount.

As in the single-layer case, vortex trapping is dependent on the total energy. The late
stage PV for three cases with an initially surface-trapped PV are shown in figure 16. The
initial energies are E = 0.0125, 0.05 and 1.0. In all three cases, q1 is dominated by solitary
vortices. With E = 0.05, a cyclone is trapped over the seamount and two anticyclones over
the depression (these subsequently merge). In contrast, with E = 0.0125 the vortices are
less confined; the cyclone lingers near the seamount, while the anticyclone moves about
the domain. The same is true with E = 1.0, as both vortices move freely about the domain.
Thus, trapping occurs primarily at intermediate energies.

The free motion at large energies, as in the single-layer case, happens because the PV
in both layers is homogenized. The latter is seen in the PV slices shown in the inserts in
figure 16(c, f ). This is as expected for the minimum enstrophy solution with λ ≈ 0. The
(nearly) free motion at the weakest energy is unexpected though. In this case the deep PV,
dominated by topography, is strongly negative (figure 16d), which should favour vortex
self-propagation. Perhaps most noticeably, the surface PV over the depression is near
zero outside the vortices in all three cases. This is a striking deviation from the minimum
enstrophy prediction.

Evidently the surface vortices disrupt the formation of the large-scale surface PV. The
latter is seen however in simulations with more quiescent vortex fields. Two examples,
with surface-trapped initial flows that follow the isobaths, are shown in figure 17. The
circulation over the depression is anticyclonic in one experiment and cyclonic in the
other. In both cases, energy is transferred to the lower layer, yielding the large-scale
cyclonic flow and a lone anticyclone in the centre (upper right). But a large-scale negative
PV also appears. This is also true when the surface flow is initially cyclonic (lower
panels of figure 17). Then the cyclones shift to the seamount and the anticyclones to
the depression. But in both cases, the less energetic vortices permit the formation of a
large-scale surface PV.
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Figure 16. Late time snapshots of layer total PVs with an elliptical depression in two-layer experiments with an
initially surface-trapped PV. The initial energies are E = 0.0125 (a,d), E = 0.05 (b,e) and E = 0.5 (c, f ). The
insets show q1, q2 and q2 + h distributions across the middle of the depression, indicated by the horizontal
dashed line on panels (a–f ). Results are shown for (a) q1,E = 0.0125; (b) q1,E = 0.05; (c) q1,E = 1.0;
(d) q2,+h,E = 0.0125; (e) q2,+h,E = 0.05 and ( f ) q2,+h,E = 1.0.

The symmetric depression differs in these experiments as well. If one starts with a
surface-trapped flow with negative PV over a circular depression, the flow does not
evolve at all (not shown). Indeed, such a flow is a stable steady state if the bathymetry
is symmetric.

Additional experiments were made with an initially barotropic PV as well (not
shown). In these, the evolution is essentially a combination of the initially surface- and
bottom-trapped PV cases above. Most strikingly, the vortex evolution is independent in
the layers. Thus, there is no alignment of like-signed features in the layers, as occurs over
a flat bottom (McWilliams 1990). Lone anticyclones form over the depression in both
layers, but the surface vortex is smaller than in the initially surface-trapped case due to
more active straining by the stronger cyclonic flow. Otherwise, the results are consistent
with those described above.

4. Primitive equation model

The preceding simulations and the minimum enstrophy solutions are based on the
two-layer QG equations. To see to what extent the results apply in a more realistic
environment, we employ a full complexity ocean model. This allows testing configurations
(e.g. finite amplitude interfacial and topographic deviations) beyond the formal
requirements of QG.
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Figure 17. Two simulations with initially surface-trapped flow over an elliptical depression and seamount.
Here, ψ1 initially follows the bathymetry and ψ2 = 0. The initial perturbation PVs are shown on the left and
the final PVs on the right; the top/bottom rows show the surface/bottom fields, respectively. Note the domain
is 4π × 4π. The solid and dashed circles indicate the h = −0.02 and h = 0.02 contours, respectively, and
the initial energy is E = 0.05. (a) Anticyclone q1, initial; (b) anticyclone q1, late; (c) cyclone q1, initial and
(d) cyclone q1, late.

The simulations were performed with the coastal and regional ocean community
(CROCO) version of the regional ocean modelling system (ROMS; Shchepetkin &
McWilliams 2005; Haidvogel et al. 2008).

The simulations were run with a constant Coriolis parameter, f = 1.37 × 10−4 s−1 and
density is determined solely by temperature, for simplicity. The background temperature
stratification was set to an exponential profile, T = Ts exp(z/he), with he ≈ 400 m. The
buoyancy frequency, N, was chosen so that the (flat bottom) deformation radius, Ld ≈∫ 0
−H N dz/f π (Chelton et al. 1998), was roughly 20 km. A random perturbation was added

to the initial density field, with corresponding (balanced) velocities obtained by integrating
the thermal wind relation from the bottom. The perturbation was surface intensified, with
an e-folding scale equal to that of the background stratification, he. Spin down experiments
were run for 5–7 years. In the simulations with bottom drag, quadratic friction with a drag
coefficient Cd = 10−3 was used.

The model geometry is a doubly periodic square box with sides L = 1205 km, and a
lateral grid spacing of 5 km. We examine an isolated elliptical depression and random
topographic relief. The former is a Gaussian-shaped depression 600 m deep, surrounded
by a flat region 1500 m deep. For the random relief, a Gaussian random field with an
amplitude of 100 m was added to a mean depth of D = 1900 m. The resulting depth
perturbations have a dominant scale of approximately 3–5Ld. We also examine a full
complexity simulation with the Lofoten bathymetry, with a deformation radius of 10 km,
a horizontal resolution of 800 m and topography from the general bathymetric chart of the
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Figure 18. Relative vorticity (colours) in simulations over an elliptical depression, without (top) and with
bottom drag (bottom). The left panels show the surface vorticity 150 days after initiation while the middle and
right panels show the surface (middle) and bottom (right) vorticities averaged for one month after 5 years of
the simulations. The vorticity is normalized by the Coriolis parameter, f , and the solid contours indicate the
isobaths in 100 m increments.

oceans (GEBCO) database (Weatherall et al. 2015). Further details are given by Trodahl
et al. (2020).

The relative vorticity for the elliptical depression case is shown in figure 18. We
focus on the relative vorticity as this is straightforward to calculate and avoids potential
differences, say, between the Ertel and QG forms of the PV. The upper/lower panels were
run without/with bottom drag.

Mergers occur during the initial period (left panels). The asymmetry between
anticyclones and cyclones is clear, with the latter preferentially sheared out and the former
retaining more axisymmetric shapes. The same is true with bottom friction, although the
vortices are consistently smaller (lower left panel). Thus, friction affects even the early
evolution, as seen previously in QG simulations (LaCasce & Brink 2000; Arbic & Flierl
2004). At late times, a surface anticyclone is found over the depression, with an outer
cyclonic ring (middle and right upper panels), and the deep flow is cyclonic (lower middle
and right panels).

The vortex vertical structure, obtained by azimuthally averaging the time mean relative
vorticity and velocities, is shown in figure 19. The vortex is surface trapped and the deep
flow dominated by the cyclonic circulation. The vortex has a radius of about 25 km,
comparable to the deformation radius, and the outer ring of positive vorticity, which
is surface intensified, merges with the deep cyclonic vorticity. Bottom friction weakens
the deep flow, leaving the surface anticyclone intact (lower middle and right panels of
figure 18). But the vortex now clearly extends to the bottom (figure 19b).

The evolution over random topography proceeds similarly. The time mean vorticity at
the surface and the bottom from a representative run are shown in figure 20, without
and with bottom friction. Surface vortices are seen in many locations, anticyclonic over
depressions and cyclonic over seamounts. Most have significant bottom flows, and are also
shielded. As in the single depression experiments, the outer ring of vorticity is connected
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Figure 19. Azimuthally averaged relative vorticity and velocity (grey contours) in the bowl-trapped vortex
from the run without (a) and with (b) bottom drag. The profiles represent one month averages after 5 years of
the simulation. Note the deformation radius is 20 km, comparable to the vortex.
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Figure 20. Turbulence runs over two randomly generated topography fields. Shown are the time mean,
normalized relative vorticity, with velocity vectors superimposed. (a) Surface and (b) bottom without bottom
friction, and (c) surface and (d) bottom with bottom friction. The solid contours indicate negative (solid) and
positive elevation contours, in 100 m increments.
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to deep features of the same sign, but now there is no scale separation between topography
and vortices, so that the deep flow is more vortex-like than topographically locked. In
several locations, the flow is arranged in baroclinic tripoles, with a surface anticyclone
wedged between two bottom-intensified cyclones. The arrangement persists and is stable.
Barotropic and baroclinic tripoles have been discussed previously by, e.g. Carton, Flierl
& Polvani (1989); van Heijst & Kloosterziel (1989); Reinaud & Carton (2019). They
emerge here due to the flow preference over the depression and because of the asymmetric
bathymetric shapes.

Bottom friction again weakens the deep flow, leaving the surface vortices intact (lower
left panel). Interestingly, the surface vortices are more numerous and also larger with
friction. Note too that the surface vortices are found over both closed topographic contours
as well as open ridges and troughs. This is in line with observations of anticyclones over
features such as the Rockall Trough and in the Icelandic Basin (Zhao et al. 2018; Smilenova
et al. 2020).

Lastly we consider the Lofoten case. Despite the increase in complexity, the adjusted
state resembles that in the previous examples. This is seen in figure 21, the time-averaged
vorticity corresponding to the run shown in figure 1. The anticyclone is seen in the basin
centre, surrounded by cyclonic vorticity. Here too, cyclones are preferentially strained out
during mergers while the anticyclones retain their axisymmetric shapes and grow in size.
The vortices emanate from the unstable Norwegian Current to the east, on the continental
slope (in the bottom of the figure) (Köhl 2007; Trodahl et al. 2020; de Marez et al.
2021). In animations, the Lofoten vortex circles cyclonically in the region bounded by
the 3000 m depth contour. This motion has been noted previously and is often attributed
to the topographic beta effect (Søiland & Rossby 2013; Raj et al. 2015; Yu et al. 2017). But
here the motion is due to advection by the surface expression of the cyclonic flow.

The vortex vertical structure is shown in figure 22. The vortex core lies in the upper
1000 m. The radius is approximately 10 km, comparable to the deformation radius in the
run. As with the bowl experiment with bottom drag (right panel of figure 19), the flow
extends to the bottom, with velocities of up to 10 cm s−1 (bottom drag is applied here as
well). A cyclonic outer shield of vorticity is present in the upper water column, and this
merges with the cyclonic vorticity present at depth, as before.

Thus, the results of the primitive equation (PE) simulations are largely in line with those
from the QG experiments. Random initial conditions yield bottom-intensified cyclonic
flow over depressions and, frequently, a surface-trapped anticyclone. The latter extends to
the bottom with bottom friction. The asymmetry in vortex mergers is even clearer in these
simulations, with the cyclones preferentially strained out even near the surface.

5. Discussion

The minimum enstrophy solution with a positive λ has bottom-intensified cyclonic
flow over a depression. It is a steady solution and stable. It closely resembles the
minimum enstrophy solution in a single layer, and that obtained previously for continuous
stratification (Merryfield 1998; Venaille et al. 2011). The cyclonic flow was found in all
the numerical solutions examined here, even when the PV was initially surface trapped.
Spinning up the deep circulation in such cases implies an active energy transfer in the
vertical.

With 2-D turbulence over a flat bottom, energy in the baroclinic mode cascades to
the deformation radius and thence to larger scales in the barotropic mode (Rhines 1977;
Salmon 1980). Like-sign vortices in different layers align, which increases the barotropic
flow (McWilliams 1990; Polvani 1991). The evolution over bathymetry differs because
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Figure 21. Time mean relative vorticity at the surface, corresponding to the run shown in figure 1. The
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Figure 22. Time mean (8 years) azimuthally averaged relative vorticity and velocity (grey contours) in the
Lofoten vortex. The deformation radius is 10 km, again comparable to the vortex radius.

energy in the surface layer is transferred instead to topographic waves (LaCasce & Brink
2000). The formation of a large-scale flow is the result of an inverse cascade, but among
these bottom-intensified modes. However, as topographic waves have zero surface PV,
the latter resides in surface vortices. These usually do not exceed deformation scale
and are compensated (zero bottom flow). Such a description describes well the present
QG simulations. One can distinguish the streamfunctions, dominated by the cyclonic

979 A32-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1084


J.H. LaCasce, A. Palóczy and M. Trodahl

topographic flow and nearly barotropic for large-scale depressions, and the PV, which is to
first order independent in the layers.

This helps rationalize the numerical results, as well as deviations from the minimum
enstrophy solution. The latter captures many aspects, such as the linear q − ψ relation for
the bottom layer. But the solution fails to predict the surface PV, which is near zero in the
simulations. Rather, the surface PV resides in axisymmetric vortices that are trapped over
the bathymetry at intermediate energies.

The surface anticyclone that settles over the depression is often explained in terms
of vortex self-propagation. This follows theoretical and laboratory studies of isolated
barotropic vortices in the presence of a large-scale PV gradient (McWilliams & Flierl
1979; Flierl 1987; Carnevale et al. 1991; LaCasce 1998). In favour of self-propagation,
vortex trapping does not occur when the deep PV is homogenized, when no formation
of the advecting ‘beta gyres’ is possible. Moreover, the vortex has deep flow in the PE
simulations and, thus, is interacting with the bottom. But the surface anticyclone also
forms over the depression in the QG simulations, despite being compensated. And even in
the PE simulations, it is likely that self-propagation is overwhelmed by interactions with
other surface vortices. Trapping does not occur in the QG simulations with weak energy
either, when the deep PV is dominated by topography.

An alternate explanation follows from the QG linear stability analysis of Zhao et al.
(2019). Their results, involving surface vortices with piecewise constant PV over circular
seamounts, suggest that cyclones should be destabilized over a depression but not
anticyclones. Instability occurs because oscillations on the PV gradient at the vortex edge
couple with topographic waves and amplify. However, the instability is strongest when the
vortex is larger than deformation scale and comparable in scale to the bathymetry. The
vortices in our simulations are deformation scale and much smaller than the depression.
Thus, coupling between vortex edge waves and topographic waves is probably less
significant.

A further rationale for trapping in the single-layer case was given recently by Siegelman
& Young (2023). In a set of barotropic simulations, trapping occurred when the energy was
below that at λ = 0 (referred to as ‘E#’) and when the topographically locked flow had a
stagnation point. Consistently, vortex trapping here does not occur when the energy is large
enough that the deep PV is homogenized. But surface trapping does not occur when the
energy is weak either, and with the simple elliptical depression the bottom-intensified flow
always has a stagnation point in the centre. So while plausible, the argument would have
to be modified to explain the present cases.

An alternate interpretation is as follows. The minimum enstrophy state predicts a
large-scale, negative perturbation PV at the surface. This resembles the total PV at depth,
is comparably strong and has cyclonic circulation. It may be that the system is evolving
toward this state. This would explain why the surface anticyclone is trapped over the
depression only at intermediate energies, when the predicted surface anomaly is strongest,
and why the merger asymmetry is evident only after the cyclonic flow has begun to spin
up (figure 15). Prior to that, both cyclones and anticyclones merge over the depression.

But the flow never attains the predicted final state. There are two likely reasons why. The
surface anomaly would have to be assembled via mergers among small-scale anticyclones.
But these have anticyclonic circulation, so the mergers are unlikely to produce a large-scale
structure with cyclonic circulation. Second, the surface vortices in the QG experiments are
compensated. Such ‘equivalent barotropic’ vortices have an azimuthal velocity that decays
exponentially beyond a deformation radius from the vortex centre (Flierl et al. 1980), and
this greatly hinders the formation of larger-scale vortices (Larichev & McWilliams 1991).
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If correct, the anticyclone trapping could reflect an incomplete adjustment to the minimum
enstrophy state.

The merger asymmetry differs somewhat between the QG and PE simulations, as
surface cyclones are preferentially strained out in the latter but not in the former. This
could be a finite Rossby number effect, present even in the absence of bathymetry (Polvani
et al. 1994; Graves et al. 2006); at large Rossby numbers, anticyclones are favoured
over cyclones. To separate balanced and ageostrophic effects, one could conduct PE
experiments over a large-scale seamount. The merger asymmetry would favour surface
cyclones, while the ageostrophic effect would shear them out. We have not examined this,
but it would be straightforward to do so.

The minimum enstrophy solutions also include flows with negative λ, such that −K2
min <

λ < 0. These have a positive perturbation PV in both the single- and two-layer cases and
can have very large energies. But such solutions were never observed in the simulations.
Rather, as the energy is increased, the surface and bottom total PV go to zero, as for the
minimum enstrophy solution with λ = 0. The likely explanation is that the effective λ
is positive when the deep cyclonic flow is spinning up, and as the flow intensifies, the
effective λ decreases toward zero. In order for λ to become negative, the PV would have to
change sign and strengthen again, which evidently does not happen.

Both components of the final flow, the cyclonic bottom circulation and the surface
anticyclone, are energetic in the QG experiments. Bottom friction, employed in the PE
simulations, selectively weakens the cyclonic circulation. The same would occur with
bottom roughness (e.g. Radko 2022). This could explain why the surface vortices are
often seen in observations while the cyclonic circulation is not. Bottom drag could also
weaken the anticyclone if the latter has a significant deep flow, as seen previously in PE
simulations (Solodoch et al. 2021). But such damping cannot destroy the surface vortex,
as surface PV is not dissipated by bottom drag (LaCasce 1998; LaCasce & Brink 2000).

Lastly, the present simulations were conducted on the f plane. Additional runs were
made with planetary β, which permits Rossby waves and, hence, the dispersion of surface
vortices. The latter was insignificant though, because the vortices are deformation scale,
below the ‘Rhines scale’ at which dispersion becomes pronounced (Rhines 1977). Zonal
flows formed over the flat regions between the depressions, increasing vortex motion and
decreasing vortex trapping. But further study is required to say to what extent these results
are representative.

6. Summary and conclusions

A minimum enstrophy solution for two-layer QG flow over bathymetry was derived
and compared with numerical simulations using QG and PE models. The solution
predicts bottom-intensified cyclonic circulation in a depression and anticyclonic flow
over a seamount. The sense of circulation is the same as predicted by barotropic
theory (Bretherton & Haidvogel 1976; Carnevale & Frederiksen 1987), and the bottom
intensification is as seen in previous baroclinic studies (Merryfield 1998; Venaille et al.
2011).

In the single-layer minimum enstrophy solution, the total PV, ζ + h, is homogeneous
when the Lagrange multiplier, λ, is near zero. The PV is homogenized in this limit also
in the two-layer case, in both layers. The surface PV also vanishes at low energies, i.e. for
large positive λ. At intermediate energies, the surface PV is negative and nearly as strong
as that in the lower layer.
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In two-layer QG simulations, the bottom-intensified cyclonic flow occurs in all cases.
The simulations with initially bottom-trapped PV closely resemble the single-layer
experiments, with a positive q − ψ relation. An anticyclone is often seen in the centre
of the depression, as with a single layer, and this is not predicted by the theory. The
anticyclone is large when the depression is symmetric (circular) but much smaller
when the depression is asymmetric. In two-layer QG simulations with an initially
surface-trapped perturbation PV, a much larger surface anticyclone is found. This is
axisymmetric and lies near the centre of the depression. The perturbation PV outside the
vortex is near zero, implying the vertical structure of the large-scale cyclonic flow is like
that of topographic waves.

A common feature among all experiments is that vortex mergers are asymmetric. In the
bottom layer, cyclones are preferentially strained out as the large-scale cyclonic flow forms.
At the surface, mergers occur instead among anticyclones while cyclones generally drift
away. The result is a single compensated anticyclone trapped above the depression. But
trapping occurs preferentially at intermediate energies; the vortex leaves the depression
when the deep PV is homogenized and also when the energy is weak. The anticyclone
may reflect the incomplete formation of a topographic-scale negative PV anomaly. A full
formation does not occur though because mergers are suppressed when the surface vortices
reach deformation scale and because the vortices have anticyclonic rather than cyclonic
circulation.

It is less likely the anticyclone self-propagates across the bathymetry, because the
vortex is compensated and interacts primarily with vortices in the surface layer. There
is significant vortex flow at depth in the PE simulations, but here too the vortex is more
strongly influenced by other vortices at the surface.

Surface anticyclones over depressions are common in observations and numerical
simulations. The present results suggest they may be the result of a subtle, and incomplete,
turbulent adjustment.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1084.
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